Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Knots and Links</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index>PureCubicalKnot</Index>7<C>PureCubicalKnot(L)</C>8<C>PureCubicalKnot(n,i)</C>9<P/>1011Inputs a list <M>L=[[m1,n1], [m2,n2], ..., [mk,nk]]</M> of pairs of integers12describing13a cubical arc presentation of a14link with all vertical lines at the front and all horizontal lines at the back. The bottom horizontal line extends from the m1-th column to the n1-th column.15The second to bottom horizontal line extends from the m2-th column to the n2-th column. And so on. The link is returned16as a 3-dimensional pure cubical complex.17<P/>1819Alternatively the function inputs two20integers <M>n</M>, <M>i</M> and returns the <M>i</M>-th prime knot on <M>n</M> crossings.2122</Item>23</Row>2425<Row>26<Item>27<Index>ViewPureCubicalKnot</Index>28<C>ViewPureCubicalKnot(L)</C>29<P/>3031Inputs a pure cubical link <M>L</M> and displays it.32<P/>3334</Item>35</Row>363738<Row>39<Item>40<Index>KnotSum</Index>41<C>KnotSum(K,L)</C>42<P/>4344Inputs two pure cubical knots <M>K</M>, <M>L</M> and returns their sum as a pure cubical knot. This function is not defined for links with more than one component.45<P/>4647</Item>48</Row>4950<Row>51<Item>52<Index>KnotGroup</Index>53<C>KnotGroup(K)</C>54<P/>5556Inputs a pure cubical link <M>K</M> and returns the fundamental group of its complement. The group is returned as a finitely presented group.57<P/>5859</Item>60</Row>6162<Row>63<Item>64<Index>AlexanderMatrix</Index>65<C>AlexanderMatrix(G)</C>66<P/>6768Inputs a finitely presented group <M>G</M> whose abelianization is infinite cyclic. It returns the Alexander matrix of the presentation.69<P/>7071</Item>72</Row>7374<Row>75<Item>76<Index>AlexanderPolynomial</Index>77<C>AlexanderPolynomial(K)</C>78<C>AlexanderPolynomial(G)</C>79<P/>8081Inputs either a pure cubical knot <M>K</M> or a finitely presented group <M>G</M> whose abelianization is infinite cyclic. The Alexander Polynomial is returned.82<P/>8384</Item>85</Row>868788<Row>89<Item>90<Index>ProjectionOfPureCubicalComplex</Index>91<C>ProjectionOfPureCubicalComplex(K)</C>92<P/>9394Inputs an $n$-dimensional95pure cubical complex <M>K</M> and returns an n-1-dimensional pure cubical complex K'. The returned complex is obtained by projecting Euclidean n-space onto Euclidean n-1-space.96<P/>9798</Item>99</Row>100101<Row>102<Item>103<Index>ReadPDBfileAsPureCubicalComplex</Index>104<C>ReadPDBfileAsPureCubicalComplex(file)</C>105<C>ReadPDBfileAsPureCubicalComplex(file,m ,c)</C>106<P/>107108Inputs a protein database file describing a protein, and optionally109inputs a positive integer m and character string c. The default values for the optional inputs are m=5 and c="A".110It loads the chain of amino acids labelled by c in the file as a 3-dimensional pure cubical complex of the homotopy type of a circle.111<P/>112113It might happen that the function fails to construct a pure cubical complex of the homotopy type of a circle. In this case retry with a larger integer m.114115</Item>116</Row>117118119120121</Table>122</Chapter>123124125126127