CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Simplicial groups</Heading>
2
3
4
<Table Align="|l|" >
5
6
<Row>
7
<Item>
8
<Index>NerveOfCatOneGroup</Index>
9
<C>NerveOfCatOneGroup(G,n)</C>
10
11
12
<P/>
13
Inputs a cat-1-group <M>G</M> and a positive integer <M>n</M>. It returns the
14
low-dimensional part of the nerve of <M>G</M> as a simplicial group of length <M>n</M>.
15
16
<Br/>
17
<Br/>
18
This function applies both to cat-1-groups for which IsHapCatOneGroup(G) is true, and to cat-1-groups produced using the Xmod package.
19
<Br/>
20
<Br/>
21
This function was implemented by <B>Van Luyen Le</B>.
22
</Item>
23
</Row>
24
25
<Row>
26
<Item>
27
<Index>EilenbergMacLaneSimplicialGroup</Index>
28
<C>EilenbergMacLaneSimplicialGroup(G,n,dim)</C>
29
30
31
<P/>
32
Inputs a group <M>G</M>, a positive integer <M>n</M>, and a positive integer <M>dim </M>.
33
The function returns the first <M>1+dim</M> terms of a
34
simplicial group with <M>n-1</M>st homotopy group equal to <M>G</M> and all other homotopy groups equal to zero.
35
36
<Br/>
37
<Br/>
38
This function was implemented by <B>Van Luyen Le</B>.
39
</Item>
40
</Row>
41
42
<Row>
43
<Item>
44
<Index>EilenbergMacLaneSimplicialGroupMap</Index>
45
<C>EilenbergMacLaneSimplicialGroupMap(f,n,dim)</C>
46
47
48
<P/>
49
Inputs a group homomorphism <M>f:G\rightarrow Q</M>, a positive integer <M>n</M>, and a positive integer <M>dim </M>.
50
The function returns the first <M>1+dim</M> terms of a
51
simplicial group homomorphism <M>f:K(G,n) \rightarrow K(Q,n)</M> of Eilenberg-MacLane simplicial groups.
52
53
<Br/>
54
<Br/>
55
This function was implemented by <B>Van Luyen Le</B>.
56
</Item>
57
</Row>
58
59
<Row>
60
<Item>
61
<Index>MooreComplex</Index>
62
<C>MooreComplex(G)</C>
63
64
65
<P/>
66
Inputs a simplicial group <M>G</M> and returns its Moore complex as a <M>G</M>-complex.
67
68
69
<Br/>
70
<Br/>
71
This function was implemented by <B>Van Luyen Le</B>.
72
</Item>
73
</Row>
74
75
<Row>
76
<Item>
77
<Index>ChainComplexOfSimplicialGroup</Index>
78
<C>ChainComplexOfSimplicialGroup(G)</C>
79
80
81
<P/>
82
Inputs a simplicial group <M>G</M> and returns the cellular chain complex <M>C</M> of a CW-space <M>X</M> represented by the homotopy type of the simplicial group.
83
Thus the homology groups of <M>C</M> are the integral homology groups of <M>X</M>.
84
85
86
<Br/>
87
<Br/>
88
This function was implemented by <B>Van Luyen Le</B>.
89
</Item>
90
</Row>
91
92
<Row>
93
<Item>
94
<Index>SimplicialGroupMap</Index>
95
<C>SimplicialGroupMap(f)</C>
96
97
98
<P/>
99
Inputs a homomorphism <M>f:G\rightarrow Q</M> of simplicial groups.
100
The function returns an induced map
101
<M>f:C(G) \rightarrow C(Q)</M> of chain complexes whose homology is the integral homology of the simplicial group G and Q respectively.
102
103
<Br/>
104
<Br/>
105
This function was implemented by <B>Van Luyen Le</B>.
106
</Item>
107
</Row>
108
109
110
<Row>
111
<Item>
112
<Index>HomotopyGroup</Index>
113
<C>HomotopyGroup(G,n)</C>
114
115
116
<P/>
117
Inputs a simplicial group <M>G</M> and a positive integer <M>n</M>. The integer <M>n</M> must be less than the length of <M>G</M>. It
118
returns, as a group, the (n)-th homology group of its Moore complex. Thus HomotopyGroup(G,0) returns the "fundamental group" of <M>G</M>.
119
120
</Item>
121
</Row>
122
123
124
<Row>
125
<Item>
126
<Index>Bar Resolution</Index>
127
<C>Representation of elements in the bar resolution</C>
128
129
130
<P/>
131
For a group G we denote by <M>B_n(G)</M> the free <M>\mathbb ZG</M>-module with basis the lists <M>[g_1 | g_2 | ... | g_n]</M> where the <M>g_i</M> range over <M>G</M>.
