Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346����; � TeX output 2013.10.13:1915� ������! systemdict /pdfmark known{userdict /?pdfmark systemdict /exec get put}{userdict /?pdfmark systemdict /pop get put userdict /pdfmark systemdict /cleartomark get put}ifelse�ps:SDict begin [/Producer (dvips + Distiller)/Title (Written with GAPDoc)/Subject ()/Creator (LaTeX with hyperref package / GAPDoc)/Author ()/Keywords () /DOCINFO pdfmark end� o! /DvipsToPDF{72.27 mul Resolution div} def/PDFToDvips{72.27 div Resolution mul} def/BPToDvips{72 div Resolution mul}def/BorderArrayPatch{[exch{dup dup type/integertype eq exch type/realtype eq or{BPToDvips}if}forall]}def/HyperBorder {1 PDFToDvips} def/H.V {pdf@hoff pdf@voff null} def/H.B {/Rect[pdf@llx pdf@lly pdf@urx pdf@ury]} def/H.S {currentpoint HyperBorder add /pdf@lly exch def dup DvipsToPDF 72 add /pdf@hoff exch def HyperBorder sub /pdf@llx exch def} def/H.L {2 sub dup/HyperBasePt exch def PDFToDvips /HyperBaseDvips exch def currentpoint HyperBaseDvips sub /pdf@ury exch def/pdf@urx exch def} def/H.A {H.L currentpoint exch pop vsize 72 sub exch DvipsToPDF HyperBasePt sub sub /pdf@voff exch def} def/H.R {currentpoint HyperBorder sub /pdf@ury exch def HyperBorder add /pdf@urx exch def currentpoint exch pop vsize 72 sub exch DvipsToPDF sub /pdf@voff exch def} def��������@fT��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Dps:SDict begin [/View [/XYZ H.V]/Dest (page.1) cvn /DEST pdfmark end� color pop�������LfT��� ��color push Black���\� color pop�������� ����fT�fps:SDict begin [/Count -0/Dest (chapter.1) cvn/Title (Resolutions of the ground ring) /OUT pdfmark end�_ps:SDict begin [/Count -0/Dest (chapter.2) cvn/Title ( Resolutions of modules) /OUT pdfmark end�gps:SDict begin [/Count -0/Dest (chapter.3) cvn/Title ( Induced equivariant chain maps) /OUT pdfmark end�Qps:SDict begin [/Count -0/Dest (chapter.4) cvn/Title ( Functors) /OUT pdfmark end�Xps:SDict begin [/Count -0/Dest (chapter.5) cvn/Title ( Chain complexes) /OUT pdfmark end�_ps:SDict begin [/Count -0/Dest (chapter.6) cvn/Title ( Sparse Chain complexes) /OUT pdfmark end�gps:SDict begin [/Count -0/Dest (chapter.7) cvn/Title ( Homology and cohomology groups) /OUT pdfmark end�Xps:SDict begin [/Count -0/Dest (chapter.8) cvn/Title ( Poincare series) /OUT pdfmark end�bps:SDict begin [/Count -0/Dest (chapter.9) cvn/Title ( Cohomology ring structure) /OUT pdfmark end�ups:SDict begin [/Count -0/Dest (chapter.10) cvn/Title ( Cohomology rings of p-groups \(mainly p=2\)) /OUT pdfmark end�wps:SDict begin [/Count -0/Dest (chapter.11) cvn/Title ( Commutator and nonabelian tensor computations) /OUT pdfmark end�tps:SDict begin [/Count -0/Dest (chapter.12) cvn/Title ( Lie commutators and nonabelian Lie tensors) /OUT pdfmark end�kps:SDict begin [/Count -0/Dest (chapter.13) cvn/Title ( Generators and relators of groups) /OUT pdfmark end�qps:SDict begin [/Count -0/Dest (chapter.14) cvn/Title ( Orbit polytopes and fundamental domains) /OUT pdfmark end�Rps:SDict begin [/Count -0/Dest (chapter.15) cvn/Title ( Cocycles) /OUT pdfmark end�cps:SDict begin [/Count -0/Dest (chapter.16) cvn/Title ( Words in free ZG-modules ) /OUT pdfmark end�Ups:SDict begin [/Count -0/Dest (chapter.17) cvn/Title ( FpG-modules) /OUT pdfmark end�Yps:SDict begin [/Count -0/Dest (chapter.18) cvn/Title ( Meataxe modules) /OUT pdfmark end�Xps:SDict begin [/Count -0/Dest (chapter.19) cvn/Title ( G-Outer Groups) /OUT pdfmark end�Vps:SDict begin [/Count -0/Dest (chapter.20) cvn/Title ( Cat-1-groups) /OUT pdfmark end�[ps:SDict begin [/Count -0/Dest (chapter.21) cvn/Title ( Simplicial groups) /OUT pdfmark end�ops:SDict begin [/Count -0/Dest (chapter.22) cvn/Title ( Coxeter diagrams and graphs of groups) /OUT pdfmark end�]ps:SDict begin [/Count -0/Dest (chapter.23) cvn/Title (Torsion subcomplexes) /OUT pdfmark end�^ps:SDict begin [/Count -0/Dest (chapter.24) cvn/Title ( Simplicial Complexes) /OUT pdfmark end�Zps:SDict begin [/Count -0/Dest (chapter.25) cvn/Title (Cubical Complexes) /OUT pdfmark end�]ps:SDict begin [/Count -0/Dest (chapter.26) cvn/Title (Regular CW-Complexes) /OUT pdfmark end�Yps:SDict begin [/Count -0/Dest (chapter.27) cvn/Title ( Knots and Links) /OUT pdfmark end�|ps:SDict begin [/Count -0/Dest (chapter.28) cvn/Title ( Finite metric spaces and their filtered complexes ) /OUT pdfmark end�vps:SDict begin [/Count -0/Dest (chapter.29) cvn/Title ( Commutative diagrams and abstract categories) /OUT pdfmark end�aps:SDict begin [/Count -0/Dest (chapter.30) cvn/Title ( Arrays and Pseudo lists) /OUT pdfmark end�ops:SDict begin [/Count -0/Dest (chapter.31) cvn/Title ( Parallel Computation - Core Functions) /OUT pdfmark end�pps:SDict begin [/Count -0/Dest (chapter.32) cvn/Title ( Parallel Computation - Extra Functions) /OUT pdfmark end�qps:SDict begin [/Count -0/Dest (chapter.33) cvn/Title ( Some functions for accessing basic data) /OUT pdfmark end�Wps:SDict begin [/Count -0/Dest (chapter.34) cvn/Title ( Miscellaneous) /OUT pdfmark end�Nps:SDict begin [/Count -0/Dest (section*.2) cvn/Title (Index) /OUT pdfmark end�Jps:SDict begin [/PageMode /UseNone/Page 1/View [/Fit] /DOCVIEW pdfmark end�/ps:SDict begin [ {Catalog}<<>> /PUT pdfmark end�ps:SDict begin H.S end�ps:SDict begin 13.6 H.A end�Gps:SDict begin [/View [/XYZ H.V]/Dest (Doc-Start) cvn /DEST pdfmark end�papersize=210mm,297mm�[ ���,� �H ptmb8t�Contents��(Lc�ps:SDict begin H.S end�ps:SDict begin 13.6 H.A end�Hps:SDict begin [/View [/XYZ H.V]/Dest (chapter*.1) cvn /DEST pdfmark end�@j��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end���,� �3 ptmb8t�1��l��color push rgb 0.0 0.0 0.0Resolutions���of�the�gr�͏ound�ring� color pop�ps:SDict begin 13.6 H.L end�zps:SDict begin [/Subtype /Link/Dest (chapter.1) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop���r3����͍�color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�2��l��color push rgb 0.0 0.0 0.0Resolutions���of�modules� color pop�ps:SDict begin 13.6 H.L end�zps:SDict begin [/Subtype /Link/Dest (chapter.2) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��3�12�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�3��l��color push rgb 0.0 0.0 0.0Induced���equi���v�ariant�chain�maps� color pop�ps:SDict begin 13.6 H.L end�zps:SDict begin [/Subtype /Link/Dest (chapter.3) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��MT13�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�4��l��color push rgb 0.0 0.0 0.0Functors� color pop�ps:SDict begin 13.6 H.L end�zps:SDict begin [/Subtype /Link/Dest (chapter.4) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��uN�14�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�5��l��color push rgb 0.0 0.0 0.0Chain���complexes� color pop�ps:SDict begin 13.6 H.L end�zps:SDict begin [/Subtype /Link/Dest (chapter.5) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��O�h18�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�6��l��color push rgb 0.0 0.0 0.0Sparse���Chain�complexes� color pop�ps:SDict begin 13.6 H.L end�zps:SDict begin [/Subtype /Link/Dest (chapter.6) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��-�G21�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�7��l��color push rgb 0.0 0.0 0.0Homology���and�cohomology�gr�͏oups� color pop�ps:SDict begin 13.6 H.L end�zps:SDict begin [/Subtype /Link/Dest (chapter.7) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� �W&24�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�8��l��color push rgb 0.0 0.0 0.0P���oincar�͏e���series� color pop�ps:SDict begin 13.6 H.L end�zps:SDict begin [/Subtype /Link/Dest (chapter.8) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��Ys�32�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�9��l��color push rgb 0.0 0.0 0.0Cohomology���ring�structur�͏e� color pop�ps:SDict begin 13.6 H.L end�zps:SDict begin [/Subtype /Link/Dest (chapter.9) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� X�34�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�10��l��color push rgb 0.0 0.0 0.0Cohomology���rings�of�����? �3 zptmcm7m�p�-gr�͏oups�(mainly��p�n���V �3 zptmcm7t�=�2)� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.10) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� �s��37�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�11��l��color push rgb 0.0 0.0 0.0Commutator���and�nonabelian�tensor�computations� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.11) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� ���39�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�12��l��color push rgb 0.0 0.0 0.0Lie���commutators�and�nonabelian�Lie�tensors� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.12) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� �O�44�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�13��l��color push rgb 0.0 0.0 0.0Generators���and�r�͏elators�of�gr�oups� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.13) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� N�47�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�14��l��color push rgb 0.0 0.0 0.0Orbit���polytopes�and�fundamental�domains� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.14) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� ���49�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�15��l��color push rgb 0.0 0.0 0.0Cocycles� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.15) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��v��53�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�16��l��color push rgb 0.0 0.0 0.0W��-�ords���in�fr�͏ee��Z� �)G�-modules�� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.16) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��!9L55�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�17��l��color push rgb 0.0 0.0 0.0�F��pG�-modules� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.17) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��^��57�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�18��l��color push rgb 0.0 0.0 0.0Meataxe���modules� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.18) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��Mx�62�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�19��l��color push rgb 0.0 0.0 0.0G-Outer���Gr�͏oups� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.19) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��QN 63�����color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�20��l��color push rgb 0.0 0.0 0.0Cat-1-gr�͏oups� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.20) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��ao65���� �� ��color push Black�� ږ��?