GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
#(C) Graham Ellis
######################################
######################################
InstallGlobalFunction(HomotopyTruncation,
function(W,N)
local Y, V, A, n, x, i;
if Dimension(W)=N then
return ContractedComplex(W);
fi;
Y:=1*W!.boundaries{[1..N+2]};
Add(Y,[]);
Y:=RegularCWComplex(Y);
CocriticalCellsOfRegularCWComplex(Y,N+1);
V:=SSortedList(Flat(Y!.vectorField[N+1]));
V:=Filtered([1..Length(Y!.boundaries[N+1])],i-> not i in V);
Y!.boundaries[N+1]:=Y!.boundaries[N+1]{V};
Y!.boundaries[N+2]:=[];
return ContractedComplex(RegularCWComplex(Y!.boundaries));
end);
######################################
######################################
##################################################################
##################################################################
InstallGlobalFunction(SimplicialComplexToRegularCWComplex,
function(arg)
local
K,DM,NrCells,Boundaries,tmp,TMP,Coboundaries,Properties,
Orientation,
cnt,b,bb,k,n,s,x,i,j,dim ;
K:=IntegerSimplicialComplex(arg[1]);
if Length(arg)>1 then dim:=arg[2]; else dim:=Dimension(K); fi;
####################
NrCells:=function(n);
if n>dim then return 0; fi;
return Length(Filtered(Boundaries[n+1],x->not x[1]=0));
end;
####################
#dim:=Dimension(K);
Properties:=[["dimension",dim]];
#############################
Orientation:=[];
#Orientation[1]:=ListWithIdenticalEntries(K!.nrSimplices(0),[1]);
Orientation[1]:=List([1..K!.nrSimplices(0)],i->[1]); #more memory but safer!!
for n in [1..dim] do
tmp:=[];
for i in [1..n+1] do
Add(tmp,(-1)^(i+1));
od;
#Orientation[n+1]:=ListWithIdenticalEntries(K!.nrSimplices(n),tmp);
Orientation[n+1]:=List([1..K!.nrSimplices(n)],i->StructuralCopy(tmp));
od;
#############################
### BOUNDARIES BEGIN ######################
Boundaries:=[]; #Boundaries[n+1] contains the info on n-cells
Boundaries[1]:=List([1..K!.nrSimplices(0)],x->[1,0]);
##We denote by 0 the unique vertex in dimension -1.
for n in [1..dim] do
Boundaries[n+1]:=[];
tmp:=List(Boundaries[1],x->[]);
TMP:=List(Boundaries[1],x->[]);
cnt:=0;
for s in K!.simplicesLst[n] do
cnt:=cnt+1;
Add(tmp[s[1]],s);
Add(TMP[s[1]],cnt);
od;
for k in [1..K!.nrSimplices(n)] do
bb:=K!.simplices(n,k);
bb:=SSortedList(bb);
b:=List(bb,x-> Difference(bb,[x]) );
Apply(b,x-> TMP[x[1]][Position(tmp[x[1]],x)] );
Boundaries[n+1][k]:=Concatenation([Length(b)],b);
od;
od;
Boundaries[dim+2]:=[];
### BOUNDARIES END ###############################
### COBOUNDARIES BEGIN ######################
Coboundaries:=[];; #Coboundaries[n+1] contains the info on n-cells.
for n in [0..dim] do
k:=n+3;
Coboundaries[n+1]:=List(Boundaries[n+1],i->[0]);
for j in [1..Length(Boundaries[n+2])] do
b:=Boundaries[n+2][j];
for i in b{[2..k]} do
Coboundaries[n+1][i][1]:=Coboundaries[n+1][i][1]+1;
Add(Coboundaries[n+1][i],j);
od;
od;
#for b in Coboundaries[n+1] do
#Append(b,List([1..Length(b)-1],a->1));
#od;
od;
Coboundaries[dim+1]:=List(Boundaries[dim+1],a->[0]);
### COBOUNDARIES END ###############################
return Objectify(HapRegularCWComplex,
rec(
nrCells:=NrCells,
boundaries:=Boundaries,
coboundaries:=Coboundaries,
orientation:=Orientation,
vectorField:=fail,
inverseVectorField:=fail,
criticalCells:=fail,
properties:=Properties));
end);
##################################################################
##################################################################
#############################################
#############################################
InstallOtherMethod(Dimension,
"Dimension of regular CW-complex",
[IsHapRegularCWComplex],
function(f) return EvaluateProperty(f,"dimension");
return EvaluateProperty(f,"dimension");
end);
#############################################
#############################################
#############################################
#############################################
InstallGlobalFunction(HAPContractRegularCWComplex,
function(Y)
local
Contract, nn, dim, bool, BOOL, FREE;
#############################################
##### The work-horse function.###############
Contract:=function(n)
local
b, C, i, j, t, cob, pos, bool,
Free, UBoundaries, UCoboundaries,
MBoundaries, MCoboundaries, LCoboundaries, U;
#This function removes pairs of n- and (n+1)-cells if possible.
#U=Upper, M=Middle and L=Lower dimensional cells.