132
133
<Br/>
134
<Br/>
135
We represent a word
136
137
<Br/>
138
<Br/>
139
140
<M>w = h_1.[g_{11} | g_{12} | ... | g_{1n}] - h_2.[g_{21} | g_{22} | ... | g_{2n}] + ... + h_k.[g_{k1} | g_{k2} | ... | g_{kn}] </M>
141
142
<Br/>
143
<Br/>
144
145
in <M>B_n(G)</M> as a list of lists:
146
147
<Br/>
148
<Br/>
149
<M> [ [+1,h_1,g_{11} , g_{12} , ... , g_{1n}] , [-1, h_2,g_{21} , g_{22} , ... | g_{2n}] + ... + [+1, h_k,g_{k1} , g_{k2} , ... , g_{kn}] </M>.
150
151
</Item>
152
</Row>
153
154
<Row>
155
<Item>
156
<Index>BarResolutionBoundary</Index>
157
<C>BarResolutionBoundary(w)</C>
158
159
160
<P/>
161
This function inputs a word <M>w</M> in the bar resolution module
162
<M>B_n(G)</M>
163
and returns its image under the boundary homomorphism <M>d_n\colon B_n(G) \rightarrow B_{n-1}(G)</M> in the bar resolution.
164
165
<Br/>
166
<Br/>
167
This function was implemented by <B>Van Luyen Le</B>.
168
</Item>
169
</Row>
170
171
172
<Row>
173
<Item>
174
<Index>BarResolutionHomotopy</Index>
175
<C>BarResolutionHomotopy(w)</C>
176
177
178
<P/>
179
This function inputs a word <M>w</M> in the bar resolution module
180
<M>B_n(G)</M>
181
and returns its image under the contracting homotopy
182
<M>h_n\colon B_n(G) \rightarrow B_{n+1}(G)</M> in the bar resolution.
183
184
<Br/>
185
<Br/>
186
This function is currently being implemented by <B>Van Luyen Le</B>.
187
</Item>
188
</Row>
189
190
<Row>
191
<Item>
192
<Index>Bar Complex</Index>
193
<C>Representation of elements in the bar complex</C>
194
195
196
<P/>
197
For a group G we denote by <M>BC_n(G)</M> the free abelian group with basis the lists <M>[g_1 | g_2 | ... | g_n]</M> where the <M>g_i</M> range over <M>G</M>.
198
199
<Br/>
200
<Br/>
201
We represent a word
202
203
<Br/>
204
<Br/>
205
206
<M>w = [g_{11} | g_{12} | ... | g_{1n}] - [g_{21} | g_{22} | ... | g_{2n}] + ... + [g_{k1} | g_{k2} | ... | g_{kn}] </M>
207
208
<Br/>
209
<Br/>
210
211
in <M>BC_n(G)</M> as a list of lists:
212
213
<Br/>
214
<Br/>
215
<M> [ [+1,g_{11} , g_{12} , ... , g_{1n}] , [-1, g_{21} , g_{22} , ... | g_{2n}] + ... + [+1, g_{k1} , g_{k2} , ... , g_{kn}] </M>.
216
217
</Item>
218
</Row>
219
220
<Row>
221
<Item>
222
<Index>BarComplexBoundary</Index>
223
<C>BarComplexBoundary(w)</C>
224
225
226
<P/>
227
This function inputs a word <M>w</M> in the n-th term of the bar complex
228
<M>BC_n(G)</M>
229
and returns its image under the boundary homomorphism <M>d_n\colon BC_n(G) \rightarrow BC_{n-1}(G)</M> in the bar complex.
230
231
<Br/>
232
<Br/>
233
This function was implemented by <B>Van Luyen Le</B>.
234
</Item>
235
</Row>
236
237
<Row>
238
<Item>
239
<Index>BarResolutionEquivalence</Index>
240
<C>BarResolutionEquivalence(R)</C>
241
242
243
<P/>
244
This function inputs a free <M>ZG</M>-resolution <M>R</M>. It
245
returns a component object HE with components
246
247
<List>
248
<Item> HE!.phi(n,w) is a function which inputs a non-negative integer <M>n</M> and a word <M>w</M> in <M>B_n(G)</M>. It returns the image of <M>w</M>
249
in <M>R_n</M> under a chain equivalence <M>\phi\colon B_n(G) \rightarrow R_n</M>.</Item>
250
<Item> HE!.psi(n,w) is a function which inputs a non-negative integer <M>n</M> and a word <M>w</M> in <M>R_n</M>. It returns the image of <M>w</M> in <M>B_n(G)</M> under a chain equivalence <M>\psi\colon R_n \rightarrow B_n(G)</M>.</Item>
251
<Item> HE!.equiv(n,w) is a function which inputs a non-negative integer <M>n</M> and a word <M>w</M> in <M>B_n(G)</M>. It returns the image of <M>w</M>
252
in <M>B_{n+1}(G)</M> under a <M>ZG</M>-equivariant homomorphism
253
<Br/>
254
<Br/>
255
<M>equiv(n,-) \colon B_n(G) \rightarrow B_{n+1}(G)</M>
256
<Br/>
257
<Br/>
258
satisfying
259
260
261
<Display>w - \psi ( \phi (w)) = d(n+1, equiv(n,w)) + equiv(n-1,d(n,w)) .