�|� �3 ptmr8t�1����\� color pop������ *��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Dps:SDict begin [/View [/XYZ H.V]/Dest (page.2) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���-û2����\� color pop����������fT�� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end��21��l��color push rgb 0.0 0.0 0.0Simplicial���gr�͏oups� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.21) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��M�67����͍� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�22��l��color push rgb 0.0 0.0 0.0Coxeter���diagrams�and�graphs�of�gr�͏oups� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.22) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� �^72����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�23��l��color push rgb 0.0 0.0 0.0T��� orsion���subcomplexes� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.23) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��8��76����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�24��l��color push rgb 0.0 0.0 0.0Simplicial���Complexes� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.24) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��:�N77����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�25��l��color push rgb 0.0 0.0 0.0Cubical���Complexes� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.25) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��D�?82����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�26��l��color push rgb 0.0 0.0 0.0Regular���CW��H-Complexes� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.26) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��-� 92����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�27��l��color push rgb 0.0 0.0 0.0Knots���and�Links� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.27) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��Qa�93����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�28��l��color push rgb 0.0 0.0 0.0Finite���metric�spaces�and�their�lter�͏ed�complexes�� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.28) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� �w94����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�29��l��color push rgb 0.0 0.0 0.0Commutati���v�e���diagrams�and�abstract�categories� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.29) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� �95����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�30��l��color push rgb 0.0 0.0 0.0Arrays���and�Pseudo�lists� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.30) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��0�D99����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�31��l��color push rgb 0.0 0.0 0.0P���arallel���Computation�-�Cor�͏e�Functions� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.31) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� 㞟103����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�32��l��color push rgb 0.0 0.0 0.0P���arallel���Computation�-�Extra�Functions� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.32) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� ���106����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�33��l��color push rgb 0.0 0.0 0.0Some���functions�f���or�accessing�basic�data� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.33) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop�� ��108����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S end�34��l��color push rgb 0.0 0.0 0.0Miscellaneous� color pop�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (chapter.34) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop��X�110����� ��color push rgb 0.0 0.0 0.554�ps:SDict begin H.S endIndex�ps:SDict begin 13.6 H.L end�{ps:SDict begin [/Subtype /Link/Dest (section*.2) cvn/H /I/Border [0 0 0]BorderArrayPatch/Color [1 0 0] H.B /ANN pdfmark end� color pop���t�113���� �� ��color push Black���\� color pop����� /G��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Dps:SDict begin [/View [/XYZ H.V]/Dest (page.3) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���\� color pop�������� ����fT�ps:SDict begin H.S end�ps:SDict begin 13.6 H.A end�Gps:SDict begin [/View [/XYZ H.V]/Dest (chapter.1) cvn /DEST pdfmark end�V ��.�,� �q ptmb8t�Chapter�/\1��2 ��color push rgb 0.0 0.0 0.0�Resolutions�8Rof�the�gr��eound�ring� color pop��-��color push gray 0�����ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Qps:SDict begin [/View [/XYZ H.V]/Dest (L.X8735FC5E7BB5CE3A) cvn /DEST pdfmark end� color pop�� ������::::::::::::::::::::::::����/�v�h �3 �3 ectt1095�TietzeReducedResolution(R)�����Inputs���a��#��� �3 msbm10�Z�G�-resolution��R��ݻand�returns�a��Z�G�-resolution��S��G�which�is�obtained�from��R��by�applying�"T���ietze���lik���e���operations"�in�each�dimension.�d�The�hope�is�that��S��5�has�fe���wer�free�generators�than��R�.������::::::::::::::::::::::::����ResolutionArithmeticGroup("PSL(4,Z)",n)�����Inputs���a�positi���v���e�inte�ger��n��and�one�of�the�follo���wing�strings:����"SL(2,Z)"�y,�1�"SL(3,Z)"�x,�"PGL(3,Z[i])"�,�"PGL(3,Eisenstein_Inte���gers)"�,�"PSL(4,Z)"�x,�"PSL(4,Z)_b"�,���"PSL(4,Z)_c"���,�"PSL(4,Z)_d"�,�"Sp(4,Z)"����or���the�string����"GL(2,O(-d))"����for���d=1,�2,�3,�5,�6,�7,�10,�11,�13,�14,�15,�17,�19,�21,�22,�23,�26,�43����or���the�string����"SL(2,O(-d))"����for���d=2,�3,�5,�7,�10,�11,�13,�14,�15,�17,�19,�21,�22,�23,�26,�43,�67,�163����or���the�string���� �� ��color push Black�� ږ�3����\� color pop����� C���ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Dps:SDict begin [/View [/XYZ H.V]/Dest (page.4) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���-û4����\� color pop����������fT�� �"SL(2,O(-d))_a"�� ����� �for���d=2,�7,�11,�19.����� �It���returns��n��terms�of�a�free�ZG-resolution�for�the�group��G��described�by�the�string.� "0Here�O(-d)���� �denotes�5�the�ring�of�inte���gers�of�Q(sqrt(-d))�and�subscripts�_a,�TJ_b�,�TK_c�,�_d�denote�alternati���v���e�non-free���� �ZG-resolutions���for�a�gi���v���en�group�G.����� �Data�Rmfor�the�rst�list�of�resolutions�w���as�pro���vided�pro�vided�by��0��� �3 ptmrc8t�Ma���thieu�Dut���our�.�%�Data�for���� �GL(2,O(-d))��rw���as��qpro���vided�by��Seb��Wastian�Schoenennbeck�.��Data�for�SL(2,O(-d))�w���as�pro���vided���� �by�Seb��Wastian�|Schoennenbeck��for�d�<=�26�and�by��Alexander�Rahm��for�d>26�and�for�the���� �alternati���v���e���comple�x�es.������� �::::::::::::::::::::::::���� ��FreeGResolution(P,n)���� �FreeGResolution(P,n,p)����� ��Inputs�K�a�K�non-free��Z� �)G�-resolution��P��D�with�nite�stabilizer�groups,�o�and�a�positi���v���e�inte�ger�K��n�.�4It�returns�a���� �free�e��Z� �)G�-resolution�of�length�equal�to�the�minimum�of�n�and�e�the�length�of��P�^f�.�_�If�one�requires�only�a���� �mod����p��resolution�then�the�prime��p��can�be�entered�as�an�optional�third�ar�͏gument.���� �The���free�resolution�is�returned�without�a�contracting�homotop���y��I�.������� �::::::::::::::::::::::::���� ��ResolutionGTree(P,n)����� ��Inputs�X�a�non-free�X��Z� �)G�-resolution��P��S�of�dimension�1�(i.e.�9_a�G-tree)�with�nite�stabilizer�groups,��and�a���� �positi���v���e���inte�ger��n�.�d�It�returns�a�free��Z� �)G�-resolution�of�length�equal�to�n.���� �If����P�2�has�a�contracting�homotop���y�then�the�free�resolution�is�returned�with�a�contracting�homotop�y��I�.���� �This���function�w���as�written�by�y��B���ui�Anh�Tu��Oan�.������� �::::::::::::::::::::::::���� ��ResolutionSL2Z(p,n)����� ��Inputs���positi���v���e���inte�gers��m;�7vn��and���returns��n��terms�of�a��Z� �)G�-resolution�for�the�group��G�\A�=�\B�S�iL�a�(2�;�7vZ� �)�[1�=m�])��.���� �This���function�is�joint�w���ork�with��B���ui�Anh�Tu��Oan�.������� �::::::::::::::::::::::::���� ��ResolutionAbelianGroup(L,n)���� �ResolutionAbelianGroup(G,n)��� �� ��color push Black���\� color pop����� K���ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Dps:SDict begin [/View [/XYZ H.V]/Dest (page.5) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���-û5����\� color pop����������fT� ���� �Inputs�(ia�(hlist��L���:=���[�m���z��V zptmcm7t�1��� �;�7vm���z�2���;�:::;�m��������? zptmcm7m�d���z�]�(i�of�nonne���g�� ati���v�e�(hinte�gers,�CPand�(ia�positi���v�e�(iinte�ger��n�.���It�returns�(h�n��terms���� �of���a��Z� �)G�-resolution�for�the�abelian�group��G�n�=��Z���z�L���̿[1]��S+��Z���z�L���[2]�+� �+��Z���z�L���[�d� ���]��̻.���� �If����G��is�nite�then�the�rst�ar�͏gument�can�also�be�the�abelian�group��G��itself.������� �::::::::::::::::::::::::���� ��ResolutionAlmostCrystalGroup(G,n)����� ��Inputs�y<a�positi���v���e�y;inte�ger�y<�n��and�an�almost�crystallographic�pcp�group��G�.��KIt�returns��n��terms�of�a�free���� ��Z� �)G�-resolution.�{�(A�n�group�o is�almost�crystallographic�if�it�is�nilpotent-by-nite�and�has�no�non-tri���vial���� �nite���normal�subgroup.�d�Such�groups�can�be�constructed�using�the�A���CLIB�package.)������� �::::::::::::::::::::::::���� ��ResolutionAlmostCrystalQuotient(G,n,c)���� �ResolutionAlmostCrystalQuotient(G,n,c,false)����� ��An�i2almost�i3crystallographic�group��G��is�an�e���xtension�of�a�nite�group��P�ǘ�by�a�nilpotent�group��T�67�,��Land���� �has�s�no�s�non-tri���vial�nite�normal�subgroup.�L�W���e�dene�the�relati���v���e�lo�wer�central�s�series�by�setting��T���z�1���C�=�+C�T���� ��and����T���z�i�+1��_��=�n�[�T���z�i���S�;�7vG�]�.