Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384#(C) Graham Ellis ################################################################## ################################################################## InstallGlobalFunction(SimplicialComplexToRegularCWComplex, function(arg) local K,DM,NrCells,Boundaries,tmp,TMP,Coboundaries,Properties, Orientation, cnt,b,bb,k,n,s,x,i,j,dim ; K:=arg[1]; if Length(arg)>1 then dim:=arg[2]; else dim:=Dimension(K); fi; #################### NrCells:=function(n); if n>dim then return 0; fi; return Length(Filtered(Boundaries[n+1],x->not x[1]=0)); end; #################### #dim:=Dimension(K); Properties:=[["dimension",dim]]; ############################# Orientation:=[]; Orientation[1]:=ListWithIdenticalEntries(K!.nrSimplices(0),[1]); for n in [1..dim] do tmp:=[]; for i in [1..n+1] do Add(tmp,(-1)^(i+1)); od; Orientation[n+1]:=ListWithIdenticalEntries(K!.nrSimplices(n),tmp); od; ############################# ### BOUNDARIES BEGIN ###################### Boundaries:=[]; #Boundaries[n+1] contains the info on n-cells Boundaries[1]:=List([1..K!.nrSimplices(0)],x->[1,0]); ##We denote by 0 the unique vertex in dimension -1. for n in [1..dim] do Boundaries[n+1]:=[]; tmp:=List(Boundaries[1],x->[]); TMP:=List(Boundaries[1],x->[]); cnt:=0; for s in K!.simplicesLst[n] do cnt:=cnt+1; Add(tmp[s[1]],s); Add(TMP[s[1]],cnt); od; for k in [1..K!.nrSimplices(n)] do bb:=K!.simplices(n,k); bb:=SSortedList(bb); b:=List(bb,x-> Difference(bb,[x]) ); Apply(b,x-> TMP[x[1]][Position(tmp[x[1]],x)] ); Boundaries[n+1][k]:=Concatenation([Length(b)],b); od; od; Boundaries[dim+2]:=[]; ### BOUNDARIES END ############################### ### COBOUNDARIES BEGIN ###################### Coboundaries:=[];; #Coboundaries[n+1] contains the info on n-cells. for n in [0..dim] do k:=n+3; Coboundaries[n+1]:=List(Boundaries[n+1],i->[0]); for j in [1..Length(Boundaries[n+2])] do b:=Boundaries[n+2][j]; for i in b{[2..k]} do Coboundaries[n+1][i][1]:=Coboundaries[n+1][i][1]+1; Add(Coboundaries[n+1][i],j); od; od; #for b in Coboundaries[n+1] do #Append(b,List([1..Length(b)-1],a->1)); #od; od; Coboundaries[dim+1]:=List(Boundaries[dim+1],a->[0]); ### COBOUNDARIES END ############################### return Objectify(HapRegularCWComplex, rec( nrCells:=NrCells, boundaries:=Boundaries, coboundaries:=Coboundaries, orientation:=Orientation, vectorField:=fail, inverseVectorField:=fail, criticalCells:=fail, properties:=Properties)); end); ################################################################## ################################################################## ############################################# ############################################# InstallOtherMethod(Dimension, "Dimension of regular CW-complex", [IsHapRegularCWComplex], function(f) return EvaluateProperty(f,"dimension"); return EvaluateProperty(f,"dimension"); end); ############################################# ############################################# ############################################# ############################################# InstallGlobalFunction(HAPContractRegularCWComplex, function(Y) local Contract, nn, dim, bool, BOOL, FREE; ############################################# ##### The work-horse function.