Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Chain complexes</Heading>12<Table Align="|l|" >345<Row>6<Item>7<Index>ChainComplex</Index>8<C>ChainComplex(T)</C>91011<P/>12Inputs a pure cubical complex, or cubical complex, or simplicial complex13<M>T</M>14and returns the (often very large) cellular chain complex of <M>T</M>.15</Item>16</Row>1718<Row>19<Item>20<Index>ChainComplexOfPair</Index>21<C>ChainComplexOfPair(T,S)</C>222324<P/>25Inputs a pure cubical complex or cubical complex <M>T</M> and contractible subcomplex <M>S</M>.26It returns the quotient <M>C(T)/C(S)</M> of cellular chain complexes.27</Item>28</Row>29303132<Row>33<Item>34<Index> ChevalleyEilenbergComplex</Index>35<C>36ChevalleyEilenbergComplex(X,n)37</C>38<P/>3940Inputs either a Lie algebra <M>X=A</M> (over the ring of integers41<M>Z</M> or over a field <M>K</M>) or a homomorphism of Lie algebras42<M>X=(f:A43\longrightarrow44B)</M>,45together with a positive integer <M>n</M>.46It returns either the first <M>n</M> terms of the47Chevalley-Eilenberg chain complex <M>C(A)</M>,48or the induced map of Chevalley-Eilenberg complexes49<M>C(f):C(A)50\longrightarrow C(B)</M>.51<P/>52(The homology of the Chevalley-Eilenberg complex <M>C(A)</M> is by53definition the homology of the Lie algebra <M>A</M>54with trivial coefficients in <M>Z</M> or <M>K</M>).55<P/>56This function was written by <B>Pablo Fernandez Ascariz</B>57</Item>58</Row>596061626364<Row>65<Item>66<Index> LeibnizComplex</Index>67<C> LeibnizComplex(X,n)68</C>69<P/>7071Inputs either a Lie or Leibniz algebra <M>X=A</M> (over the ring of72integers <M>Z</M> or over a field <M>K</M>)73or a homomorphism of Lie or Leibniz algebras74<M>X=(f:A75\longrightarrow B)</M>, together with a positive integer76<M>n</M>. It returns either the first <M>n</M>77terms of the Leibniz chain complex78<M>C(A)</M>, or the induced map of Leibniz complexes79<M>C(f):C(A)80\longrightarrow C(B)</M>.81<P/>82(The Leibniz complex <M>C(A)</M>83was defined by J.-L.Loday. Its homology is by definition the Leibniz84homology of the algebra <M>A</M>).85<P/>86This function was written by <B>Pablo Fernandez Ascariz</B>87</Item>88</Row>8990<Row>91<Item>92<Index>SuspendedChainComplex</Index>93<C>SuspendedChainComplex(C)</C>949596<P/>97Inputs a chain complex98<M>C</M>99and returns the chain complex <M>S</M> defined by applying the degree shift100<M>S_n = C_{n-1}</M> to chain groups and boundary homomorphisms.101</Item>102</Row>103104<Row>105<Item>106<Index>ReducedSuspendedChainComplex</Index>107<C>ReducedSuspendedChainComplex(C)</C>108109110<P/>111Inputs a chain complex112<M>C</M>113and returns the chain complex <M>S</M> defined by applying the degree shift114<M>S_n = C_{n-1}</M> to chain groups and boundary homomorphisms for all <M>n > 0</M>. The chain complex <M>S</M> has trivial homology in degree <M>0</M> and <M>S_0=\mathbb Z</M>.115</Item>116</Row>117118119<Row>120<Item>121<Index>CoreducedChainComplex</Index>122<C>CoreducedChainComplex(C)</C>123<C>CoreducedChainComplex(C,2)</C>124125126127<P/>128Inputs a chain complex129<M>C</M>130and returns a quasi-isomorphic chain complex <M>D</M>. In many cases the complex <M>D</M> should be smaller than <M>C</M>. If an optional second input argument is set equal to 2 then an alternative method is used for131reducing the size of the chain complex.132</Item>133</Row>134135<Row>136<Item>137<Index>TensorProductOfChainComplexes</Index>138<C>TensorProductOfChainComplexes(C,D)</C>139140<P/> Inputs two chain complexes <M>C</M> and <M>D</M> of the same characteristic and returns their tensor product as a chain complex.141142<P/> This function was written by <B> Le Van Luyen</B>.143</Item>144</Row>145146147<Row>148<Item>149<Index>LefschetzNumber</Index>150<C>LefschetzNumber(F)</C>151152153154<P/>155Inputs a chain map156<M>F\colon C\rightarrow C</M>157with common source and target. It returns the Lefschetz number of the map158(that is, the alternating sum of the traces of the homology maps in each degree).159</Item>160</Row>161162163</Table>164</Chapter>165166167168169