���� �This��rfunction��sinputs�an�almost�crystallographic�group��G��together�with�positi���v���e�inte�gers��s�n��and��c�.� �It���� �returns����n��terms�of�a�free��Z� �)Q�-resolution��R��for�the�group��Q�n�=��G=T���z�c����.���� �In��addition��to�the�usual�components,�65the�resolution��R��has�the�component��R:quot� ��ient�H� Jomomor�@wphism���� ��which���gi���v���es�the�quotient�homomorphism��G����n��ƛ� �3 zptmcm7y� ���� �!�n��Q�.���� �If�A]a�fourth�optional�v���ariable�A^is�set�equal�to�"f���alse"�then�the�function�omits�to�test�whether��Q��is�nite���� �and���a�"more�canonical"�resolution�is�constructed.������� �::::::::::::::::::::::::���� ��ResolutionArtinGroup(D,n)����� ��Inputs��da��cCox���eter�diagram��D��and�an�inte���ger��n��]>��\�1�.�)�It�returns��n��terms�of�a�free��Z� �)G�-resolution��R��where���� ��G�/I�is�the�/HArtin�monoid�associated�to��D�.��rIt�is�conjectured�that��R��is�also�a�free�resolution�for�the�Artin���� �group����G�.�d�The�conjecture�is�kno���wn�to�hold�in��color push rgb 0.0 0.0 0.554���ps:SDict begin H.S end��color push rgb 0.0 0.0 0.554certain�cases� color pop����u�ps:SDict begin H.R end��ps:SDict begin [/H /I/Border [0 0 0]BorderArrayPatch/Color [0 1 1]/Action << /Subtype /URI /URI (file:../www/SideLinks/About/aboutArtinGroups.html) >>/Subtype /Link H.B /ANN pdfmark end� color pop.���� ��G�_=�=��R:gr��Uoup��ܻis�innite�and�returned�as���a�nitely�presented�group.�_WThe�list��R:el� ��t� ��s��is�a�partial�listing�of���� �the��Celements�of��B�G��which�gro���ws�as��R��is�used.�_�Initially��R:el� ��t� ��s��is�empty�and�then,��_an���y�time�the�boundary���� �of�W�a�W�resolution�generator�is�called,�k��R:el� ��t� ��s��is�updated�to�include�elements�of��G��in���v���olv���ed�in�the�boundary��I�.���� �The��+contracting�homotop���y��,on��R��has�not�yet�been�implemented!�YqFurthermore,��the�group��G��is�currently���� �returned���only�as�a�nitely�presented�group�(without�an���y�method�for�solving�the�w���ord�problem).������� �::::::::::::::::::::::::��� �� ��color push Black���\� color pop����� Vt��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Dps:SDict begin [/View [/XYZ H.V]/Dest (page.6) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���-û6����\� color pop����������fT�� ��ResolutionAsphericalPresentation(F,R,n)�� ����� ��Inputs��@a��Afree�group��F�ǻ,�L]a�set��R��of�w���ords�in��F���which�constitute�an�aspherical�presentation�for�a���� �group����G�,� >and���a�positi���v���e�inte�ger����n�.��u(Asphericity�can�be�a�dicult�property�to�v���erify��I�.��uThe�function���� ��I� �sAspher�@wical� ��(�F� �Y;�7vR�)��̻could�be�of�help.)���� �The���function�returns���n�terms�of�a�free��Z� �)G�-resolution��R��which�has�generators�in�dimensions�<�3�only��I�.���� �No���contracting�homotop���y�on��R��will�be�returned.������� �::::::::::::::::::::::::���� ��ResolutionBieberbachGroup(���G�)���� �ResolutionBieberbachGroup(���G,�v�)����� ��Inputs� �a� �torsion�free�crystallographic�group��G�,�Jalso�kno���wn�as�a�Bieberbach�group,�Irepresented�using���� �AneCrystGroupOnRight��as�in��the�GAP��package�Cryst.��CIt�also�optionally�inputs�a�choice�of�v���ector���� ��v�.�in�/the�euclidean�space��R���y�n���.�on�which��G��acts�freely��I�.�_#The�function�returns��n��5�+�1��terms�.of�the�free��Z� �)G�-���� �resolution�ڀof���Z�f��arising�as�the�cellular�chain�comple���x�of�the�tesselation�of��R���y�n��Z��by�the�Dirichlet-V���horonoi���� �fundamental���domain�determined�by��v�.���� �This�t�function�is�part�t�of�the�HAPcryst�package�written�by��Marc�R��oeder��and�thus�requires�the���� �HAPcryst���package�to�be�loaded.���� �The���function�requires�the�use�of�Polymak���e�softw�are.������� �::::::::::::::::::::::::���� ��ResolutionCoxeterGroup(D,n)����� ��Inputs��a�Cox���eter�diagram��D��and�an�inte�ger��n��=>��1�.�9NIt��returns��k�33�terms�of�a�free��Z� �)G�-resolution��R��where���� ��G��I�is�the�Cox���eter�group��Jassociated�to��D�.�]&Here��k���is�the�maximum�of�n�and�the�number�of�v���ertices�in�the���� �Cox���eter���diagram.��At�present�the���implementation�is�only�for�nite�Cox���eter�groups�and�the�group��G��is���� �returned���as�a�permutation�group.�d�The�contracting�homotop���y�on��R��has�not�yet�been�implemented!������� �::::::::::::::::::::::::���� ��ResolutionDirectProduct(R,S)���� �ResolutionDirectProduct(R,S,"internal")����� ��Inputs�U�a��Z� �)G�-resolution��R��and��Z�H� J�-resolution��S�i�.�0~It�outputs�a��Z�D�-resolution�for�the�direct�product���� ��D�n�=��Gx�aH� J�.���� �If��G��and��H�Y�lie�in�a�common�group��K� �<�,�Y�and�if�the���y�commute�and�ha���v���e�tri���vial�intersection,�Y�then�an���� �optional���third�v���ariable�"internal"�can�be�used.�d�This�will�force��D��to�be�the�subgroup��GH���in��K� �<�.������� �::::::::::::::::::::::::��� �� ��color push Black���\� color pop����� fr��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Dps:SDict begin [/View [/XYZ H.V]/Dest (page.7) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���-û7����\� color pop����������fT�� ��ResolutionExtension(g,R,S)�� ���� �ResolutionExtension(g,R,���S,"TestFiniteness")���� �ResolutionExtension(g,R,S,"NoTest",GmapE)����� ��Inputs���a�surjecti���v���e�group�homomorphism��g�v��:��E����CX� ���� �5!��G��ջwith�k���ernel��N� �D�.��It�also�inputs�a��Z� �)N��-resolution��R���� ��and���a��Z� �)G�-resolution��S�i�.�d�It�returns�a��Z�E� ̠�-resolution.�d�The�groups��E��l�and��G��can�be�innite.���� �If��fan�optional��efourth�ar�͏gument�is�set�equal�to�"T��;�estFiniteness"�then�the�groups��N�ɪ�and��G��will�be�tested���� �to���see�if�the���y�are�nite.�d�If�the�y�are�nite�then�some�speed�sa���ving�routines�will�be�in���v�ok���ed.���� �If�the�homomorphism��g��is�such�that�the�GAP� function��P�^fr�ؿeI� �ma���g�esE� ̠l� ��ement� ���(�g�;�7vx�a�)��doesn'�͏t�w���ork,�#then�a���� �function�!��GmapE� ̠�()�!�should�be�included�as�a�fth�input.��RF���or�an�y�!��x�*I�in��G��this�function�should�return�an���� �element����GmapE� ̠�(�x�a�)��in��E��l�which�gets�mapped�onto��x��-�by��g�.���� �The���contracting�homotop���y�on���the��Z� �)E� ̠�-resolution�has�not�yet�been�fully�implemented�for�innite���� �groups!������� �::::::::::::::::::::::::���� ��ResolutionFiniteDirectProduct(R,S)���� �ResolutionFiniteDirectProduct(R,S,���"internal")����� ��Inputs���a��Z� �)G�-resolution����R��and��Z�H� J�-resolution��S��S�where����G��and��H��4�are�nite�groups.��VIt�outputs�a��Z� �)D�-���� �resolution���for�the�direct�product��D�n�=��G������H� J�.���� �If��G��and��H�Y�lie�in�a�common�group��K� �<�,�Y�and�if�the���y�commute�and�ha���v���e�tri���vial�intersection,�Y�then�an���� �optional���third�v���ariable�"internal"�can�be�used.�d�This�will�force��D��to�be�the�subgroup��GH���in��K� �<�.������� �::::::::::::::::::::::::���� ��ResolutionFiniteExtension(gensE,gensG,R,n)���� �ResolutionFiniteExtension(gensE,gensG,R,n,true)���� �ResolutionFiniteExtension(gensE,gensG,R,n,false,S)����� ��Inputs:�i;a�>�set��g���ensE���of�generators�for�a�>�nite�group��E� ̠�;��a�set��g���ensG��equal�to�the�image�of��g���ensE���in�a���� �quotient��group���G��of��E� ̠�;�+|a��Z� �)G�-resolution��R��up�to�dimension�at�least��n�;�+|a�positi���v���e�inte�ger���n�.�B]It�uses��the���� ��T�f�wist� ��ed� ��T�4Wensor�@wP�^fr��Uod�uct��()��̻construction�to�return��n��terms�of�a��Z� �)E� ̠�-resolution.���� �The�AAfunction�has�an�optional�fourth�ar�͏gument�which,�b_when�set�equal�to�"true",�b^in���v���ok���es�tietze�reduc-���� �tions���in�the�construction�of�a�resolution�for�the�k���ernel�of��E����;�� ���� �i!�n��G�.���� �If��~a���Z� �)N� �D�-resolution��S���is�a���v���ailable,�.jwhere��N��»is�the�k���ernel�of�the�quotient��E������� ���� ��!�2�G�,�.kthen�this�can�be���� �incorporated���into�the�computations�using�an�optional�fth�ar�͏gument.������� �::::::::::::::::::::::::���� ��ResolutionFiniteGroup(gens,n)���� �ResolutionFiniteGroup(gens,n,true)���� �ResolutionFiniteGroup(gens,n,false,p)���� �ResolutionFiniteGroup(gens,n,false,0,"extendible")��� �� ��color push Black���\� color pop����� s��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Dps:SDict begin [/View [/XYZ H.V]/Dest (page.8) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���-û8����\� color pop����������fT� ���� �Inputs�k�a�k�set��g���ens��of�generators�for�a�nite�group��G��and�a�positi���v���e�inte�ger�k��n�.�r1It�outputs��n��terms�of�a���� ��Z� �)G�-resolution.���� �The���function���has�an�optional�third�ar�͏gument�which,�Qwhen�set�equal�to��t� ��r�@wue�,�Qin���v���ok���es�tietze�reductions���� �in���the�construction�of�the�resolution.���� �The�~nfunction�~ohas�an�optional�fourth�ar�͏gument�which,���when�set�equal�to�a�prime��p�,���records�the�f���act�that���� �the�M�resolution�M�will�only�be�used�for�mod��p��calculations.�?�This�could�speed�up�subsequent�constructions.���� �The�S�function�S�has�an�optional�fth�ar�͏gument�which,�h�when�set�equal�to�"e���xtendible",�h�returns�a�resolution���� �whose���length�can�be�increased�using�the�command�R!.e���xtend()�.������� �::::::::::::::::::::::::���� ��ResolutionFiniteSubgroup(R,K)���� �ResolutionFiniteSubgroup(R,gensG,gensK)����� ��Inputs�2a�2�Z� �)G�-resolution�for�a�nite�group��G��and�a�subgroup��K�H�of�inde���x��j�G�>G�:�>H�K� �<�j�.�ĺIt�returns�a�free���� ��Z� �)K� �<�-resolution���whose��Z�K� �<�-rank�is��j�G�n�:��K��j��̻times�the��Z� �)G�-rank�in�each�dimension.���� �Generating�ʰsets��g���ensG�,��(�g�ensK���for�ʰ�G��and��K��can�ʯalso�be�input�to�the�function�(though�the�method�does���� �not���depend�on�a�choice�of�generators).���� �This����Z� �)K� �<�-resolution�is�not�reduced.�d�ie.�it���has�more�than�one�generator�in�dimension��0�.������� �::::::::::::::::::::::::���� ��ResolutionGraphOfGroups(D,n)���� �ResolutionGraphOfGroups(D,n,L)����� ��Inputs��ra��sgraph�of�groups��D��and�a�positi���v���e�inte�ger��r�n�.���It�returns��n��terms�of�a�free��Z� �)G�-resolution�for�the���� �fundamental���group��G��of��D�.