############### Contract:=function(n) local b, C, i, j, t, cob, pos, bool, Free, UBoundaries, UCoboundaries, MBoundaries, MCoboundaries, LCoboundaries, U; #This function removes pairs of n- and (n+1)-cells if possible. #U=Upper, M=Middle and L=Lower dimensional cells. #################### #################### if Y!.vectorField=fail then Y!.vectorField:=List([1..Dimension(Y)],i->[]); Y!.inverseVectorField:=List([1..Dimension(Y)],i->[]); Y!.bnd:=StructuralCopy(Y!.boundaries); Y!.cobnd:=StructuralCopy(Y!.coboundaries); fi; #################### #################### MCoboundaries:=Y!.cobnd[n+1]; MBoundaries:=Y!.bnd[n+1]; UCoboundaries:=Y!.cobnd[n+2]; UBoundaries:=Y!.bnd[n+2]; if n>0 then LCoboundaries:=Y!.cobnd[n]; fi; C:=Length(MCoboundaries); ####################### #######################THIS TAKES ALL THE TIME if not IsBound(FREE) then FREE:=[1..C]; fi; Free:=[]; for i in FREE do if MCoboundaries[i][1]=1 then Add(Free,i);fi; od; #Print([Length(FREE),Length(Free)]," "); if Length(Free)=0 then Unbind(FREE); return false;fi; ####################### ####################### for i in Free do if MCoboundaries[i][1]=1 then Y!.vectorField[n+1][MCoboundaries[i][2]]:=i; Y!.inverseVectorField[n+1][i]:=MCoboundaries[i][2]; ### if n>0 then b:=MBoundaries[i]; for j in StructuralCopy(b{[2..1+b[1]]}) do t:=LCoboundaries[j][1]; LCoboundaries[j][1]:=LCoboundaries[j][1]-1; cob:=LCoboundaries[j]; pos:=Position(cob{[2..t+1]},i); LCoboundaries[j]:=Concatenation(cob{[1..pos]},cob{[2+pos..Length(cob)]}); od; fi; ### U:=MCoboundaries[i][2]; b:=UBoundaries[U]; for j in StructuralCopy(b{[2..1+b[1]]}) do t:=MCoboundaries[j][1]; MCoboundaries[j][1]:=MCoboundaries[j][1]-1; if t=2 then Add(Free,j);fi;############################ADDED cob:=MCoboundaries[j]; pos:=Position(cob{[2..t+1]},U); MCoboundaries[j]:=Concatenation(cob{[1..pos]},cob{[2+pos..Length(cob)]}); od; ### MBoundaries[i]:=[0]; UBoundaries[U]:=[0]; UCoboundaries[U]:=[0]; MCoboundaries[i]:=[0]; fi; od; Y!.bnd[n+2]:=UBoundaries; Y!.cobnd[n+2]:=UCoboundaries; Y!.bnd[n+1]:=MBoundaries; Y!.cobnd[n+1]:=MCoboundaries; if n>0 then Y!.cobnd[n]:=LCoboundaries; fi; Y!.nrCells:=function(k); if k>EvaluateProperty(Y,"dimension") then return 0; fi; return Length(Filtered(Y!.bnd[k+1],x->not x[1]=0)); end; if Length(Free)>0 then FREE:=Free; return true; else Unbind(FREE); return false; fi; end; ####End of work-horse function.############# ############################################ dim:=EvaluateProperty(Y,"dimension"); bool:=true; BOOL:=true; nn:=dim-1; while BOOL or nn>0 do BOOL:=false; for nn in Reversed([0..dim-1]) do while bool do bool:=Contract(nn); if bool=true then BOOL:=true; fi; od; bool:=true; od; od; end); ############################################ ############################################ ##################################################################### ##################################################################### InstallOtherMethod(Size, "Volume of a regular CW-complex", [IsHapRegularCWComplex], function(Y) return Sum(List( [1..Length(Y!.boundaries)],i->Y!.nrCells(i-1))); end); ##################################################################### ##################################################################### ##################################################################### ##################################################################### InstallGlobalFunction(HAPRemoveCellFromRegularCWComplex, function(Y,dim,n) local bnd, x,tmp, cobnd; #Remove the n-th cell in dimension dim #################### #################### if Y!.vectorField=fail then Y!.vectorField:=List([1..Dimension(Y)],i->[]); Y!.inverseVectorField:=List([1..Dimension(Y)],i->[]); Y!.bnd:=StructuralCopy(Y!.boundaries); Y!.cobnd:=StructuralCopy(Y!.coboundaries); fi; #################### #################### dim:=dim+1; bnd:=Y!.bnd[dim][n]; bnd:=bnd{[2..Length(bnd)]}; Y!.bnd[dim][n]:=[0]; cobnd:=Y!.cobnd[dim][n]; ####Added this loop July 2012 cobnd:=cobnd{[2..Length(cobnd)]}; # for x in cobnd do # tmp:=Y!.bnd[dim+1][x]; # tmp[1]:=tmp[1]-1; # tmp[Position(tmp{[2..Length(tmp)]},n)+1]:=-42; # tmp:=Filtered(tmp,i->not i = -42); # Y!.bnd[dim+1][x]:=tmp; # od; ############## if dim=1 then return [dim-1,n]; fi; for x in bnd do tmp:=Y!.cobnd[dim-1][x]; tmp[1]:=tmp[1]-1; tmp[Position(tmp{[2..Length(tmp)]},n)+1]:=-42; tmp:=Filtered(tmp,i->not i = -42); Y!.cobnd[dim-1][x]:=tmp; if IsBound(Y!.free) then if IsBound(Y!.free[dim-1]) then if tmp[1]=1 then AddSet(Y!.free[dim-1],x); fi; fi; fi; od; return [dim-1,n]; end); ########################################################## ########################################################## ########################################################## ########################################################## InstallGlobalFunction(CriticalCellsOfRegularCWComplex, function(arg) local Y,ContractSpace,cells,dim,c,pos,ppos, b,x, bbooll; Y:=arg[1]; if not Y!.criticalCells=fail then return Y!.criticalCells; fi; ############################## if Length(arg)>1 then cells:=CocriticalCellsOfRegularCWComplex(Y,arg[2]); if arg[2]<EvaluateProperty(Y,"dimension") then Y!.criticalCells:=fail; fi; return cells; fi; ############################## ContractSpace:=HAPContractRegularCWComplex; ####### dim:=0; while true do if Y!.nrCells(dim)=0 then break; fi; dim:=dim+1; od; dim:=dim-1; ####### cells:=[]; ContractSpace(Y); while true do if Sum(List( [1..Length(Y!.bnd)],i->Y!.nrCells(i-1)))=0 then Y!.criticalCells:=cells; Y!.nrCells:=function(k); if k>EvaluateProperty(Y,"dimension") then return 0; fi; return Length(Filtered(Y!.boundaries[k+1],x->not x[1]=0)); end; Unbind(Y!.bnd); Unbind(Y!.cobnd); return cells; fi; pos:=0; while true do pos:=pos+1; ppos:=PositionProperty(Y!.bnd[dim+1]{[pos..Length(Y!.bnd[dim+1])]}, x->x[1]>0); if ppos=fail then dim:=dim-1; break; fi; pos:=pos+ppos-1; ####### ####### if dim=0 then bbooll:=true; else bbooll:=false; for b in Y!.bnd[dim+1][pos]{[2..Length(Y!.bnd[dim+1][pos])]} do if bbooll then break; fi; if Y!.cobnd[dim][b][1]=2 then bbooll:=true; break; fi; od; fi; ####### ####### c:=HAPRemoveCellFromRegularCWComplex(Y,dim,pos); Add(cells,c); if bbooll then ContractSpace(Y); fi; od; od; Y!.criticalCells:=cells; Y!.nrCells:=function(k); if k>EvaluateProperty(Y,"dimension") then return 0; fi; return Length(Filtered(Y!.boundaries[k+1],x->not x[1]=0)); end; Unbind(Y!.bnd); Unbind(Y!.cobnd); return cells; end); ########################################################## ########################################################## ########################################################## ########################################################## InstallGlobalFunction(CubicalComplexToRegularCWComplex, function(arg) local M,dim,C, Properties, Boundaries, Coboundaries, BinLst, LstBin, bnd, Boundary, ArrayValueDim, Orientation, Dimension, n, i, j, k, b, v; M:=arg[1]; if Length(arg)>1 then dim:=arg[2]; else dim:=EvaluateProperty(M,"dimension"); fi; ArrayValueDim:=ArrayValueFunctions(EvaluateProperty(M,"dimension")); C:=ChainComplex(M); BinLst:=C!.coordinateToPosition; LstBin:=C!.positionToCoordinate; Properties:=[["dimension",dim]]; if Length(arg)=1 then Dimension:=C!.dimension; else ### Dimension:=function(n); if n<dim then return C!.dimension(n); else return 0; fi; end; ####### fi; ####################################### Boundary:=function(n,j) local x,poscells,negcells,nn,a,b,cnt; poscells:=[]; negcells:=[]; cnt:=0; nn:=LstBin[n+1][j]; for x in [1..Length(nn)] do if IsEvenInt(nn[x]) then cnt:=cnt+1; a:=StructuralCopy(nn); a[x]:=a[x]+1; b:=StructuralCopy(nn); b[x]:=b[x]-1; if IsOddInt(cnt) then Add(poscells,a); Add(negcells,b); else