Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384################################################# ################################################# InstallGlobalFunction(CrossedInvariant, function(G,CC) local C, eta, pi1, pi2, homs, liftedhoms, delta, gensF, gensG, imgens, S,T, M, L, P, F, f, ff, r, m, x,g,Nf, Md, relsG, cnt, cnthom, cntrel, cntden,U; if not IsFpGroup(G) then Print("First argument must be an fp group.\n"); return fail; fi; if not (IsHapCatOneGroup(CC) or IsHapCrossedModule(CC)) then Print("Second argument must be a crossed module or a cat-1-group.\n"); return fail; fi; if IsHapCrossedModule(CC) then C:=CatOneGroupByCrossedModule(CC);; else C:=CC; fi; S:=C!.sourceMap; #S:U-->U T:=C!.targetMap; #T:U-->U U:=Source(S); P:=Image(S); M:=Kernel(S); delta:=GroupHomomorphismByFunction(M,P,x->Image(T,x)); eta:=NaturalHomomorphismByNormalSubgroup(P,Image(delta)); pi1:=Target(eta); pi2:=HomotopyGroup(C,2); homs:=AllHomomorphisms(G,pi1); liftedhoms:=[]; F:=FreeGroupOfFpGroup(G); gensF:=GeneratorsOfGroup(F); gensG:=GeneratorsOfGroup(G); relsG:=RelatorsOfFpGroup(G); cnt:=0; Md:=List([1..Length(gensF)],i->pi2); Md:=Cartesian(Md); for f in homs do imgens:=List(gensG, x->Image(f,x)); imgens:=List(imgens,x->PreImagesRepresentative(eta,x)); ff:=GroupHomomorphismByImages(F,P,gensF,imgens); Add(liftedhoms,ff); od; for f in liftedhoms do ###################### cnthom:=[]; for r in relsG do cntrel:=0; for m in M do if Image(delta,m)=Image(f,r) then cntrel:=cntrel+1; fi; od; Add(cnthom,cntrel); od; Nf:=Product(cnthom);# number of morphisms G-->C over f:F-->P cntden:=0; for x in Md do imgens:=List([1..Length(gensF)],i->x[i]*Image(f,gensF[i])); g:=GroupHomomorphismByImages(F,U,gensF,imgens); L:=List(relsG,r->Image(g,r)); L:=List(L,y->y*Image(S,y)^-1); L:=List(L,Order); if SSortedList(L)=[1] then cntden:=cntden+1; fi; od; if not IsInt(Nf/cntden) then Print("PROBLEM\n\n"); fi; cnt:=cnt+(Nf/cntden); ###################### od; return cnt; end); ################################################# #################################################