CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Chain complexes</Heading>
2
3
<Table Align="|l|" >
4
5
6
<Row>
7
<Item>
8
<Index>ChainComplex</Index>
9
<C>ChainComplex(T)</C>
10
11
12
<P/>
13
Inputs a pure cubical complex, or cubical complex, or simplicial complex
14
<M>T</M>
15
and returns the (often very large) cellular chain complex of <M>T</M>.
16
</Item>
17
</Row>
18
19
<Row>
20
<Item>
21
<Index>ChainComplexOfPair</Index>
22
<C>ChainComplexOfPair(T,S)</C>
23
24
25
<P/>
26
Inputs a pure cubical complex or cubical complex <M>T</M> and contractible subcomplex <M>S</M>.
27
It returns the quotient <M>C(T)/C(S)</M> of cellular chain complexes.
28
</Item>
29
</Row>
30
31
32
33
<Row>
34
<Item>
35
<Index> ChevalleyEilenbergComplex</Index>
36
<C>
37
ChevalleyEilenbergComplex(X,n)
38
</C>
39
<P/>
40
41
Inputs either a Lie algebra <M>X=A</M> (over the ring of integers
42
<M>Z</M> or over a field <M>K</M>) or a homomorphism of Lie algebras
43
<M>X=(f:A
44
\longrightarrow
45
B)</M>,
46
together with a positive integer <M>n</M>.
47
It returns either the first <M>n</M> terms of the
48
Chevalley-Eilenberg chain complex <M>C(A)</M>,
49
or the induced map of Chevalley-Eilenberg complexes
50
<M>C(f):C(A)
51
\longrightarrow C(B)</M>.
52
<P/>
53
(The homology of the Chevalley-Eilenberg complex <M>C(A)</M> is by
54
definition the homology of the Lie algebra <M>A</M>
55
with trivial coefficients in <M>Z</M> or <M>K</M>).
56
<P/>
57
This function was written by <B>Pablo Fernandez Ascariz</B>
58
</Item>
59
</Row>
60
61
62
63
64
65
<Row>
66
<Item>
67
<Index> LeibnizComplex</Index>
68
<C> LeibnizComplex(X,n)
69
</C>
70
<P/>
71
72
Inputs either a Lie or Leibniz algebra <M>X=A</M> (over the ring of
73
integers <M>Z</M> or over a field <M>K</M>)
74
or a homomorphism of Lie or Leibniz algebras
75
<M>X=(f:A
76
\longrightarrow B)</M>, together with a positive integer
77
<M>n</M>. It returns either the first <M>n</M>
78
terms of the Leibniz chain complex
79
<M>C(A)</M>, or the induced map of Leibniz complexes
80
<M>C(f):C(A)
81
\longrightarrow C(B)</M>.
82
<P/>
83
(The Leibniz complex <M>C(A)</M>
84
was defined by J.-L.Loday. Its homology is by definition the Leibniz
85
homology of the algebra <M>A</M>).
86
<P/>
87
This function was written by <B>Pablo Fernandez Ascariz</B>
88
</Item>
89
</Row>
90
91
<Row>
92
<Item>
93
<Index>SuspendedChainComplex</Index>
94
<C>SuspendedChainComplex(C)</C>
95
96
97
<P/>
98
Inputs a chain complex
99
<M>C</M>
100
and returns the chain complex <M>S</M> defined by applying the degree shift
101
<M>S_n = C_{n-1}</M> to chain groups and boundary homomorphisms.
102
</Item>
103
</Row>
104
105
<Row>
106
<Item>
107
<Index>ReducedSuspendedChainComplex</Index>
108
<C>ReducedSuspendedChainComplex(C)</C>
109
110
111
<P/>
112
Inputs a chain complex
113
<M>C</M>
114
and returns the chain complex <M>S</M> defined by applying the degree shift
115
<M>S_n = C_{n-1}</M> to chain groups and boundary homomorphisms for all <M>n > 0</M>. The chain complex <M>S</M> has trivial homology in degree <M>0</M> and <M>S_0=\mathbb Z</M>.
116
</Item>
117
</Row>
118
119
120
<Row>
121
<Item>
122
<Index>CoreducedChainComplex</Index>
123
<C>CoreducedChainComplex(C)</C>
124
<C>CoreducedChainComplex(C,2)</C>
125
126
127
128
<P/>
129
Inputs a chain complex
130
<M>C</M>
131
and returns a quasi-isomorphic chain complex <M>D</M>. In many cases the complex <M>D</M> should be smaller than <M>C</M>. If an optional second input argument is set equal to 2 then an alternative method is used for
132
reducing the size of the chain complex.
133
</Item>
134
</Row>
135
136
<Row>
137
<Item>
138
<Index>TensorProductOfChainComplexes</Index>
139
<C>TensorProductOfChainComplexes(C,D)</C>
140
141
<P/> Inputs two chain complexes <M>C</M> and <M>D</M> of the same characteristic and returns their tensor product as a chain complex.
142
143
<P/> This function was written by <B> Le Van Luyen</B>.
144
</Item>
145
</Row>
146
147
148
<Row>
149
<Item>
150
<Index>LefschetzNumber</Index>
151
<C>LefschetzNumber(F)</C>
152
153
154
155
<P/>
156
Inputs a chain map
157
<M>F\colon C\rightarrow C</M>
158
with common source and target. It returns the Lefschetz number of the map
159
(that is, the alternating sum of the traces of the homology maps in each degree).
160
</Item>
161
</Row>
162
163
164
</Table>
165
</Chapter>
166
167
168
169