Add(poscells,b); Add(negcells,a); fi; fi; od; Apply(poscells,x->ArrayValueDim(BinLst,x)); Apply(negcells,x->ArrayValueDim(BinLst,x)); return [poscells,negcells]; end; ################################ ############################## Boundaries:=[]; Boundaries[1]:=List([1..C!.dimension(0)],x->[1,0]); Orientation:=[]; Orientation[1]:=List([1..C!.dimension(0)],x->[1]); for n in [1..dim] do Boundaries[n+1]:=[]; Orientation[n+1]:=[]; for i in [1..C!.dimension(n)] do v:=StructuralCopy(Boundary(n,i)); bnd:=Concatenation([Length(v[1])+Length(v[2])],Flat(v)); Add(Boundaries[n+1],bnd); Add(Orientation[n+1], Concatenation(List([1..Length(v[1])],a->1),List([1..Length(v[2])],a->-1))); od; od; Boundaries[dim+2]:=[]; ############################## ### COBOUNDARIES BEGIN ###################### Coboundaries:=[];; #Coboundaries[n+1] contains the info on n-cells. for n in [0..dim] do k:=2*(n+1)+1;#k:=1+2^(n+1); Coboundaries[n+1]:=List(Boundaries[n+1],i->[0]); for j in [1..Length(Boundaries[n+2])] do b:=Boundaries[n+2][j]; #k:=Length(b); for i in b{[2..k]} do Coboundaries[n+1][i][1]:=Coboundaries[n+1][i][1]+1; Add(Coboundaries[n+1][i],j); od; od; # for b in Coboundaries[n+1] do # Append(b,List([1..Length(b)-1],a->1)); # od; od; Coboundaries[dim+1]:=List(Boundaries[dim+1],a->[0]); ### COBOUNDARIES END ############################### return Objectify(HapRegularCWComplex, rec( nrCells:=Dimension, boundaries:=Boundaries, coboundaries:=Coboundaries, vectorField:=fail, inverseVectorField:=fail, criticalCells:=fail, orientation:=Orientation, properties:=Properties)); end); ########################################################## ########################################################## ########################################################## ########################################################## InstallGlobalFunction(ChainComplexOfRegularCWComplex, function(Y) local C, Dimension, Boundary, one, zero, n, dim, characteristic; #Dimension:=Y!.nrCells; ########################## Dimension:=function(n); if n<0 then return 0; fi; return Length(Y!.boundaries[n+1]); end; ########################## dim:=EvaluateProperty(Y,"dimension"); zero:=[]; for n in [1..dim+1] do zero[n]:=List([1..Dimension(n-1)],i->0); od; if not IsBound(Y!.orientation) then characteristic:=2; one:=One(GF(2)); ###################### Boundary:=function(n,k) local b,i,j,B; b:=StructuralCopy(zero[n]); B:=Y!.boundaries[n+1][k]; for i in [2..Length(B)] do b[B[i]]:=1; od; return one*b; end; ###################### else characteristic:=0; ###################### Boundary:=function(n,k) local b,i,j,B,sn; b:=StructuralCopy(zero[n]); B:=Y!.boundaries[n+1][k]; sn:=Y!.orientation[n+1][k]; for i in [2..Length(B)] do b[B[i]]:=sn[i-1]; od; return b; end; ###################### fi; return Objectify(HapChainComplex, rec( dimension:=Dimension, boundary:=Boundary, properties:=[ ["length",dim], ["type","chainComplex"], ["characteristic",characteristic]] )); end); ########################################################## ########################################################## ########################################################## ########################################################## InstallGlobalFunction(ChainComplexOfRegularCWComplexWithVectorField, function(arg) local Y, basis, bool, bij,Dimension, Boundary, one, zero, b, n, dim, characteristic, DeformCell,DeformCellSgn, DCSrec, AlgRed; Y:=arg[1]; if Length(arg)=2 then bool:=arg[2]; else bool:=false; fi; ############################################# AlgRed:=function(w) local cnt, tog; cnt:=1; tog:=true; while tog do tog:=false; while cnt<Length(w) do