���� �An�&�optional�&�third�ar�͏gument��L�@|�=�8[�R���z�1��� �;��7v:�:�:�� �7;�7vR���z�t��_�]��can�be�used�to�list�(in�an���y�order)�free�resolutions�for���� �some/all��of��the�v���erte�x��and�edge�groups�in��D�.�T�If�for�some�v���erte�x��or�edge�group�no�resolution�is�listed���� �in����L��-�then�the�function��Resol� ��ut� ��ionF���init�eGr��Uoup�()��̻will�be�used�to�try�to�construct�the�resolution.���� �The����Z� �)G�-resolution�is�usually�not�reduced.�d�i.e.�it���has�more�than�one�generator�in�dimension�0.���� �The���contracting���homotop���y�on�the��Z� �)G�-resolution�has�not�yet�been�implemented!�*Furthermore,�N�the���� �group�G�G�H�is�currently�returned�only�as�a�nitely�presented�group�(without�an���y�method�for�solving�the���� �w���ord���problem).������� �::::::::::::::::::::::::���� ��ResolutionNilpotentGroup(G,n)���� �ResolutionNilpotentGroup(G,n,"TestFiniteness")����� ��Inputs��)a��(nilpotent�group��G��and�positi���v���e�inte�ger��)�n�.��It�returns��n��terms�of�a�free��Z� �)G�-resolution.��The���� �resolution���is�computed�using�a�di���vide-and-conquer�technique�in���v���olving�the�lo�wer�central�series.��� �� ��color push Black���\� color pop����� ����ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Dps:SDict begin [/View [/XYZ H.V]/Dest (page.9) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���-û9����\� color pop����������fT�� �This� �function�can� �be�applied�to�innite�groups��G�.�{$F���or�nite�groups�the�function�� ���� ��Resol� ��ut� ��ionN� �Dor�@wmal�S�ier�ies�()��̻probably�gi���v���es�better�results.���� �If��an�optional�third��ar�͏gument�is�set�equal�to�"T��;�estFiniteness"�then�the�groups��N��E�and��G��will�be�tested�to���� �see���if�the���y�are�nite.�d�If�the�y�are�nite�then�some�speed�sa���ving�routines�will�be�in���v�ok���ed.���� �The���contracting�homotop���y�on���the��Z� �)E� ̠�-resolution�has�not�yet�been�fully�implemented�for�innite���� �groups.������� �::::::::::::::::::::::::���� ��ResolutionNormalSeries(L,n)���� �ResolutionNormalSeries(L,n,true)���� �ResolutionNormalSeries(L,n,false,p)����� ��Inputs�o�a�positi���v���e�inte�ger��n��and�a�list��L��Ŀ=��d[�L���z�1��� �;�7v:::;�L�����k��0�]�oof�normal�subgroups��L���z�i��)*�of�a�nite�group��G��sat-���� �isfying�di�G�� �=��L���z�1���i�>�dh�L�a�2��>��:�7v:�:��촻>�L�����k��0�.�[�Alternati���v���ely��I�,��P�L��k�=�[�g���ensL���z�1��� �;�7v:::g�ensL�����k���]�di�can�dhbe�a�list�of�generating�sets���� �for��Qthe��L���z�i�����(and�these�particular�generators�will�be�used��Pin�the�construction�of�resolutions).���It�returns�a���� ��Z� �)G�-resolution���by�repeatedly�using�the�function��Resol� ��ut� ��ionF���init�eE� ̠x�at�ension�()�.���� �The�i�function�i�has�an�optional�third�ar�͏gument�which,��if�set�equal�to�true,��in���v���ok���es�tietze�reductions�in���� �the���construction�of�resolutions.���� �The�~Efunction�has�an�optional�fourth�ar�͏gument�which,���if�set�equal�to�p�>�0,�produces�a�resolution�which���� �is���only�v���alid�for�mod��p��calculations.������� �::::::::::::::::::::::::���� ��ResolutionPrimePowerGroup(P,n)���� �ResolutionPrimePowerGroup(G,n,p)����� ��Inputs� �a� ��p�-group��P�i�and�inte���ger��n�>�0�.�NkIt�uses�GAP'��e�s�standard�linear�algebra�functions�o���v�er� �the�eld��F���� ��of�pJp�elements�pIto�construct�a�free��F��P�^f�-resolution�for�mod��p��calculations�only��I�.�K|The�resolution�is�minimal���� �-���meaning�that�the�number�of�generators�of��R���z�n��<̻equals�the�rank�of��H���z�n��� �(�P���;�7vF�ǿ)�.���� �The�Xfunction�Ycan�also�be�used�to�obtain�a�free�non-minimal��F��G�-resolution�of�a�small�group��G��of���� �non-prime-po���wer�?�order��e�.��jIn�this�?�case�the�prime��p��must�be�entered�as�the�third�input�v���ariable.��j(In�the���� �non-prime-po���wer���case�the�algorithm�is�nai�v���e�and�not�v�ery�good.)������� �::::::::::::::::::::::::���� ��ResolutionSmallFpGroup(G,n)���� �ResolutionSmallFpGroup(G,n,p)����� ��Inputs�xba�small�nitely�presented�group��G��and�an�inte���ger��n�>�0�.���It�returns��n��terms�of�a��Z� �)G�-resolution���� �which,���in�}qdimensions�}r1�and�2,�corresponds�to�the�}rgi���v���en�presentation�for��G�.���The�method�returns�no���� �contracting���homotop���y�for�the�resolution.���� �The�~nfunction�~ohas�an�optional�fourth�ar�͏gument�which,���when�set�equal�to�a�prime��p�,���records�the�f���act�that���� �the�M�resolution�M�will�only�be�used�for�mod��p��calculations.�?�This�could�speed�up�subsequent�constructions.��� �� ��color push Black���\� color pop����� ����ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.10) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�10����\� color pop����������fT�� �This���function�w���as�written�by�Irina�Kholodna.�� ������� �::::::::::::::::::::::::���� ��ResolutionSubgroup(R,K)����� ��Inputs��Ca��Z� �)G�-resolution�for�an�(innite)�group��G��and�a�subgroup��K���of�nite�inde���x��j�G��ؿ:����K� �<�j�.��aIt�returns�a���� �free����Z� �)K� �<�-resolution�whose��Z�K� �<�-rank�is��j�G�n�:��K��j��̻times�the��Z� �)G�-rank�in�each�dimension.���� �If���G�� �is�nite�then�the�function��Resol� ��ut� ��ionF���init�eS�iubgr��Uoup�(�R;�7vG;�K� �<�)���will�probably�w���ork�bet-���� �ter��e�.���In�C�particular���,�esresolutions�from�C�this�function�probably�w���on'�͏t�w�ork�C�with�the�function���� ��E� ̠quivar�@wiant� ��C� ��hainM� �.ap�()�.� ]�This��m�Z� �)K� �<�-resolution�is�not��nreduced.� ]�i.e.�it�has�more��nthan�one�gener���-���� �ator���in�dimension�0.������� �::::::::::::::::::::::::���� ��ResolutionSubnormalSeries(L,n)����� ��Inputs���a���positi���v���e�inte�ger���n�and�a�list��L�L��=�D8[�L���z�1��� �;��7v:�:�:�� �7;�7vL�����k��0�]��of�subgroups��L���z�i��H�of�a�nite�group��G�D8�=��L���z�1����such���that���� ��L���z�1��3�>����L�a�2��7v�:�:�:��s��>��L�����k�����is�a���subnormal�series�in��G��(meaning�that�each��L���z�i�+1�����must�be�normal�in��L���z�i���S�).�bIt�returns�a���� ��Z� �)G�-resolution���by�repeatedly�using�the�function��Resol� ��ut� ��ionF���init�eE� ̠x�at�ension�()�.���� �If� ��L�V�is�a�series�of�normal�subgroups�in��G��then�the�function��Resol� ��ut� ��ionN� �Dor�@wmal�S�ier�ies�(�L�a;�7vn�)� ��will���� �possibly���w���ork�more�eciently��I�.������� �::::::::::::::::::::::::���� ��TwistedTensorProduct(R,S,EhomG,GmapE,NhomE,NEhomN,EltsE,Mult,InvE)����� ��Inputs���a����Z� �)G�-resolution��R�,���a��Z�N� �D�-resolution����S�i�,���and�other�data�relating�to�a�short�e���xact�sequence���� ��1����q� ���� �!�q�N����_V� ����3!��E����=�� ���� �!�q�G����� ����!��1�.��It��yuses�a��xperturbation�technique�of�CTC��W���all�to�construct�a��Z� �)E� ̠�-���� �resolution�ڧ�F�ǻ.���Both��G��and��N���could�be�innite.���The�"length"�of��F��n�is�equal�to�the�minimum�of�the���� �"length"s�{�of��R��and�{��S�i�.�ODThe�resolution��R��needs�no�contracting�homotop���y�if�no�such�homotop���y�is�requied���� �for����F�ǻ.������� �::::::::::::::::::::::::���� ��ConjugatedResolution(R,x)����� ��Inputs��a�ZG-resoluton���R��and�an�element��x��v�from�some�group�containing��G�.�ciIt�returns�a��Z� �)G���y�x��l�-resolution���� ��S�4&�where��the��group��G���y�x��1)�is�the�conjug�� ate�of��G��by��x�a�.���(The�component��S�i�!�:el� ��t� ��s��will�be�a�pseudolist�rather���� �than���a�list.)������ �� ��color push Black���\� color pop����� ����ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.11) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�11����\� color pop����������fT�� �::::::::::::::::::::::::�� ���� ��RecalculateIncidenceNumbers(R)����� ��Inputs��#a��$ZG-resoluton��R��which�arises�as�the�cellular�chain�comple���x�of�a�re���gular�CW��I�-comple�x.�(Thus���� �the��boundary�of�an���y�cell�is�a�list�of�distinct�cells.)���It�recalculates�the�incidence�numbers�for��R�.���If�it�is���� �applied���to�a�resolution�that�is�not�re���gular�then�a�wrong�answer�may�be�returned.������ �� ��color push Black���\� color pop����� ����ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.12) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���\� color pop�������� ����fT�ps:SDict begin H.S end�ps:SDict begin 13.6 H.A end�Gps:SDict begin [/View [/XYZ H.V]/Dest (chapter.2) cvn /DEST pdfmark end�V ��Chapter�/\2��2 ��color push rgb 0.0 0.0 0.0�Resolutions�8Rof�modules� color pop��(Lc�color push gray 0� M7��ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Qps:SDict begin [/View [/XYZ H.V]/Dest (L.X841673BA782D0D1D) cvn /DEST pdfmark end� color pop�� ������::::::::::::::::::::::::����ResolutionFpGModule(M,n)�����Inputs��Ran��Q�F��pG�-module��M�e��and�a�positi���v���e�inte�ger��R�n�.�`~It�returns��n��terms�of�a�minimal�free��F��G�-resolution���of���the�module��M�r��(where��G��is�a�nite�group�and��F����the�eld�of��p��elements).������ �� ��color push Black�� ��12����\� color pop����� ����ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.13) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���\� color pop�������� ����fT�ps:SDict begin H.S end�ps:SDict begin 13.6 H.A end�Gps:SDict begin [/View [/XYZ H.V]/Dest (chapter.3) cvn /DEST pdfmark end�V ��Chapter�/\3��2 ��color push rgb 0.0 0.0 0.0�Induced�8Requi��Qv�ariant�chain�maps� color pop��-��color push gray 0�����ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Qps:SDict begin [/View [/XYZ H.V]/Dest (L.X7E91068780486C3A) cvn /DEST pdfmark end� color pop�� ������::::::::::::::::::::::::����EquivariantChainMap(R,S,f)�����Inputs��"a��!�Z� �)G�-resolution��R�,��a��Z�G���y�ƛ� zptmcm7y�0���3�-resolution��S�i�,��and�a��!group�homomorphism��f���:����G����� ���� B�!��G���y�0���.�+�It��!outputs��"a���component���object��M�r��with�the�follo���wing�components.����M� �.�!�:sour�ؿce��̻is�the�resolution��R�.�����M� �.�!�:t� ��ar�ؿg���et�{e�is���the�resolution��S�i�.�����M� �.�!�:mapping�(�w��0�;�7vn�)��I�is��Ja�function�which�gi���v���es�the�image�in��S���z�n��� �,�((under�a�chain�map�induced�by��f�S-�,���of���a�w���ord��w��in��R���z�n��� �.�d�(Here��R���z�n��<̻and��S���z�n���are�the��n�-th�modules�in�the�resolutions��R��and��S�i�.)�����F�ǿ!