CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Knots and Links</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<Index>PureCubicalKnot</Index>
8
<C>PureCubicalKnot(L)</C>
9
<C>PureCubicalKnot(n,i)</C>
10
<P/>
11
12
Inputs a list <M>L=[[m1,n1], [m2,n2], ..., [mk,nk]]</M> of pairs of integers
13
describing
14
a cubical arc presentation of a
15
link with all vertical lines at the front and all horizontal lines at the back. The bottom horizontal line extends from the m1-th column to the n1-th column.
16
The second to bottom horizontal line extends from the m2-th column to the n2-th column. And so on. The link is returned
17
as a 3-dimensional pure cubical complex.
18
<P/>
19
20
Alternatively the function inputs two
21
integers <M>n</M>, <M>i</M> and returns the <M>i</M>-th prime knot on <M>n</M> crossings.
22
23
</Item>
24
</Row>
25
26
<Row>
27
<Item>
28
<Index>ViewPureCubicalKnot</Index>
29
<C>ViewPureCubicalKnot(L)</C>
30
<P/>
31
32
Inputs a pure cubical link <M>L</M> and displays it.
33
<P/>
34
35
</Item>
36
</Row>
37
38
39
<Row>
40
<Item>
41
<Index>KnotSum</Index>
42
<C>KnotSum(K,L)</C>
43
<P/>
44
45
Inputs two pure cubical knots <M>K</M>, <M>L</M> and returns their sum as a pure cubical knot. This function is not defined for links with more than one component.
46
<P/>
47
48
</Item>
49
</Row>
50
51
<Row>
52
<Item>
53
<Index>KnotGroup</Index>
54
<C>KnotGroup(K)</C>
55
<P/>
56
57
Inputs a pure cubical link <M>K</M> and returns the fundamental group of its complement. The group is returned as a finitely presented group.
58
<P/>
59
60
</Item>
61
</Row>
62
63
<Row>
64
<Item>
65
<Index>AlexanderMatrix</Index>
66
<C>AlexanderMatrix(G)</C>
67
<P/>
68
69
Inputs a finitely presented group <M>G</M> whose abelianization is infinite cyclic. It returns the Alexander matrix of the presentation.
70
<P/>
71
72
</Item>
73
</Row>
74
75
<Row>
76
<Item>
77
<Index>AlexanderPolynomial</Index>
78
<C>AlexanderPolynomial(K)</C>
79
<C>AlexanderPolynomial(G)</C>
80
<P/>
81
82
Inputs either a pure cubical knot <M>K</M> or a finitely presented group <M>G</M> whose abelianization is infinite cyclic. The Alexander Polynomial is returned.
83
<P/>
84
85
</Item>
86
</Row>
87
88
89
<Row>
90
<Item>
91
<Index>ProjectionOfPureCubicalComplex</Index>
92
<C>ProjectionOfPureCubicalComplex(K)</C>
93
<P/>
94
95
Inputs an $n$-dimensional
96
pure cubical complex <M>K</M> and returns an n-1-dimensional pure cubical complex K'. The returned complex is obtained by projecting Euclidean n-space onto Euclidean n-1-space.
97
<P/>
98
99
</Item>
100
</Row>
101
102
<Row>
103
<Item>
104
<Index>ReadPDBfileAsPureCubicalComplex</Index>
105
<C>ReadPDBfileAsPureCubicalComplex(file)</C>
106
<C>ReadPDBfileAsPureCubicalComplex(file,m ,c)</C>
107
<P/>
108
109
Inputs a protein database file describing a protein, and optionally
110
inputs a positive integer m and character string c. The default values for the optional inputs are m=5 and c="A".
111
It loads the chain of amino acids labelled by c in the file as a 3-dimensional pure cubical complex of the homotopy type of a circle.
112
<P/>
113
114
It might happen that the function fails to construct a pure cubical complex of the homotopy type of a circle. In this case retry with a larger integer m.
115
116
</Item>
117
</Row>
118
119
120
121
122
</Table>
123
</Chapter>
124
125
126
127