if w[cnt]=-w[cnt+1] then w[cnt]:=0; w[cnt+1]:=0; cnt:=cnt+2; tog:=true; else cnt:=cnt+1; fi; od; w:=Filtered(w,i->not i=0); od; return w; end; ############################################# if not bool then AlgRed:=AlgebraicReduction;fi; dim:=EvaluateProperty(Y,"dimension"); basis:=[]; bij:=[]; for n in [0..dim] do basis[n+1]:=Filtered(CriticalCellsOfRegularCWComplex(Y),x->x[1]=n); Apply(basis[n+1],x->x[2]); bij[n+1]:=[]; for b in [1..Length(basis[n+1])] do bij[n+1][basis[n+1][b]]:=b; od; od; ############################### Dimension:=function(n); return Length(basis[n+1]); end; ############################### zero:=[]; for n in [1..dim+1] do zero[n]:=List([1..Dimension(n-1)],i->0); od; ############################### ############################### DeformCell:=function(n,k) local x,f,bnd,def; #This will return a list of n-cells #into which the k-th n-cell is deformed. if [n,k] in Y!.criticalCells then return [k]; fi; if n>0 then if IsBound(Y!.vectorField[n][k]) then return []; fi; fi; f:=Y!.inverseVectorField[n+1][k]; bnd:=Y!.boundaries[n+2][f]; def:=[]; for x in [2..Length(bnd)] do if not bnd[x]=k then Append(def,DeformCell(n,bnd[x])); fi; od; return def; end; ############################### ############################### DCSrec:=List([1..dim+1],i->[]);; ############################### ############################### DeformCellSgn:=function(n,kk) local sgnn,x,f,k,sgnk,cnt,bnd,def,sn,tog,def1,def2; #This will return a list of signed n-cells #into which the k-th n-cell is deformed. k:=AbsInt(kk); sgnk:=SignInt(kk); if [n,k] in Y!.criticalCells then return [kk]; fi; if n>0 then if IsBound(Y!.vectorField[n][k]) then return []; fi; fi; if IsBound(DCSrec[n+1][k]) then if sgnk=1 then return DCSrec[n+1][k]; else return -Reversed(DCSrec[n+1][k]); fi; fi; f:=Y!.inverseVectorField[n+1][k]; bnd:=Y!.boundaries[n+2][f]; sn:=Y!.orientation[n+2][f]; def:=[]; def1:=[];def2:=[]; for x in [2..Length(bnd)] do if not bnd[x]=k then Add(def1,sn[x-1]*bnd[x]); else sgnn:=sn[x-1]; break; fi; od; cnt:=x+1; for x in [cnt..Length(bnd)] do Add(def2,sn[x-1]*bnd[x]); od; if sgnn=1 then def:=-Concatenation(Reversed(def1),Reversed(def2)); else def:=Concatenation(def2,def1); fi; Apply(def,x->DeformCellSgn(n,x)); def:=Flat(def); Apply(def,x->[x,0]); def:=AlgRed(def); #def:=AlgebraicReduction(def); #ONLY VALID FOR HOMOLOGY, NOT HOMOTOPY Apply(def,x->x[1]); DCSrec[n+1][k]:=def; if sgnk=1 then return def; else return -Reversed(def); fi; end; ############################### ############################### if not IsBound(Y!.orientation) then characteristic:=2; one:=One(GF(2)); ###################### Boundary:=function(n,k) local b,i,j,B; b:=StructuralCopy(zero[n]); B:=Y!.boundaries[n+1][basis[n+1][k]]; B:=B{[2..Length(B)]}; Apply(B,x->DeformCell(n-1,x)); B:=Concatenation(B); Apply(B,i->bij[n][i]); for i in B do b[i]:=b[i]+1; od; return one*b; end; ###################### else characteristic:=0; ###################### Boundary:=function(n,k) local b,i,j,B,sn; b:=StructuralCopy(zero[n]); B:=Y!.boundaries[n+1][basis[n+1][k]]; B:=B{[2..Length(B)]}; sn:=Y!.orientation[n+1][basis[n+1][k]]; B:=List([1..Length(B)],i->sn[i]*B[i]); Apply(B,x->DeformCellSgn(n-1,x)); B:=Concatenation(B); Apply(B,i->SignInt(i)*bij[n][AbsInt(i)]); for i in B do #b[AbsInt(i)]:=b[AbsInt(i)]+SignInt(i)*sn[AbsInt(i)]; b[AbsInt(i)]:=b[AbsInt(i)]+SignInt(i); od; return b; end; ###################### fi; if IsBound(Y!.orientation) then DeformCell:=DeformCellSgn; fi; return Objectify(HapChainComplex, rec( dimension:=Dimension, boundary:=Boundary, deform:=DeformCell, basis:=basis, bij:=bij, properties:=[ ["length",dim], ["type","chainComplex"], ["characteristic",characteristic]] )); end); ########################################################## ########################################################## ########################################################## ########################################################## InstallMethod( ChainComplex, "for regular CW spaces, using discrete vector fields", [IsHapRegularCWComplex], function(arg) local Y,bool; Y:=arg[1]; if Length(arg)=2 then bool:=arg[2]; else bool:=false; fi; CriticalCellsOfRegularCWComplex(Y); return ChainComplexOfRegularCWComplexWithVectorField(Y,bool); end); ########################################################## ########################################################## ########################################################## ########################################################## InstallMethod( SparseChainComplex, "for regular CW spaces, using discrete vector fields", [IsHapRegularCWComplex], function(Y) CriticalCellsOfRegularCWComplex(Y); return SparseChainComplexOfRegularCWComplexWithVectorField(Y); end); ########################################################## ########################################################## ########################################################## ########################################################## InstallOtherMethod( Homology, "Homology of a regular CW spaces, using discrete vector fields", [IsHapRegularCWComplex,IsInt], function(Y,n) local C, H, m, bool; if not IsBound(Y!.orientation) then Print("Can only compute the mod 2 homology as no orientation is available.\n"); fi; m:=Minimum(n+1,Dimension(Y)); bool:=Y!.vectorField=fail or Y!.criticalCells=fail; if bool then if m=Dimension(Y) then CriticalCellsOfRegularCWComplex(Y); else CocriticalCellsOfRegularCWComplex(Y,m); fi; fi; C:=ChainComplex(Y); H:=Homology(C,n); if m<Dimension(Y) and bool then Y!.vectorField:=fail; Y!.criticalCells:=fail; Y!.properties:=Filtered(Y!.properties,x->not x[1]="codim"); fi; return H; end); ########################################################## ########################################################## ########################################################## ########################################################## InstallGlobalFunction(SparseChainComplexOfRegularCWComplex, function(Y) local C, Dimension, Boundary, one, n, dim, characteristic; #Dimension:=Y!.nrCells; ########################## Dimension:=function(n); if n<0 then return 0; fi; return Length(Y!.boundaries[n+1]); end; ########################## dim:=EvaluateProperty(Y,"dimension"); if not IsBound(Y!.orientation) then characteristic:=2; one:=One(GF(2)); ###################### Boundary:=function(n,k) local b,i,j,B; b:=[]; B:=Y!.boundaries[n+1][k]; for i in [2..Length(B)] do Add(b,[B[i],one]); od; return b; end; ###################### else characteristic:=0; ###################### Boundary:=function(n,k) local b,i,j,B,sn; b:=[]; B:=Y!.boundaries[n+1][k]; sn:=Y!.orientation[n+1][k]; for i in [2..Length(B)] do Add(b,[B[i],sn[i-1]]); od; return b; end; ###################### fi; return Objectify(HapSparseChainComplex, rec( dimension:=Dimension, boundary:=Boundary, properties:=[ ["length",dim], ["type","chainComplex"], ["characteristic",characteristic]] )); end); ########################################################## ########################################################## ########################################################## ########################################################## InstallGlobalFunction(SparseChainComplexOfRegularCWComplexWithVectorField, function(Y) local