Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Cohomology ring structure</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index> IntegralCupProduct7</Index>8<C>IntegralCupProduct(R,u,v,p,q) </C>9<C> IntegralCupProduct(R,u,v,p,q,P,Q,N) </C>10<P/>11(Various functions used to construct the cup product12are also <URL Text="available"> CR_functions.html</URL>.)13<P/>1415Inputs a <M>ZG</M>-resolution <M>R</M>, a vector <M>u</M> representing an16element in <M>H^p(G,Z)</M>, a vector <M>v</M> representing an element in17<M>H^q(G,Z)</M> and the two integers <M>p,q</M> &tgt;<M> 0</M>.18It returns a vector <M>w</M> representing the cup product <M>u\cdot v</M>19in <M>H^{p+q}(G,Z)</M>. This product is associative and20<M>u\cdot v = (-1)pqv\cdot u</M> .21It provides <M>H^\ast(G,Z)</M> with the structure of an22anti-commutative graded ring. This function implements the23cup product for24characteristic 0 only.25<P/>26The resolution <M>R</M> needs a contracting homotopy.27<P/>28To save the function from having to calculate the abelian groups29<M>H^n(G,Z)</M> additional input variables can be used in the form30<M>IntegralCupProduct(R,u,v,p,q,P,Q,N)</M> , where3132<List>33<Item>34<M>P</M> is the output of the command <M>CR_CocyclesAndCoboundaries(R,p,true)</M>35</Item>36<Item>37<M>Q</M> is the output of the command <M>CR_CocyclesAndCoboundaries(R,q,true)</M></Item>38<Item><M>N</M> is the output of the command39<M>CR_CocyclesAndCoboundaries(R,p+q,true)</M> .40</Item>41</List>42</Item>43</Row>4445<Row>46<Item>47<Index> IntegralRingGenerators</Index>48<C>IntegralRingGenerators(R,n) </C>49<P/>5051Inputs at least <M>n+1</M> terms of a <M>ZG</M>-resolution and integer52<M>n</M>&tgt; <M>0</M>. It returns a minimal list of cohomology classes in53<M>H^n(G,Z)</M> which, together with all cup products of lower degree54classes, generate the group <M>H^n(G,Z)</M> .55<P/>56(Let <M>a_i</M> be the <M>i</M>-th canonical generator of the57<M>d</M>-generator abelian group <M>H^n(G,Z)</M>. The cohomology class58<M>n_1a_1 + ... +n_da_d</M> is represented by the integer vector59<M>u=(n_1, ..., n_d)</M>. )60</Item>61</Row>6263<Row>64<Item>65<Index> ModPCohomologyGenerators</Index>66<C>ModPCohomologyGenerators(G,n) </C>67<C>ModPCohomologyGenerators(R) </C>68<P/>6970Inputs either a <M>p</M>-group <M>G</M> and positive integer <M>n</M>, or71else <M>n</M> terms of a minimal <M>Z_pG</M>-resolution <M>R</M> of <M>Z_p</M>.72It returns a pair whose first entry is a minimal set of homogeneous generators for73the cohomology ring <M>A=H^*(G,Z_p)</M> modulo all elements74in degree greater than <M>n</M>. The second entry of the pair is a function <M>deg</M> which, when applied to a minimal generator, yields its degree.75<P/>76WARNING: the following rule must be applied when multiplying generators <M>x_i</M>77together. Only products of the form <M>x_1*(x_2*(x_3*(x_4*...)))</M> with <M>deg(x_i) \le deg(x_{i+1})</M> should be computed (since the78<M>x_i</M> belong to a structure constant algebra with only a partially79defined structure constants table).8081</Item>82</Row>8384<Row>85<Item>86<Index> ModPCohomologyRing</Index>87<C>ModPCohomologyRing(G,n) </C>88<C>ModPCohomologyRing(G,n,level) </C>89<C>ModPCohomologyRing(R) </C>90<C>ModPCohomologyRing(R,level)</C>91<P/>929394Inputs either a <M>p</M>-group <M>G</M> and positive integer <M>n</M>, or95else <M>n</M> terms of a minimal <M>Z_pG</M>-resolution <M>R</M> of <M>Z_p</M>.96It returns the cohomology ring <M>A=H^*(G,Z_p)</M> modulo all elements97in degree greater than <M>n</M>.98<P/>99The ring is returned as a structure constant algebra <M>A</M>.100<P/>101The ring <M>A</M> is graded. It has a component <M>A!.degree(x)</M>102which is a function returning the degree of each (homogeneous) element103<M>x</M> in <M>GeneratorsOfAlgebra(A)</M>.104105<P/> An optional input variable "level"106can be set to one of the strings "medium" or "high". These settings107determine parameters in the algorithm. The default setting is "medium".108109<P/> When "level" is set to "high" the ring <M>A</M> is returned with a component <M>A!.niceBasis</M>. This component is a pair <M>[Coeff,Bas]</M>. Here110<M>Bas</M> is a list of integer lists; a "nice" basis for the vector space <M>A</M> can be constructed using the command <M>List(Bas,x->Product(List(x,i->Basis(A)[i]))</M>.111The coefficients of the canonical basis element <M>Basis(A)[i]</M> are stored as <M>Coeff[i]</M>.112113<P/>114If the ring <M>A</M> is computed using the setting "level"="medium" then the component <M>A!.niceBasis</M> can be added to <M>A</M> using the command115<M> A:=ModPCohomologyRing_part_2(A) </M>.116</Item>117</Row>118119120121<Row>122<Item>123<Index> ModPRingGenerators</Index>124<C>ModPRingGenerators(A) </C>125<P/>126127Inputs a mod <M>p</M> cohomology ring <M>A</M>128(created using the preceeding function). It returns a minimal129generating set for the130ring <M>A</M>. Each generator is homogeneous.131</Item>132</Row>133134<Row>135<Item>136<C>Mod2CohomologyRingPresentation(G) </C>137<C>Mod2CohomologyRingPresentation(G,n) </C>138<C>Mod2CohomologyRingPresentation(A) </C>139<C>Mod2CohomologyRingPresentation(R)</C>140141<P/>142143When applied to a finite <M>2</M>-group <M>G</M> this function returns a presentation for the mod 2 cohomology ring <M>H^*(G,Z_2)</M>. The Lyndon-Hochschild-Serre spectral sequence is used to prove that the presentation is correct.144145<P/>146When the function is applied to a <M>2</M>-group <M>G</M> and positive integer <M>n</M> the function first constructs <M>n</M> terms of a free <M>Z_2G</M>-resolution <M>R</M>, then constructs the finite-dimensional graded algebra147<M>A=H^(*\le n)(G,Z_2)</M>, and finally uses <M>A</M> to approximate148a presentation for <M>H^*(G,Z_2)</M>. For "sufficiently large" the approximation will be a correct presentation for <M>H^*(G,Z_2)</M>.149150<P/> Alternatively, the function can be applied directly to either the resolution <M>R</M> or graded algebra <M>A</M>.151152<P/>This function was written by <B>Paul Smith</B>. It uses the Singular commutative algebra package to handle the Lyndon-Hochschild-Serre spectral sequence.153</Item>154</Row>155156157</Table>158</Chapter>159160161162163