�:pr��Uoper�@wt� ��ies��̻is�a�list�of�pairs�such�as�["type",�"equi���v�ariantChainMap"].�����The���resolution��S��5�must�ha���v���e�a�contracting�homotop���y��I�.������ �� ��color push Black�� ��13����\� color pop����� ����ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.14) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���\� color pop�������� ����fT�ps:SDict begin H.S end�ps:SDict begin 13.6 H.A end�Gps:SDict begin [/View [/XYZ H.V]/Dest (chapter.4) cvn /DEST pdfmark end�V ��Chapter�/\4��2 ��color push rgb 0.0 0.0 0.0�Functors� color pop��(Lc�color push gray 0� M7��ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Qps:SDict begin [/View [/XYZ H.V]/Dest (L.X78D1062D78BE08C1) cvn /DEST pdfmark end� color pop�� ������::::::::::::::::::::::::����ExtendScalars(R,G,EltsG)�����Inputs�$a�#�Z� �)H� J�-resolution��R�,�-�a�group��G��containing��H�!n�as�a�subgroup,�-�and�a�list��E� ̠l� ��t� ��sG��of�elements�of��G�.���It�Creturns�the�Bfree��Z� �)G�-resolution��(�R���� ���z�Z�ffH�� O��Z�G�)�.�A`The�returned�Bresolution��S���has�S!.elts:=EltsG.�This�is�a���resolution���of�the��Z� �)G�-module��(�Z�|� ���z�Z�ffH�� 4f�Z�G�)�.�d�(Here�� ���z�Z�ffH��kmeans�tensor�o���v�er����Z�H� J�.)������::::::::::::::::::::::::����HomToIntegers(X)�����Inputs�d�either�a�d��Z� �)G�-resolution��X���=���R�,��sor�an�equi���v�ariant�d�chain�map��X���=��(�F���:��R������ ���� z�!��S�i�)�.�\(It�d�returns�the���cochain�\comple���x�or�cochain�map�obtained�by�applying�]�H� JomZ� �)G�(���z�;���F�Z��)�\�where��Z����is�the�tri���vial�module�of���inte���gers���(characteristic�0).������::::::::::::::::::::::::����HomToIntegersModP(R)�����Inputs��}a��Z� �)G�-resolution��R��|�and�returns�the�cochain�comple���x�obtained�by�applying��H� JomZ� �)G�(���z�;���F�Z���z�p����)��where����Z���z�p��˻is��3the��2tri���vial�module�of�inte���gers�mod��p�.��0(At�present�this�functor�does�not�handle�equi���v�ariant�chain���maps.)������::::::::::::::::::::::::����HomToIntegralModule(R,f)���� �� ��color push Black�� ���14����\� color pop����� ����ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.15) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�15����\� color pop����������fT�� �Inputs�LAa��Z� �)G�-resolution�L@�R��and�a�group�homomorphism��f�Y�:���G����� ������!���GL���z�n��� �(�Z� �)�)�LA�to�the�group�of��n������n��in���v���ertible�� ���� �inte���ger�0#matrices.�� Here��Z��L�must�ha���v�e�characteristic�0.�� It�returns�the�cochain�0"comple�x�obtained�by���� �applying����H� JomZ� �)G�(���z�;���F�A�)��where����A��is�the��Z�G�-module����Z����y�n����with��G��action�via����f�S-�.��G(At�present���this�function���� �does���not�handle�equi���v�ariant���chain�maps.)������� �::::::::::::::::::::::::���� ��TensorWithIntegralModule(R,f)����� ��Inputs��a��Z� �)G�-resolution��R���and�a�group�homomorphism��f�v�:��I�G����� ���� q&!��J�GL���z�n��� �(�Z��)���to��the�group�of��n������n���� ��in���v���ertible��inte�ger��matrices.�f-Here��Z����must�ha���v���e�characteristic�0.�f,It�returns�the�chain�comple���x�obtained���� �by���tensoring�o���v�er����Z� �)G����with�the��Z�G�-module��A�l�=�l��Z����y�n���λwith��G��action�via����f�S-�.�dE(At�present���this�function�does���� �not���handle�equi���v�ariant���chain�maps.)������� �::::::::::::::::::::::::���� ��HomToGModule(R,A)����� ��Inputs��2a��Z� �)G�-resolution��R��3�and�an�abelian�G-outer�group�A.�It�returns�the�G-cocomple���x�obtained�by���� �applying����H� JomZ� �)G�(���z�;���F�A�)�.�d�(At�present�this�function�does�not�handle�equi���v�ariant���chain�maps.)������� �::::::::::::::::::::::::���� ��InduceScalars(R,hom)����� ��Inputs��a���Z� �)Q�-resolution��R��and�a�surjecti���v���e�group�homomorphism��hom�a?�:�a@�G��!��Q�.�`It��returns�the�unduced���� �non-free����Z� �)G�-resolution.������� �::::::::::::::::::::::::���� ��LowerCentralSeriesLieAlgebra(G)���� �LowerCentralSeriesLieAlgebra(f)����� ��Inputs�7$a�7#pcp�group��G�.��If�each�quotient��G���z�c�� M�=G���z�c�+1��{��of�the�lo���wer�central�series�is�free�abelian�or�p-���� �elementary���abelian�(for�x���ed�prime�p)�then�a�Lie�algebra��L�a�(�G�)��is�returned.��VThe�abelian�group�under���-���� �lying�U��L�a�(�G�)��is�the�U�direct�sum�of�the�quotients��G���z�c�� M�=G���z�c�+1�����.�0yThe�Lie�brack���et�on��L��(�G�)�U��is�induced�by�the���� �commutator���in��G�.�d�(Here��G���z�1����=�n��G�,��G���z�c�+1����=�[�G���z�c�� M�;�7vG�]��.)���� �The�J�function�J�can�also�be�applied�to�a�group�homomorphism��f�ٿ:����G������� ���� l�!��G���y�0�����.�@In�J�this�case�the�induced���� �homomorphism���of�Lie�algebras��L�a�(�f�S-�)�n�:��L��(�G�)����� ���� �!��L��(�G���y�0���3�)��̻is�returned.���� �If�_�the�quotients�_�of�the�lo���wer�central�series�are�not�all�free�or�p-elementary�abelian�then�the�function���� �returns���f���ail.���� �This���function�w���as�written�by�P���ablo�Fernandez�Ascariz���� �� ��color push Black���\� color pop����� ű��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.16) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�16����\� color pop����������fT� ����� �::::::::::::::::::::::::���� ��TensorWithIntegers(X)����� ��Inputs�d�either�a�d��Z� �)G�-resolution��X���=���R�,��sor�an�equi���v�ariant�d�chain�map��X���=��(�F���:��R������ ���� z�!��S�i�)�.�\(It�d�returns�the���� �chain�1comple���x�or�chain�map�obtained�by�2tensoring�with�the�tri���vial�module�of�inte�gers�(characteristic���� �0).������� �::::::::::::::::::::::::���� ��FilteredTensorWithIntegers(R)����� ��Inputs��a���Z� �)G�-resolution��R��for�which�"lteredDimension"�lies�in�NamesOfComponents(R).�(Such���� �a���resolution���can�be�produced�using�T���wisterT��;�ensorProduct(),���ResolutionNormalSubgroups()�or���� �FreeGResolution().)� �!It�܂returns�܃the�ltered�chain�comple���x�obtained�by�tensoring�with�the�tri���vial���� �module���of�inte���gers�(characteristic�0).������� �::::::::::::::::::::::::���� ��TensorWithTwistedIntegers(X,rho)����� ��Inputs���either���a��Z� �)G�-resolution��X�ܥ�=���R�,�*or�an�equi���v�ariant���chain�map��X�ܥ�=��(�F��ܿ:��R������ ���� =�!���S�i�)�.��It���also�inputs�a���� �function�bQ�r�@who�:�7v�G����!��Z�bP�where�the�action�of��g����2��G��on��Z�bP�is�such�that��g���:�1�=��r�@who�(�g�)�.�U�It�returns�bPthe�chain���� �comple���x���or�chain�map�obtained�by�tensoring�with�the�(twisted)�module�of�inte�gers�(characteristic�0).������� �::::::::::::::::::::::::���� ��TensorWithIntegersModP(X,p)����� ��Inputs��either��a��Z� �)G�-resolution��X�TQ�=���R�,�lor�a�characteristics�0�chain�comple���x,�lor�an�equi���v�ariant��chain���� �map��<�X�?տ=��F(�F�� �:��R�����E� ���� �"!��S�i�)�,��Wor�a�chain��;map�between�characteristic�0�chain�comple���x�es,��Wtogether��;with�a���� �prime�k�p�.���It�returns�jthe�chain�comple���x�or�chain�map�obtained�by�tensoring�with�the�tri���vial�module�of���� �inte���gers���modulo��p�.������� �::::::::::::::::::::::::���� ��TensorWithTwistedIntegersModP(X,p,rho)����� ��Inputs��`either�a��Z� �)G�-resolution��X����=�B�R�,��or�an��aequi���v�ariant��`chain�map��X����=�(�F�E:��R����� ������!��S�i�)�,��and�a�prime��p�.�T�It���� �also���inputs���a�function��r�@who�:�7v�G�b��!�b��Z��where�the�action�of��g�b��2��G����on��Z��is�such�that��g���:�1�b�=��r�@who�(�g�)�.�`�It���returns���� �the���chain�comple���x�or�chain�map�obtained�by�tensoring�with�the�tri���vial�module�of�inte�gers�modulo��p�.���� �� ��color push Black���\� color pop����� ���ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.17) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�17����\� color pop����������fT� ����� �::::::::::::::::::::::::���� ��TensorWithRationals(R)����� ��Inputs���a��Z� �)G�-resolution��R��and�returns�the�chain���comple���x�obtained�by�tensoring�with�the�tri���vial�module���� �of���rational�numbers.������ �� ��color push Black���\� color pop����� � ��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.18) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���\� color pop�������� ����fT�ps:SDict begin H.S end�ps:SDict begin 13.6 H.A end�Gps:SDict begin [/View [/XYZ H.V]/Dest (chapter.5) cvn /DEST pdfmark end�V ��Chapter�/\5��2 ��color push rgb 0.0 0.0 0.0�Chain�8Rcomplexes� color pop��-��color push gray 0�����ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Qps:SDict begin [/View [/XYZ H.V]/Dest (L.X7A06103979B92808) cvn /DEST pdfmark end� color pop�� ������::::::::::::::::::::::::����ChainComplex(T)�����Inputs���a�pure���cubical�comple���x,��or�cubical�comple�x,��or���simplicial�comple�x��T�� �and���returns�the�(often���v���ery���lar�͏ge)�cellular�chain�comple�x�of��T�67�.������::::::::::::::::::::::::����ChainComplexOfPair(T,S)�����Inputs���a�pure���cubical�comple���x�or�cubical�comple���x��T��Ȼand�contractible�subcomple���x��S�i�.�JIt�returns�the���quotient����C� ���(�T�67�)�=C��(�S�i�)��of�cellular�chain�comple���x�es.������::::::::::::::::::::::::����ChevalleyEilenbergComplex(X,n)�����Inputs���either���a�Lie�algebra��X��l�=�=��A��(o���v�er���the�ring�of�inte���gers��Z���or�o���v�er�a���eld��K� �<�)�or�a�homomorphism�of���Lie���algebras����X��I�=�q�(�f���:��A����� ���� �!��B�)�,��together�with���a�positi���v���e�inte�ger��n�.�t!It�returns���either�the�rst��n��terms�of���the��Che���v�alle���y-Eilenber�͏g��chain�comple�x��C� ���(�A�)�,���or�the��induced�map�of�Che���v�alle���y-Eilenber�͏g�comple�x�es����C� ���(�f�S-�)�n�:��C��(�A�)����� ���� �!��C��(�B�)�.���(The��Thomology�of�the�Che���v�alle���y-Eilenber�͏g��Tcomple�x��C� ���(�A�)��U�is�by�denition�the�homology�of�the�Lie���algebra����A��with�tri���vial�coecients�in��Z�H��or��K� �<�).���This���function�w���as�written�by��P��&ablo�Fern��Wandez�Ascariz�������::::::::::::::::::::::::��� �� ��color push Black�� ��18����\� color pop����� �L��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.19) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�19����\� color pop����������fT�� ��LeibnizComplex(X,n)�� ����� ��Inputs�9Xeither�9Ya�Lie�or�Leibniz�algebra��X���=�BV�A��(o���v�er�9Xthe�ring�of�inte���gers��Z�Ł�or�o���v�er�9Xa�eld��K� �<�)�or�a���� �homomorphism�e�of�Lie�or�e�Leibniz�algebras��X�h�=���(�f� �:����A����� ���� {�!