CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Generators and relators of groups</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<Index> CayleyGraphOfGroupDisplay</Index>
8
<C>CayleyGraphOfGroupDisplay(G,X) </C>
9
<C>CayleyGraphOfGroupDisplay(G,X,"mozilla") </C>
10
<P/>
11
12
Inputs a finite group <M>G</M> together with a subset <M>X</M> of
13
<M>G</M>. It displays the corresponding Cayley graph as a .gif file.
14
It uses the Mozilla web browser as a default to view the diagram.
15
An alternative browser can be set using a second argument.
16
<P/>
17
The argument <M>G</M> can also be a finite set of elements in a
18
(possibly infinite) group containing <M>X</M>. The edges of the
19
graph are coloured according to which element of <M>X</M> they are
20
labelled by. The list <M>X</M> corresponds to the list of colours
21
[blue, red, green, yellow, brown, black] in that order.
22
<P/>
23
This function requires Graphviz software.
24
</Item>
25
</Row>
26
27
<Row>
28
<Item>
29
<Index> IdentityAmongRelatorsDisplay</Index>
30
<C>IdentityAmongRelatorsDisplay(R,n) </C>
31
<C>IdentityAmongRelatorsDisplay(R,n,"mozilla") </C>
32
33
<P/>
34
35
Inputs a free <M>ZG</M>-resolution <M>R</M> and an integer <M>n</M>.
36
It displays the boundary R!.boundary(3,n) as a tessellation of a sphere. It
37
displays the tessellation as a .gif file
38
and uses the Mozilla web browser as a default display mechanism.
39
An alternative browser can be set using a second argument.
40
41
(The resolution <M>R</M>
42
should be reduced and, preferably, in dimension 1 it should correspond to a Cayley graph for <M>G</M>. )
43
44
<P/>This function uses GraphViz software.
45
</Item>
46
</Row>
47
48
<Row>
49
<Item>
50
<Index> IsAspherical</Index>
51
<C>IsAspherical(F,R) </C>
52
<P/>
53
54
Inputs a free group <M>F</M> and a set <M>R</M> of words in <M>F</M>.
55
It performs a test on the 2-dimensional CW-space <M>K</M> associated
56
to this presentation for the group <M>G=F/</M>&tlt;<M>R</M>&tgt;<M>^F</M>.
57
<P/>
58
The function returns "true" if <M>K</M> has trivial second homotopy group.
59
In this case it prints: Presentation is aspherical.
60
<P/>
61
Otherwise it returns "fail" and prints: Presentation is NOT piece-wise Euclidean non-positively curved. (In this case <M>K</M> may or may not
62
have trivial second homotopy group. But it is NOT possible to impose a
63
metric on K which restricts to a Euclidean metric on each 2-cell.)
64
<P/>
65
The function uses Polymake software.
66
</Item>
67
</Row>
68
69
<Row>
70
<Item>
71
<Index> PresentationOfResolution</Index>
72
<C>PresentationOfResolution(R) </C>
73
<P/>
74
75
Inputs at least two terms of a reduced <M>ZG</M>-resolution <M>R</M>
76
and returns a record <M>P</M> with components
77
<List>
78
<Item>
79
<M>P.freeGroup</M> is a free group <M>F</M>,
80
</Item>
81
<Item>
82
<M>P.relators</M> is a list <M>S</M> of words in <M>F</M>,
83
</Item>
84
<Item>
85
<M>P.gens</M> is a list of positive integers such that the <M>i</M>-th generator of the presentation corresponds to the group element R!.elts[P[i]] .
86
</Item>
87
88
</List>
89
where <M>G</M> is isomorphic to <M>F</M>
90
modulo the normal closure of <M>S</M>.
91
This presentation for <M>G</M> corresponds to the
92
2-skeleton of the classifying CW-space from which <M>R</M>
93
was constructed. The resolution <M>R</M> requires no contracting
94
homotopy.
95
</Item>
96
</Row>
97
98
99
<Row>
100
<Item>
101
<Index> TorsionGeneratorsAbelianGroup</Index>
102
<C>TorsionGeneratorsAbelianGroup(G) </C>
103
<P/>
104
105
Inputs an abelian group <M>G</M> and returns a generating set
106
<M>[x_1, \ldots ,x_n]</M> where no pair of generators
107
have coprime orders.
108
</Item>
109
</Row>
110
111
</Table>
112
</Chapter>
113
114
115
116