Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384#The method HAP_EquivalenceClasses is taken from the ResClasses package by Stefann Kohl ########################################################### ########################################################### InstallOtherMethod( HAP_EquivalenceClasses, "for a list and a relation or a class invariant (RCWA)", ReturnTrue, [ IsList, IsFunction ], 0, function ( list, relation ) local classes, invs, longestfirst, byinvs, elm, pos, inserted, count; if IsEmpty(list) then return []; fi; longestfirst := function(c1,c2) return Length(c1) > Length(c2); end; byinvs := function(c1,c2) return relation(c1[1]) < relation(c2[1]); end; classes := [[list[1]]]; count := 0; for elm in list{[2..Length(list)]} do inserted := false; count := count + 1; for pos in [1..Length(classes)] do if relation(elm,classes[pos][1]) then Add(classes[pos],elm); inserted := true; break; fi; od; if not inserted then classes := Concatenation(classes,[[elm]]); fi; if count mod 100 = 0 # rough performance heuristics ... then Sort(classes,longestfirst); fi; od; Sort(classes,longestfirst); return classes; end ); ########################################################### ########################################################### ############################################# ############################################# GroupIsomorphismRepresentatives:=function(arg) local L,C,D,inv,G,d,x,AreIsomorphic,bool; L:=arg[1]; if Length(arg)>1 then bool:=true; else bool:=false; fi; # Here L is a list of groups. The function returns a set of isomorphism # class representatives for L. If bool=true then a possibly redundant list # will be returned. ########### inv:=function(G) if Order(G)<1024 and not Order(G)=512 then return IdGroup(G); fi; return G; end; ########### D:=Classify(L,inv); if bool then return List(D,c->c[1]);; fi; #A possibly redundant #list will be returned. ############# AreIsomorphic:=function(H) if IsomorphismGroups(G,H)=fail then return false; else return true; fi; end; ############# C:=[]; for d in D do x:=HAP_EquivalenceClasses(d,AreIsomorphic); Append(C,x); od; return C; end; ############################################# ############################################# ############################################# ############################################# StemGroups:=function(G) # Inputs a group G and returns a list of stem groups, # one in each isoclinism class. local S, ZS, DS, M, L, stems, lems, stems1, pos, pos1, K, SS, Aut, Inn,fn, x,n,m; if Order(Epicentre(G))>1 then Print("This function can only be applied to central factor groups.\n"); return fail; fi; S:=SchurCover(G); ZS:=Center(S); DS:=DerivedSubgroup(S); M:=Intersection(ZS,DS); L:=SubgroupsSolvableGroup(M); lems:=[]; stems:=[]; for K in L do SS:=S/K; if IdGroup(SS/Center(SS))=IdGroup(G) then Add(stems,SS); Add(lems,K); fi; od; stems:=GroupIsomorphismRepresentatives(stems,"with possible redundancies"); stems:=IsoclinismClasses(stems); fn:=function(x,y); return Order(x)<Order(y); end; for x in stems do Sort(x,fn); od; stems:=List(stems,x->x[1]); return stems; end; ############################################# #############################################