��B�)�,��!together�e�with�a�positi���v���e�inte�ger�e��n�.�`/It���� �returns���either���the�rst��n��terms�of�the�Leibniz�chain�comple���x��C� ���(�A�)�,�,Zor�the�induced�map�of�Leibniz���� �comple���x�es����C� ���(�f�S-�)�n�:��C��(�A�)����� ���� �!��C��(�B�)�.���� �(The��Leibniz��comple���x��C� ���(�A�)��w���as�dened�by�J.-L.Loday��I�.���Its�homology�is�by�denition�the�Leibniz���� �homology���of�the�algebra��A�).���� �This���function�w���as�written�by��P��&ablo�Fern��Wandez�Ascariz������� ��::::::::::::::::::::::::���� ��SuspendedChainComplex(C)����� ��Inputs���a�chain���comple���x��C� Y�and�returns�the�chain�comple���x��S���dened�by�applying�the�de���gree�shift���� ��S���z�n����=�n��C���z�n� �1��t�to���chain�groups�and�boundary�homomorphisms.������� �::::::::::::::::::::::::���� ��ReducedSuspendedChainComplex(C)����� ��Inputs���a�chain���comple���x��C� Y�and�returns�the�chain�comple���x��S���dened�by�applying�the�de���gree�shift���� ��S���z�n��t�=���C���z�n� �1��cֻto���chain�groups���and�boundary�homomorphisms�for�all��n��>��0�.�4FThe�chain���comple���x��S����has���� �tri���vial���homology�in�de���gree��0��and��S���z�0����=�n��Z�.������� �::::::::::::::::::::::::���� ��CoreducedChainComplex(C)���� �CoreducedChainComplex(C,2)����� ��Inputs��>a�chain�comple���x��C���and�returns�a�quasi-isomorphic�chain�comple�x��D�.��QIn�man�y�cases�the���� �comple���x�8��D��should�be�smaller�than�9 �C� ���.�ٕIf�an�optional�second�input�ar�͏gument�is�set�equal�to�2�then�an���� �alternati���v���e���method�is�used�for�reducing�the�size�of�the�chain�comple�x.������� �::::::::::::::::::::::::���� ��TensorProductOfChainComplexes(C,D)����� ��Inputs�/�tw���o�chain�comple���x�es�/��C��a�and��D��of�the�/�same�characteristic�and�returns�their�tensor�product�as�a���� �chain���comple���x.���� �This���function�w���as�written�by�y��Le�V����an�Luyen�.����� �� ��color push Black���\� color pop����� ���ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.20) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�20����\� color pop����������fT� ���� �::::::::::::::::::::::::���� ��LefschetzNumber(F)����� ��Inputs��a��chain�map��F�ǿ:�7v�C� c�!����C�ir�with�common�source�and�tar�͏get.�ߵIt�returns�the�Lefschetz�number�of�the���� �map���(that�is,�the�alternating�sum�of�the�traces�of�the�homology�maps�in�each�de���gree).������ �� ��color push Black���\� color pop����� ����ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.21) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���\� color pop�������� ����fT�ps:SDict begin H.S end�ps:SDict begin 13.6 H.A end�Gps:SDict begin [/View [/XYZ H.V]/Dest (chapter.6) cvn /DEST pdfmark end�V ��Chapter�/\6��2 ��color push rgb 0.0 0.0 0.0�Sparse�8RChain�complexes� color pop��-��color push gray 0�����ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Qps:SDict begin [/View [/XYZ H.V]/Dest (L.X856F202D823280F8) cvn /DEST pdfmark end� color pop�� ������::::::::::::::::::::::::����SparseMat(A)�����Inputs���a�matrix��A��and�returns�the�matrix�in�sparse�format.������::::::::::::::::::::::::����TransposeOfSparseMat(A)�����Inputs���a�sparse�matrix��A��and�returns�its�transpose�sparse�format.������::::::::::::::::::::::::����ReverseSparseMat(A)�����Inputs���a�sparse�matrix����A��and�modies�it�by�re���v���ersing�the�order�of�the�columns.�V@This�function�modies����A��̻and�returns�no�v���alue.������::::::::::::::::::::::::����SparseRowMult(A,i,k)�����Multiplies���the�i-th���ro���w�of�a�sparse�matrix��A��by��k�/��.��_The�sparse�matrix��A��is�modied�b���ut�nothing�is���returned.������ �� ��color push Black�� ��21����\� color pop����� �f��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.22) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�22����\� color pop����������fT�� �::::::::::::::::::::::::�� ���� ��SparseRowInterchange(A,i,k)����� ��Interchanges���the���i-th�and�j-th�ro���ws�of�a�sparse�matrix��A��by��k�/��.��The�sparse�matrix��A��is�modied�b���ut���� �nothing���is�returned.������� �::::::::::::::::::::::::���� ��SparseRowAdd(A,i,j,k)����� ��Adds�\��k��E�times�the�j-th�\�ro���w�to�the�i-th�ro���w�of�a�sparse�matrix��A�.�D�The�sparse�matrix��A��is�modied�b���ut���� �nothing���is�returned.������� �::::::::::::::::::::::::���� ��SparseSemiEchelon(A)����� ��Con���v���erts���a�sparse�matrix��A��to�semi-echelon�form���(which�means�echelon�form�up�to�a�permutation�of���� �ro���ws).�d�The���sparse�matrix��A��is�modied�b���ut�nothing�is�returned.������� �::::::::::::::::::::::::���� ��RankMatDestructive(A)����� ��Returns���the�rank�of�a�sparse�matrix��A�.�d�The�sparse�matrix��A��is�modied�during�the�calculation.������� �::::::::::::::::::::::::���� ��RankMat(A)����� ��Returns���the�rank�of�a�sparse�matrix��A�.������� �::::::::::::::::::::::::���� ��SparseChainComplex(Y)����� ��Inputs�1�a�re���gular�CW��I�-comple�x�1��Y�!��and�returns�a�sparse�chain�comple�x�1�which�is�chain�homotop���y���� �equi���v�alent�87to�88the�cellular�chain�comple���x�of��Y��#�.��>The�function�uses�discrete�v���ector�elds�to�calculate�a���� �smallish���chain�comple���x.������ �� ��color push Black���\� color pop����� ���ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.23) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�23����\� color pop����������fT�� �::::::::::::::::::::::::�� ���� ��SparseChainComplexOfRegularCWComplex(Y)����� ��Inputs���a���re���gular�CW��I�-comple�x����Y�{�and�returns���its�cellular�chain�comple���x�as�a�sparse�chain�comple���x.�T`The���� �function���SparseChainComple���x(Y)�will�usually�return�a�smaller�chain�comple�x.������� �::::::::::::::::::::::::���� ��SparseBoundaryMatrix(C,n)����� ��Inputs�ga�gsparse�chain�comple���x��C��˻and�inte���ger��n�.�HgReturns�the�n-th�boundary�matrix�of�the�chain�comple���x���� �in���sparse�format.������� �::::::::::::::::::::::::���� ��Bettinumbers(C,n)����� ��Inputs���a�sparse�chain�comple���x��C�@��and�inte�ger��n�.�d�Returns�the�n-th�Netti�number�of�the�chain�comple�x.������ �� ��color push Black���\� color pop����� ���ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.24) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���\� color pop�������� ����fT�ps:SDict begin H.S end�ps:SDict begin 13.6 H.A end�Gps:SDict begin [/View [/XYZ H.V]/Dest (chapter.7) cvn /DEST pdfmark end�V ��Chapter�/\7��2 ��color push rgb 0.0 0.0 0.0�Homology�8Rand�cohomology�gr��eoups� color pop��-��color push gray 0�����ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Qps:SDict begin [/View [/XYZ H.V]/Dest (L.X782177107A5D6D19) cvn /DEST pdfmark end� color pop�� ������::::::::::::::::::::::::����Cohomology(X,n)�����Inputs� beither� ca�cochain�comple���x��X�pA�=�"��C���(or�G-cocomple���x�C)� or�a�cochain�map��X�pA�=�"�(�C�����n� ���� UK!�"��D�)��in���characteristic����p��together�with�a�non-ne���g�� ati���v�e���intere�g��n�.����If�ng�X�;��=���C��$�and��p��=�0��then�nhthe�torsion�coecients�of��H�� J��y�n���J�(�C� ���)��are�retuned.�y�If��X�;��=���C��$�and��p��is���prime���then�the�dimension�of��H�� J��y�n���J�(�C� ���)��are�retuned.����If�+��X���=��#(�C����L�� ���� ��!��D�)��then�the�+�induced�homomorphism��H�� J��y�n���J�(�C� ���)����� ���� x !��H�� J��y�n���(�D�)�+��is�+�returned�as�a�homo-���morphism���of�nitely�presented�groups.����A����G�-cocomple���x��a�C�l�can�also�be�input.� �The��`cohomology�groups�of�such�a�comple���x�may�not�be���abelian.�ی�W���Darning:� \�in���this�case���Cohomology(C,n)�returns�the�abelian�in���v���ariants�of�the��n�-th���cohomology���group�of��C� ���.������::::::::::::::::::::::::����CohomologyModule(C,n)�����Inputs��a��G�-cocomple���x�� �C�}ɻtogether�with�a�non-ne�g�� ati���v�e�inte�ger�� �n�.��It�returns�the�cohomology��H�� J��y�n���J�(�C� ���)��as���a� ��G�-outer� �group.�K�If��C����w���as�constructed�from�a�resolution��R��by�homing�to�an�abelian��G�-outer�group��A����then,�lyfor�IWeach�x�in�H:=CohomologyModule(C,n),�there�is�IVa�function�f:=H!.representati���v���eCoc�ycle(x)���which�xis�a�standard�n-coc���ycle�corresponding�to�the�cohomology�class�x.�` (At�present�this�w���orks�only���for���n=1,2,3.)������::::::::::::::::::::::::��� �� ��color push Black�� ��24����\� color pop����� ���ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.25) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�25����\� color pop����������fT�� ��CohomologyPrimePart(C,n,p)�� ����� ��Inputs�y�a�y�cochain�comple���x��C����in�characteristic�0,��1a�positi���v���e�inte�ger�y��n�,��1and�a�prime��p�.��UIt�returns�a�list���� �of��#those�torsion�coecients�of��"�H�� J��y�n���J�(�C� ���)��that�are�positi���v���e�po�wers�of��p�.�� The�function�uses�the�EDIM���� �package���by�Frank�Luebeck.������� �::::::::::::::::::::::::���� ��GroupCohomology(X,n)���� �GroupCohomology(X,n,p)����� ��Inputs���a�positi���v���e�inte�ger��n��and�either����� �a���nite�group��X��|�=�n��G����� ��or���a�nilpotent�Pcp-group��X��|�=�n��G����� ��or���a�space�group��X��|�=�n��G����� ��or���a�list��X��|�=�n��D��representing�a�graph�of�groups����� �or�] a�]pair��X�1��=��d["�Ar�@wt� ��in�"�;�7vD�]��where��D��is�a�Cox���eter�diagram�representing�an�innite�Artin�group���� ��G�.����� �or���a���pair��X�ڪ�=��["�C� ��ox�aet� ��er�@w�"�;�7vD�]��where��D��is�a�Cox���eter�diagram�representing�a�nite�Cox���eter�group���� ��G�.����� �It���returns�the�torsion�coecients�of�the�inte���gral�cohomology��H�� J��y�n���J�(�G;�7vZ� �)�)�.���� �There��bis��aan�optional�third�ar�͏gument�which,��Hwhen�set�equal�to�a�prime��p�,��Gcauses�the�function�to�return���� �the���the�mod��p��cohomology��H�� J��y�n���J�(�G;�7vZ���z�p����)��as�a�list�of�length�equal�to�its�rank.���� �This��2function��1is�a�composite�of�more�basic�functions,�ȋand�mak���es�choices�for�a�number�of�parameters.���� �F���or��a��particular�group�you�w���ould�almost�certainly�be�better�using�the�more�basic�functions�and���� �making���the�choices�yourself!