262
</Display>
263
264
where <M>d(n,-)\colon B_n(G) \rightarrow B_{n-1}(G)</M> is the boundary homomorphism in the bar resolution.
265
</Item>
266
</List>
267
268
This function was implemented by <B>Van Luyen Le</B>.
269
</Item>
270
</Row>
271
272
<Row>
273
<Item>
274
<Index>BarComplexEquivalence</Index>
275
<C>BarComplexEquivalence(R)</C>
276
277
278
<P/>
279
This function inputs a free <M>ZG</M>-resolution <M>R</M>. It first constructs the chain complex
280
<M>T=TensorWithIntegerts(R)</M>. The function
281
returns a component object HE with components
282
283
<List>
284
<Item> HE!.phi(n,w) is a function which inputs a non-negative integer <M>n</M> and a word <M>w</M> in <M>BC_n(G)</M>. It returns the image of <M>w</M>
285
in <M>T_n</M> under a chain equivalence <M>\phi\colon BC_n(G) \rightarrow T_n</M>.</Item>
286
<Item> HE!.psi(n,w) is a function which inputs a non-negative integer <M>n</M> and an element
287
<M>w</M> in <M>T_n</M>. It returns the image of <M>w</M> in <M>BC_n(G)</M> under a chain equivalence <M>\psi\colon T_n \rightarrow BC_n(G)</M>.</Item>
288
<Item> HE!.equiv(n,w) is a function which inputs a non-negative integer <M>n</M> and a word <M>w</M> in <M>BC_n(G)</M>. It returns the image of <M>w</M>
289
in <M>BC_{n+1}(G)</M> under a homomorphism
290
<Br/>
291
<Br/>
292
<M>equiv(n,-) \colon BC_n(G) \rightarrow BC_{n+1}(G)</M>
293
<Br/>
294
<Br/>
295
satisfying
296
297
298
<Display>w - \psi ( \phi (w)) = d(n+1, equiv(n,w)) + equiv(n-1,d(n,w)) .
299
</Display>
300
301
where <M>d(n,-)\colon BC_n(G) \rightarrow BC_{n-1}(G)</M> is the boundary homomorphism in the bar complex.
302
</Item>
303
</List>
304
305
This function was implemented by <B>Van Luyen Le</B>.
306
</Item>
307
</Row>
308
309
<Row>
310
<Item>
311
<Index>Bar Cocomplex</Index>
312
<C>Representation of elements in the bar cocomplex</C>
313
314
315
<P/>
316
For a group G we denote by <M>BC^n(G)</M> the free abelian group with basis the lists <M>[g_1 | g_2 | ... | g_n]</M> where the <M>g_i</M> range over <M>G</M>.
317
318
<Br/>
319
<Br/>
320
We represent a word
321
322
<Br/>
323
<Br/>
324
325
<M>w = [g_{11} | g_{12} | ... | g_{1n}] - [g_{21} | g_{22} | ... | g_{2n}] + ... + [g_{k1} | g_{k2} | ... | g_{kn}] </M>
326
327
<Br/>
328
<Br/>
329
330
in <M>BC^n(G)</M> as a list of lists:
331
332
<Br/>
333
<Br/>
334
<M> [ [+1,g_{11} , g_{12} , ... , g_{1n}] , [-1, g_{21} , g_{22} , ... | g_{2n}] + ... + [+1, g_{k1} , g_{k2} , ... , g_{kn}] </M>.
335
336
</Item>
337
</Row>
338
339
<Row>
340
<Item>
341
<Index>BarCocomplexCoboundary</Index>
342
<C>BarCocomplexCoboundary(w)</C>
343
344
345
<P/>
346
This function inputs a word <M>w</M> in the n-th term of the bar cocomplex
347
<M>BC^n(G)</M>
348
and returns its image under the coboundary homomorphism <M>d^n\colon BC^n(G) \rightarrow BC^{n+1}(G)</M> in the bar cocomplex.
349
<Br/>
350
<Br/>
351
This function was implemented by <B>Van Luyen Le</B>.
352
</Item>
353
</Row>
354
355
356
357
</Table>
358
</Chapter>
359
360
361
362