Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384####################################################### ####################################################### InstallGlobalFunction(HAPRegularCWPolytope, function(points) local polytope, H, ind, Boundaries, n, i, x, Y; polytope:=CreatePolymakeObject(); AppendPointlistToPolymakeObject(polytope,points); H:=PolymakeFaceLattice(polytope,true); H:=H{[1..Length(H)-1]}; #H:=Reversed(H); ind:=List(H,h->Minimum(Flat(h))); for n in [1..Length(ind)] do H[n]:=H[n]-ind[n]+1; od; #ind:=List(H{[2..Length(H)]},h->Length(h)); ind:=List(H,h->Length(h)); ########################################################## Boundaries:=[]; Boundaries[1]:=List([1..ind[1]],x->[1,0]); for n in [2..Length(ind)] do Boundaries[n]:=List([1..ind[n]],x->[]); for x in [1..Length(H[n-1])] do for i in H[n-1][x] do Add(Boundaries[n][i],x); od; od; Boundaries[n]:=List(Boundaries[n],b->Concatenation([Length(b)],SSortedList(b))); od; Boundaries[n+1]:=[Concatenation([ind[n]],[1..ind[n]])]; Boundaries[n+2]:=[]; ########################################################## Y:=RegularCWComplex(Boundaries); OrientRegularCWComplex(Y); return Y; end); ####################################################### ####################################################### ####################################################### ####################################################### InstallGlobalFunction(RegularCWOrbitPolytope, function(G,v) local points; if IsPermGroup(G) then points:=Orbit(G,v,Permuted);; fi; if IsMatrixGroup(G) then points:=Orbit(G,v,OnRight);; fi; return RegularCWPolytope(points); end); ####################################################### #######################################################