������� �::::::::::::::::::::::::���� ��GroupHomology(X,n)���� �GroupHomology(X,n,p)����� ��Inputs���a�positi���v���e�inte�ger��n��and�either����� �a���nite�group��X��|�=�n��G����� ��or���a�nilpotent�Pcp-group��X��|�=�n��G���� �� ��color push Black���\� color pop����� Y��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.26) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�26����\� color pop����������fT�� �or���a�space�group��X��|�=�n��G�� ����� ��or���a�list��X��|�=�n��D��representing�a�graph�of�groups����� �or�] a�]pair��X�1��=��d["�Ar�@wt� ��in�"�;�7vD�]��where��D��is�a�Cox���eter�diagram�representing�an�innite�Artin�group���� ��G�.����� �or���a���pair��X�ڪ�=��["�C� ��ox�aet� ��er�@w�"�;�7vD�]��where��D��is�a�Cox���eter�diagram�representing�a�nite�Cox���eter�group���� ��G�.����� �It���returns�the�torsion�coecients�of�the�inte���gral�homology��H���z�n��� �(�G;�7vZ� �)�)�.���� �There��bis��aan�optional�third�ar�͏gument�which,��Hwhen�set�equal�to�a�prime��p�,��Gcauses�the�function�to�return���� �the���mod��p��homology��H���z�n��� �(�G;�7vZ���z�p����)��as�a�list�of�lenth�equal�to�its�rank.���� �This��2function��1is�a�composite�of�more�basic�functions,�ȋand�mak���es�choices�for�a�number�of�parameters.���� �F���or��a��particular�group�you�w���ould�almost�certainly�be�better�using�the�more�basic�functions�and���� �making���the�choices�yourself!������� �::::::::::::::::::::::::���� ��PersistentHomologyOfQuotientGroupSeries(S,n)���� �PersistentHomologyOfQuotientGroupSeries(S,n,p,Resolution_Algorithm)����� ��Inputs�fRa�fQpositi���v���e�inte�ger��n��and�fQa�decreasing�chain��S�タ=��[�S���z�1��� �;�7vS���z�2���;�:::;�S�����k��0�]�fQ�of�fRnormal�subgroups�in�a�nite���� ��p�-group����G�Sݿ=�S��S���z�1��� �.�[?It�returns�the���bar�code�of�the�persistent�mod��p��homology�in�de���gree��n��of�the�sequence���� �of�Q(quotient�Q)homomorphisms��G�A�!��G=S�����k��;[�!��G=S�����k�"�� �1��r��!�B�:::��!��G=S���z�2��� �.�AThe�Q(bar�code�is�returned�as�a�matrix���� �containing���the�dimensions�of�the�images�of�the�induced�homology�maps.���� �If�k�one�k�sets��p��.�=��/0��then�the�inte���gral�persitent�homology�bar�code�is�returned.�r3This�is�a�matrix�whose���� �entries���are���pairs�of�the�lists:�Rrthe�list�of�abelian�in���v���ariants�of�the�images�of�the�induced�homology�maps���� �and��the��cok���ernels�of�the�induced�homology�maps.���(The�matrix�probably�does�not�uniquely�determine���� �the���induced�homology�maps.)���� �Non�hwprime-po���wer�(and�hvpossibly�innite)�groups��G��can�also�be�handled;��Lin�this�case�the�prime�must���� �be��Ientered�as�a��Hthird�ar�͏gument,�B(and�the�resolution�algorithm�(e.g.�rResolutionNilpotentGroup)�can���� �be��5entered�as�a�fourth�ar�͏gument.�7(The�def���ault�algorithm�is�ResolutionFiniteGroup,��so�this�must�be���� �changed���for�innite�groups.)������� �::::::::::::::::::::::::���� ��PersistentCohomologyOfQuotientGroupSeries(S,n)���� �PersistentCohomologyOfQuotientGroupSeries(S,n,p,Resolution_Algorithm)����� ��Inputs���a���positi���v���e�inte�ger��n��and���a�decreasing�chain��S�j��=�T7[�S���z�1��� �;�7vS���z�2���;�:::;�S�����k��0�]����of���normal�subgroups�in�a�nite��p�-���� �group��P�G�N��=�N��S���z�1��� �.�Y~It�returns��Othe�bar�code�of�the�persistent�mod��p��cohomology�in�de���gree��n��of�the�sequence���� �of�Q(quotient�Q)homomorphisms��G�A�!��G=S�����k��;[�!��G=S�����k�"�� �1��r��!�B�:::��!��G=S���z�2��� �.�AThe�Q(bar�code�is�returned�as�a�matrix���� �containing���the�dimensions�of�the�images�of�the�induced�homology�maps.���� �If��Jone�sets��p���=��0��then�the�inte���gral�persitent�cohomology�bar�code�is�returned.��vThis�is�a�matrix�whose��� �� ��color push Black���\� color pop����� "��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.27) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�27����\� color pop����������fT�� �entries�ulare�pairs�of�the�uklists:��<the�list�of�abelian�in���v���ariants�of�the�images�of�the�induced�cohomology�� ���� �maps�odand�oethe�cok���ernels�of�the�induced�cohomology�maps.�|�(The�matrix�probably�does�not�uniquely���� �determine���the�induced�homology�maps.)���� �Non�hwprime-po���wer�(and�hvpossibly�innite)�groups��G��can�also�be�handled;��Lin�this�case�the�prime�must���� �be��Ientered�as�a��Hthird�ar�͏gument,�B(and�the�resolution�algorithm�(e.g.�rResolutionNilpotentGroup)�can���� �be��5entered�as�a�fourth�ar�͏gument.�7(The�def���ault�algorithm�is�ResolutionFiniteGroup,��so�this�must�be���� �changed���for�innite�groups.)���� �(The�c�implementation�c�is�possibly�a�little�less�ecient�than�that�of�the�corresponding�persistent���� �homology���function.)������� �::::::::::::::::::::::::���� ��UniversalBarCode("UpperCentralSeries",n,d)���� �UniversalBarCode("UpperCentralSeries",n,d,k)����� ��Inputs�O7inte���gers��n;�7vd����that�identify�a�prime�O8po���wer�group�G=SmallGroup(n,d),�s�together�with�one�of�the���� �strings��"UpperCentralSeries",�#NLo���werCentralSeries",�"Deri�v���edSeries",�#M"UpperPCentralSeries",�"Lo�w-���� �erPCentralSeries".���The�Dbfunction�returns�a�matrix�of�Dcrational�functions;��-the�coecients�of��x��a��y�k��|ܻin�their���� �e���xpansions� Eyield�the� Fpersistence�matrix�for�the�de���gree��k�8�homology�with�tri���vial�mod�p�coecients���� �associated���to�the�quotients�of��G��by�the�terms�of�the�gi���v���en�series.���� �If�d�the�additional�inte���ger�ar�͏gument��k��)�is�supplied�d�then�the�function�returns�the�de�gree�k�homology���� �persistence���matrix.������� �::::::::::::::::::::::::���� ��PersistentHomologyOfSubGroupSeries(S,n)���� �PersistentHomologyOfSubGroupSeries(S,n,p,Resolution_Algorithm)����� ��Inputs�Ta�Spositi���v���e�inte�ger��n��and�Sa�decreasing�chain��S���=���[�S���z�1��� �;�7vS���z�2���;�:::;�S�����k��0�]�S�of�Tsubgroups�in�a�nite��p�-group���� ��G�̿=��S���z�1��� �.�ԈIt���returns�the���bar�code�of�the�persistent�mod��p��homology�in�de���gree��n��of�the�sequence�of���� �inclusion���homomorphisms��S�����k����!�n��S�����k�"�� �1���K�!��:::��!��S���z�1����=��G�.�d�The���bar�code�is�returned�as�a�binary�matrix.���� �Non���prime-po���wer���(and�possibly�innite)�groups��G��can�also�be�handled;��7in�this�case�the�prime�must�be���� �entered���as���a�third�ar�͏gument,��2and�the�resolution�algorithm�(e.g.�¿ResolutionNilpotentGroup)�must�be���� �entered���as�a�fourth�ar�͏gument.������� �::::::::::::::::::::::::���� ��PersistentHomologyOfFilteredChainComplex(C,n,p)����� ��Inputs�p�a�ltered�p�chain�comple���x��C��u�(of�characteristic��0��or��p�)�together�with�a�positi���v���e�inte�ger�p��n��and�prime���� ��p�.��It���returns�the���bar�code�of�the�persistent�mod��p��homology�in�de���gree��n��of�the�ltered�chain�comple���x���� ��C� ���.�>t(This�Jfunction�Ineeds�a�more�ecient�implementation.�>uIts�ne�as�it�stands�for�in���v���estig�� ation�in���� �group��8homology��I�,��b���ut�not��7suciently�ecient�for�the�homology�of�lar�͏ge�comple���x�es��8arising�in�applied���� �topology��I�.)��� �� ��color push Black���\� color pop����� 1���ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.28) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�28����\� color pop����������fT� ������ ��PersistentHomologyOfCommutativeDiagramOfPGroups(D,n)����� ��Inputs�X�a�commutati���v���e�diagram��D��of�nite�X��p�-groups�and�a�positi�v���e�inte�ger��n�.�C�It�returns�a�list�containing,���� �for��teach�homomorphism�in�the�nerv���e�of��D�,��^a�triple��[�k�/�;�7vl� ��;�m�]��t�where��k���is�the�dimension�of�the�source���� �of�.�the�induced�.�mod��p��homology�map�in�de���gree��n�,��d�l��ͻis�the�dimension�of�the�image,��cand��m��is�the���� �dimension���of�the�cok���ernel.������� �::::::::::::::::::::::::���� ��PersistentHomologyOfFilteredCubicalComplex(M,n)����� ��Inputs���a�ltered�pure�cubical�comple���x��M�t��and�a�non-ne�g�� ati���v�e�inte�ger��n�.� j�It�returns�the�de�gree��n���� ��persistent���homology�of��M�r��with�rational�coecients.������� �::::::::::::::::::::::::���� ��PersistentHomologyOfPureCubicalComplex(L,n,p)����� ��Inputs�(Ha�(Gpositi���v���e�inte�ger��n�,�C&a�prime�(G�p��and�an�increasing�chain��L���=���[�L���z�1��� �;�7vL���z�2���;�:::;�L�����k��0�]�(H�of�(Gsubcomple���x�es�in���� �a�I�pure�I�cubical�comple���x��L�����k��0�.��It�returns�the�bar�code�of�the�persistent�mod��p��homology�in�de���gree��n��of���� �the���sequence���of�inclusion�maps.�The�bar�code�is�returned�as�a�matrix.� (This�function�is�e���xtremely���� �inecient���and�it�is�better�to�use�PersistentHomologyOFilteredfPureCubicalComple���x.���� �::::::::::::::::::::::::���� ��ZZPersistentHomologyOfPureCubicalComplex(L,n,p)����� ��Inputs�!la�positi���v���e�inte�ger��n�,�:�a�prime��p��and�an�y�sequence��L��4�=���[�L���z�1��� �;�7vL���z�2���;�:::;�L�����k��0�]�!l�of�subcomple���x�es�!lof�some���� �pure���cubical���comple���x.�WCIt�returns�the�bar�code�of�the�zig-zag�persistent�mod��p��homology�in�de���gree��n��of���� �the���sequence���of�maps��L���z�1����!����L���z�1��8�[��9�L���z�2��� ��L���z�2���!��L���z�2��8�[��8�L���z�3��� ��L���z�4���!��:::�� ��L�����k��0�.�XThe���bar���code�is�returned�as�a���� �matrix.���� �::::::::::::::::::::::::���� ��RipsHomology(G,n)���� �RipsHomology(G,n,p)����� ��Inputs��a�graph���G�,�&�a�non-ne���g�� ati���v�e��inte�ger��n��(and��optionally�a�prime�number��p�).�ciIt�returns�the�inte���gral���� �homology���(or�mod�p�homology)�in�de���gree��n��of�the�Rips�comple�x�of��G�.������� �::::::::::::::::::::::::���� ��BarCode(P)����� ��Inputs���an�inte���ger�persistence���matrix�P���and�returns�the�same�information�in�the�form�of�a�binary�matrix��� �� ��color push Black���\� color pop����� @���ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.29) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�29����\� color pop����������fT�� �(corresponding���to�the�usual�bar�code).�� ������� �::::::::::::::::::::::::���� �::::::::::::::::::::::::���� ��BarCodeDisplay(P)���� �BarCodeDisplay(P,"mozilla")���� �BarCodeCompactDisplay(P)���� �BarCodeCompactDisplay(P,"mozilla")����� ��Inputs���an���inte���ger�persistence�matrix�P����,�and�an�optional�string�specifying�a�vie���wer/bro�wser��e�.