Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Generators and relators of groups</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index> CayleyGraphOfGroupDisplay</Index>7<C>CayleyGraphOfGroupDisplay(G,X) </C>8<C>CayleyGraphOfGroupDisplay(G,X,"mozilla") </C>9<P/>1011Inputs a finite group <M>G</M> together with a subset <M>X</M> of12<M>G</M>. It displays the corresponding Cayley graph as a .gif file.13It uses the Mozilla web browser as a default to view the diagram.14An alternative browser can be set using a second argument.15<P/>16The argument <M>G</M> can also be a finite set of elements in a17(possibly infinite) group containing <M>X</M>. The edges of the18graph are coloured according to which element of <M>X</M> they are19labelled by. The list <M>X</M> corresponds to the list of colours20[blue, red, green, yellow, brown, black] in that order.21<P/>22This function requires Graphviz software.23</Item>24</Row>2526<Row>27<Item>28<Index> IdentityAmongRelatorsDisplay</Index>29<C>IdentityAmongRelatorsDisplay(R,n) </C>30<C>IdentityAmongRelatorsDisplay(R,n,"mozilla") </C>3132<P/>3334Inputs a free <M>ZG</M>-resolution <M>R</M> and an integer <M>n</M>.35It displays the boundary R!.boundary(3,n) as a tessellation of a sphere. It36displays the tessellation as a .gif file37and uses the Mozilla web browser as a default display mechanism.38An alternative browser can be set using a second argument.3940(The resolution <M>R</M>41should be reduced and, preferably, in dimension 1 it should correspond to a Cayley graph for <M>G</M>. )4243<P/>This function uses GraphViz software.44</Item>45</Row>4647<Row>48<Item>49<Index> IsAspherical</Index>50<C>IsAspherical(F,R) </C>51<P/>5253Inputs a free group <M>F</M> and a set <M>R</M> of words in <M>F</M>.54It performs a test on the 2-dimensional CW-space <M>K</M> associated55to this presentation for the group <M>G=F/</M>&tlt;<M>R</M>&tgt;<M>^F</M>.56<P/>57The function returns "true" if <M>K</M> has trivial second homotopy group.58In this case it prints: Presentation is aspherical.59<P/>60Otherwise it returns "fail" and prints: Presentation is NOT piece-wise Euclidean non-positively curved. (In this case <M>K</M> may or may not61have trivial second homotopy group. But it is NOT possible to impose a62metric on K which restricts to a Euclidean metric on each 2-cell.)63<P/>64The function uses Polymake software.65</Item>66</Row>6768<Row>69<Item>70<Index> PresentationOfResolution</Index>71<C>PresentationOfResolution(R) </C>72<P/>7374Inputs at least two terms of a reduced <M>ZG</M>-resolution <M>R</M>75and returns a record <M>P</M> with components76<List>77<Item>78<M>P.freeGroup</M> is a free group <M>F</M>,79</Item>80<Item>81<M>P.relators</M> is a list <M>S</M> of words in <M>F</M>,82</Item>83<Item>84<M>P.gens</M> is a list of positive integers such that the <M>i</M>-th generator of the presentation corresponds to the group element R!.elts[P[i]] .85</Item>8687</List>88where <M>G</M> is isomorphic to <M>F</M>89modulo the normal closure of <M>S</M>.90This presentation for <M>G</M> corresponds to the912-skeleton of the classifying CW-space from which <M>R</M>92was constructed. The resolution <M>R</M> requires no contracting93homotopy.94</Item>95</Row>969798<Row>99<Item>100<Index> TorsionGeneratorsAbelianGroup</Index>101<C>TorsionGeneratorsAbelianGroup(G) </C>102<P/>103104Inputs an abelian group <M>G</M> and returns a generating set105<M>[x_1, \ldots ,x_n]</M> where no pair of generators106have coprime orders.107</Item>108</Row>109110</Table>111</Chapter>112113114115116