basis, bij,Dimension, Boundary, one, zero, b, n, dim, characteristic, DeformCell,DeformCellSgn; dim:=EvaluateProperty(Y,"dimension"); basis:=[]; bij:=[]; for n in [0..dim] do basis[n+1]:=Filtered(CriticalCellsOfRegularCWComplex(Y),x->x[1]=n); Apply(basis[n+1],x->x[2]); bij[n+1]:=[]; for b in [1..Length(basis[n+1])] do bij[n+1][basis[n+1][b]]:=b; od; od; ############################### Dimension:=function(n); return Length(basis[n+1]); end; ############################### zero:=[]; for n in [1..dim+1] do zero[n]:=List([1..Dimension(n-1)],i->0); od; ############################### ############################### DeformCell:=function(n,k) local x,f,bnd,def; #This will return a list of n-cells #into which the k-th n-cell is deformed. if [n,k] in Y!.criticalCells then return [k]; fi; if n>0 then if IsBound(Y!.vectorField[n][k]) then return []; fi; fi; f:=Y!.inverseVectorField[n+1][k]; bnd:=Y!.boundaries[n+2][f]; def:=[]; for x in [2..Length(bnd)] do if not bnd[x]=k then Append(def,DeformCell(n,bnd[x])); fi; od; return def; end; ############################### ############################### ############################### ############################### DeformCellSgn:=function(n,kk) local sgnn,x,f,k,sgnk,cnt,bnd,def,sn,tog,def1,def2; #This will return a list of signed n-cells #into which the k-th n-cell is deformed. k:=AbsInt(kk); sgnk:=SignInt(kk); if [n,k] in Y!.criticalCells then return [kk]; fi; if n>0 then if IsBound(Y!.vectorField[n][k]) then return []; fi; fi; f:=Y!.inverseVectorField[n+1][k]; bnd:=Y!.boundaries[n+2][f]; sn:=Y!.orientation[n+2][f]; def:=[]; def1:=[];def2:=[]; for x in [2..Length(bnd)] do if not bnd[x]=k then Add(def1,sn[x-1]*bnd[x]); else sgnn:=sn[x-1]; break; fi; od; cnt:=x+1; for x in [cnt..Length(bnd)] do Add(def2,sn[x-1]*bnd[x]); od; if sgnn=1 then def:=-Concatenation(Reversed(def1),Reversed(def2)); else def:=Concatenation(def2,def1); fi; Apply(def,x->DeformCellSgn(n,x)); if sgnk=1 then return Flat(def); else return -Reversed(Flat(def)); fi; end; ############################### ############################### if not IsBound(Y!.orientation) then characteristic:=2; one:=One(GF(2)); ###################### Boundary:=function(n,k) local b,i,j,B; b:=[]; B:=Y!.boundaries[n+1][basis[n+1][k]]; B:=B{[2..Length(B)]}; Apply(B,x->DeformCell(n-1,x)); B:=Concatenation(B); Apply(B,i->bij[n][i]); for i in B do Add(b,[i,one]); #b[i]:=b[i]+1; od; b:=SortedList(b); for i in [1..Length(b)-1] do if b[i][1]=b[i+1][1] then b[i+1][2]:=b[i+1][2]+b[i][2]; b[i][2]:=0; fi; od; b:=Filtered(b,x->not IsZero(x[2])); return b; end; ###################### else characteristic:=0; ###################### Boundary:=function(n,k) local b,i,j,B,sn; b:=[]; B:=Y!.boundaries[n+1][basis[n+1][k]]; B:=B{[2..Length(B)]}; sn:=Y!.orientation[n+1][basis[n+1][k]]; B:=List([1..Length(B)],i->sn[i]*B[i]); Apply(B,x->DeformCellSgn(n-1,x)); B:=Concatenation(B); Apply(B,i->SignInt(i)*bij[n][AbsInt(i)]); for i in B do #b[AbsInt(i)]:=b[AbsInt(i)]+SignInt(i); Add(b,[AbsInt(i),SignInt(i)]); od; b:=SortedList(b); for i in [1..Length(b)-1] do if b[i][1]=b[i+1][1] then b[i+1][2]:=b[i+1][2]+b[i][2]; b[i][2]:=0; fi; od; b:=Filtered(b,x->not IsZero(x[2])); return b; end; ###################### fi; if IsBound(Y!.orientation) then DeformCell:=DeformCellSgn; fi; return Objectify(HapSparseChainComplex, rec( dimension:=Dimension, boundary:=Boundary, deform:=DeformCell, basis:=basis, bij:=bij, properties:=[ ["length",dim], ["type","chainComplex"], ["characteristic",characteristic]] )); end); ########################################################## ##########################################################