���It���displays���� �a�&�picture�&�of�the�bar�code�(using�GraphV��W�iz�softw���are).��mThe�compact�display�is�better�for�lar�͏ge�bar���� �codes.������� �::::::::::::::::::::::::���� ��Homology(X,n)����� ��Inputs���either�a�chain�comple���x��X��|�=�n��C�@��or�a�chain�map��X��=�n�(�C������ ���� ��!��D�)�.����� �If����X��|�=�n��C�@��then�the�torsion�coecients�of��H���z�n��� �(�C� ���)��are�retuned.����� �If�Q'�X�+W�=���(�C����a�� ����a!��D�)��then�Q&the�induced�homomorphism��H���z�n��� �(�C� ���)������� ���� ��!����H���z�n���(�D�)��is�Q&returned�as�a�homo-���� �morphism���of�nitely�presented�groups.����� �A� ��G�-comple���x�k�C��'�can�also�be�jinput.� Y�The�homology�kgroups�of�jsuch�a�comple���x�may�not�be���� �abelian.�m��W���Darning:�g�in�this�case�Homology(C,n)�returns�the�abelian�in���v���ariants�of�the��n�-th�homology���� �group���of��C� ���.������� �::::::::::::::::::::::::���� ��HomologyPb(C,n)����� ��This��Pis�a�back-up�function�which�might�w���ork�in��Osome�instances�where��H� Jomol� ��o�gy�(�C� ��;�7vn�)��f�ails.�Z�It�is���� �most���useful�for�chain�comple���x�es���whose�boundary�homomorphisms�are�sparse.���� �It�T�inputs�T�a�chain�comple���x��C��H�in�characteristic��0��and�returns�the�torsion�coecients�of��H���z�n��� �(�C� ���)��.�,:There���� �is�h3a�small�probability�that�an�incorrect�answer�could�h4be�returned.�g1The�computation�relies�on�proba-���� �bilistic��Smith��Normal�F���orm�algorithms�implemented�in�the�Simplicial�Homology�GAP��package.�X�This���� �package���therefore���needs�to�be�loaded.�WIThe�computation�is�stored�as�a�component�of��C�o�so,���when�called���� �a���second�time�for�a�gi���v���en��C�@��and��n�,�the�calculation�is�recalled�without�rerunning�the�algorithm.���� �The���choice�of�probabalistic�algorithm�can�be�changed�using�the�command���� �SetHomologyAlgorithm(HomologyAlgorithm[i]);���� �where��Bi��A=�1,2,3�or�4.��\The�upper�limit�for�the�probability�of�an�incorrect�answer�can�be�set�to�an���y���� �rational���number��0�<�e�<=��1��using�the�follo���wing�command.��� �� ��color push Black���\� color pop����� M.��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.30) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�30����\� color pop����������fT�� �SetUncertaintyT���olerence(e);�� ���� �See���the�Simplicial�Homology�package�manual�for�further�details.������� �::::::::::::::::::::::::���� ��HomologyVectorSpace(X,n)����� ��Inputs���either�a�chain�comple���x��X��|�=�n��C�@��or�a�chain�map��X��=�n�(�C������ ���� ��!��D�)��̻in�prime�characteristic.����� �If����X��|�=�n��C�@��then��H���z�n��� �(�C� ���)��is�retuned�as�a�v���ector�space.����� �If�Q'�X�+W�=���(�C����a�� ����a!��D�)��then�Q&the�induced�homomorphism��H���z�n��� �(�C� ���)������� ���� ��!����H���z�n���(�D�)��is�Q&returned�as�a�homo-���� �morphism���of�v���ector�spaces.��������� �::::::::::::::::::::::::���� ��HomologyPrimePart(C,n,p)����� ��Inputs�`1a�`0chain�comple���x��C���in�characteristic�0,�� a�positi���v���e�inte�ger�`1�n�,�� and�a�prime��p�.�O*It�returns�a�list�of���� �those�63torsion�62coecients�of��H���z�n��� �(�C� ���)��that�are�positi���v���e�po�wers�of�62�p�.��0The�function�uses�the�EDIM�6GAP���� �package���by�Frank�Luebeck.������� �::::::::::::::::::::::::���� ��LeibnizAlgebraHomology(A,n)����� ��Inputs��a��Lie�or�Leibniz�algebra��X��f�=����A��(o���v�er��the�ring�of�inte���gers��Z���or�o�v�er��a�eld��K� �<�),�*�together�with�a���� �positi���v���e���inte�ger��n�.�d�It�returns�the��n�-dimensional�Leibniz�homology�of��A�.������� �::::::::::::::::::::::::���� ��LieAlgebraHomology(A,n)����� ��Inputs� �a�Lie�algebra��A��(o���v�er� �the�inte���gers�or�a�eld)�and�a�positi���v�e�inte�ger��n�.��}It�returns�the�homology���� ��H���z�n��� �(�A;�7vk�/��)��̻where��k��m�denotes�the�ground�ring.������� �::::::::::::::::::::::::���� ��PrimePartDerivedFunctor(G,R,F,n)���� �� ��color push Black���\� color pop����� Yd��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.31) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�31����\� color pop����������fT�� �Inputs�&�a�&�nite�group��G�,�AYa�positi���v���e�inte�ger�&��n�,�AXat�least�&��n����+�1��terms�of�&�a��Z� �)P�^f�-resolution�for�a�Sylo���w�sub-�� ���� �group��f�P�^f�<�G��e�and�a�"mathematically�suitable"�co���v���ariant�additi�v���e��ffunctor��F��-�such�as�T��;�ensorW���ithInte���gers���� �.�d�It���returns�the�abelian�in���v���ariants�of�the��p�-component�of�the�homology��H���z�n��� �(�F�ǿ(�R�))��.���� �W���arning:���All�]calculations�are�assumed�]to�be�in�characteristic�0.�E�The�function�should�not�be�used�if���� �the���coecient�module�is�o���v�er���the�eld�of��p��elements.���� �"Mathematically���suitable"�means�that�the�Cartan-Eilenber�͏g�double�coset�formula�must�hold.������� �::::::::::::::::::::::::���� ��RankHomologyPGroup(G,n)���� �RankHomologyPGroup(R,n)���� �RankHomologyPGroup(G,n,"empirical")����� ��Inputs�#a�"(smallish)��p�-group��G�,�<Eor��n��terms�of�a�minimal��Z���z�p����G�-resolution��R��of��Z���z�p��5��,�<Ftogether�with�a�positi���v���e���� �inte���ger����n�.�d�It�returns�the�minimal�number�of�generators�of�the�inte�gral�homology�group��H���z�n��� �(�G;�7vZ� �)�)�.���� �If�qan�option�third�q string�ar�͏gument�"empirical"�is�included�then�an�empirical�algorithm�will�be�used.���� �This���is���one�which�al���w�ays�seems���to�yield�the�right�answer�b���ut�which�we�can'�͏t�pro���v�e���yields�the�correct���� �answer��e�.������� �::::::::::::::::::::::::���� ��RankPrimeHomology(G,n)����� ��Inputs�Lua�Lv(smallish)��p�-group��G��together�with�a�positi���v���e�inte�ger�Lu�n�.��It�returns�a�function��d� ��im�(�k�/��)��which���� �gi���v���es���the�rank�of�the�v�ector�space��H�����k��0�(�G;�7vZ���z�p����)��for�all��0��<=��k��m�<=��n�.������ �� ��color push Black���\� color pop����� bu��ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.32) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black���\� color pop�������� ����fT�ps:SDict begin H.S end�ps:SDict begin 13.6 H.A end�Gps:SDict begin [/View [/XYZ H.V]/Dest (chapter.8) cvn /DEST pdfmark end�V ��Chapter�/\8��2 ��color push rgb 0.0 0.0 0.0�P���oincar��ee�8Rseries� color pop��(Lc�color push gray 0� M7��ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Qps:SDict begin [/View [/XYZ H.V]/Dest (L.X850CDAFE801E2B2A) cvn /DEST pdfmark end� color pop�� ������EfficientNormalSubgroups(G)���EfficientNormalSubgroups(G,k)�����Inputs���a���prime-po���wer�group��G��and,���optionally��I�,�a�positi���v���e���inte�ger��k�/��.�]�The�def���ault�is����k���=�[E4�.�The�function���returns��a��list�of�normal�subgroups��N��ͻin��G��such�that�the�Poincare�series�for��G��equals�the�Poincare���series���for�the�direct�product��(�N�s����S�(�G=N� �D�))��up�to�de���gree��k�/��.������::::::::::::::::::::::::����ExpansionOfRationalFunction(f,n)�����Inputs�'Ea�'Dpositi���v���e�inte�ger�'D�n��and�a�rational�function��f�S-�(�x�a�)��x=��p�(�x��)�=q�(�x��)�'D�where�'Ethe�de���gree�of�the�polynomial����p�(�x�a�)���is�less�than�that�of��q�(�x��)�.���It�returns�a�list��[�a���z�0��� �;�7va���z�1���;�a���z�2���;�a���z�3���;��:�:�:�� �7;�a���z�n���]���of�the�rst��n��@�+�1���coecients�of�the���innite���e���xpansion����f�S-�(�x�a�)�n�=��a���z�0��S�+��S�a���z�1��� �x����+��a���z�2���x��a��y�2�� ��+��a���z�3���x��a��y�3�� ��+���:�7v:�:���j�.������::::::::::::::::::::::::����PoincareSeries(G,n)���PoincareSeries(R,n)���PoincareSeries(L,n)���PoincareSeries(G)�����Inputs���a���nite��p�-group��G��and�a�positi���v���e�inte�ger����n�.� IIt�returns�a�quotient�of�polynomials��f�S-�(�x�a�)�z�=����P�^f�(�x�a�)�=Q�(�x��)��whose���coecient�of��x��a��y�k��Q�equals�the�rank�of�the�v���ector�space��H�����k��0�(�G;�7vZ���z�p����)��for�all��k��x�in�the�range����k���=��f1���to�� �k���=��e�n�.���(The�second�input�v���ariable�can�be�omitted,���in�which�case�the�function�tries�to�choose���a��"reasonable"�v���alue�for��n�.�9�F���or��2�-groups�the�function�PoincareSeriesLHS(G)��can�be�used�to�produce���an����f�S-�(�x�a�)��that�is�correct�in�all�de���grees.)��� �� ��color push Black�� ��32����\� color pop����� ! k���ps:SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end��������color push gray 0�ps:SDict begin H.S end�color push gray 0� color pop�ps:SDict begin H.R end�Eps:SDict begin [/View [/XYZ H.V]/Dest (page.33) cvn /DEST pdfmark end� color pop����������LfT��� ��color push Black����*�33����\� color pop����������fT�� �In��place�of�the�group��G��the�function�can�also�input�(at�least��n��terms�of)�a�minimal�mod��p��resolution��R�� ���� ��for����G�.���� �Alternati���v���ely��I�,��uthe���rst���input�v�ariable�can���be�a�list��L���of�inte���gers.��+In�this�case�the�coecient�of��x��a��y�k����in���� ��f�S-�(�x�a�)��̻is�equal�to�the��(�k����+��S1)�st�term�in�the�list.������� �::::::::::::::::::::::::���� ��PoincareSeriesPrimePart(G,p,n)����� ��Inputs��a�nite�group��G�,�o�a�prime��p�,�and�a�positi���v���e�inte�ger��n�.�xZIt�returns�a�quotient�of�polynomials���� ��f�S-�(�x�a�)�ʱ=��P�^f�(�x��)�=Q�(�x��)�a��whose�coecient�a�of��x����y�k���v�equals�the�rank�a�of�the�v���ector�space��H�����k��0�(�G;�7vZ���z�p����)��for�all��k����in���� �the���range��k����=�n�1��to��k��=�n��n�.���� �The���ecienc���y�of�this�function�needs�to�be�impro�v�ed.������� ��PoincareSeriesLHS(G)����� ��Inputs�#�a�#�nite��2�-group��G��and�returns�a�quotient�of�polynomials��f�S-�(�x�a�)��=��P�^f�(�x��)�=Q�(�x��)�#��whose�#�coecient���� �of����x��a��y�k���F�equals�the�rank�of�the�v���ector�space��H�����k��0�(�G;�7vZ���z�2��� �)��for�all��k�/��.���� �This���function�w���as�written�by��P��&a���ul�Smith�.�d�It�use�the�Singular�system�for�commutati���v���e�algebra.������� �::::::::::::::::::::::::���� ��Prank(G)����� ��Inputs���a��p�-group��G��and�returns�the�rank�of�the�lar�͏gest�elementary�abelian�subgroup.������ �� ��color push Black���\� color pop����� "