####################
####################
if Y!.vectorField=fail then
Y!.vectorField:=List([1..Dimension(Y)],i->[]);
Y!.inverseVectorField:=List([1..Dimension(Y)],i->[]);
Y!.bnd:=StructuralCopy(Y!.boundaries);
Y!.cobnd:=StructuralCopy(Y!.coboundaries);
fi;
####################
####################
MCoboundaries:=Y!.cobnd[n+1];
MBoundaries:=Y!.bnd[n+1];
UCoboundaries:=Y!.cobnd[n+2];
UBoundaries:=Y!.bnd[n+2];
if n>0 then
LCoboundaries:=Y!.cobnd[n];
fi;
C:=Length(MCoboundaries);
#######################
#######################THIS TAKES ALL THE TIME
if not IsBound(FREE) then FREE:=[1..C]; fi;
Free:=[];
for i in FREE do
if MCoboundaries[i][1]=1 then Add(Free,i);fi;
od;
#Print([Length(FREE),Length(Free)]," ");
if Length(Free)=0 then Unbind(FREE); return false;fi;
#######################
#######################
for i in Free do
if MCoboundaries[i][1]=1 then
Y!.vectorField[n+1][MCoboundaries[i][2]]:=i;
Y!.inverseVectorField[n+1][i]:=MCoboundaries[i][2];
###
if n>0 then
b:=MBoundaries[i];
for j in StructuralCopy(b{[2..1+b[1]]}) do
t:=LCoboundaries[j][1];
LCoboundaries[j][1]:=LCoboundaries[j][1]-1;
cob:=LCoboundaries[j];
pos:=Position(cob{[2..t+1]},i);
LCoboundaries[j]:=Concatenation(cob{[1..pos]},cob{[2+pos..Length(cob)]});
od;
fi;
###
U:=MCoboundaries[i][2];
b:=UBoundaries[U];
for j in StructuralCopy(b{[2..1+b[1]]}) do
t:=MCoboundaries[j][1];
MCoboundaries[j][1]:=MCoboundaries[j][1]-1;
if t=2 then Add(Free,j);fi;############################ADDED
cob:=MCoboundaries[j];
pos:=Position(cob{[2..t+1]},U);
MCoboundaries[j]:=Concatenation(cob{[1..pos]},cob{[2+pos..Length(cob)]});
od;
###
MBoundaries[i]:=[0];
UBoundaries[U]:=[0];
UCoboundaries[U]:=[0];
MCoboundaries[i]:=[0];
fi;
od;
Y!.bnd[n+2]:=UBoundaries;
Y!.cobnd[n+2]:=UCoboundaries;
Y!.bnd[n+1]:=MBoundaries;
Y!.cobnd[n+1]:=MCoboundaries;
if n>0 then
Y!.cobnd[n]:=LCoboundaries;
fi;
Y!.nrCells:=function(k);
if k>EvaluateProperty(Y,"dimension") then return 0; fi;
return Length(Filtered(Y!.bnd[k+1],x->not x[1]=0));
end;
if Length(Free)>0 then FREE:=Free; return true;
else Unbind(FREE); return false; fi;
end;
####End of work-horse function.#############
############################################
dim:=EvaluateProperty(Y,"dimension");
bool:=true;
BOOL:=true;
nn:=dim-1;
while BOOL or nn>0 do
BOOL:=false;
for nn in Reversed([0..dim-1]) do
while bool do
bool:=Contract(nn);
if bool=true then BOOL:=true; fi;
od;
bool:=true;
od;
od;
end);
############################################
############################################
#####################################################################
#####################################################################
InstallOtherMethod(Size,
"Volume of a regular CW-complex",
[IsHapRegularCWComplex],
function(Y) return Sum(List( [1..Length(Y!.boundaries)],i->Y!.nrCells(i-1)));
end);
#####################################################################
#####################################################################
#####################################################################
#####################################################################
InstallGlobalFunction(HAPRemoveCellFromRegularCWComplex,
function(Y,dim,n)
local bnd, x,tmp, cobnd;
#Remove the n-th cell in dimension dim
####################
####################
if Y!.vectorField=fail then
Y!.vectorField:=List([1..Dimension(Y)],i->[]);
Y!.inverseVectorField:=List([1..Dimension(Y)],i->[]);
Y!.bnd:=StructuralCopy(Y!.boundaries);
Y!.cobnd:=StructuralCopy(Y!.coboundaries);
fi;
####################
####################
dim:=dim+1;
bnd:=Y!.bnd[dim][n];
bnd:=bnd{[2..Length(bnd)]};
Y!.bnd[dim][n]:=[0];
cobnd:=Y!.cobnd[dim][n]; ####Added this loop July 2012
cobnd:=cobnd{[2..Length(cobnd)]}; #
for x in cobnd do #
tmp:=Y!.bnd[dim+1][x]; #
tmp[1]:=tmp[1]-1; #
tmp[Position(tmp{[2..Length(tmp)]},n)+1]:=-42; #
tmp:=Filtered(tmp,i->not i = -42); #
Y!.bnd[dim+1][x]:=tmp; #
od; ##############
if dim=1 then return [dim-1,n]; fi;
for x in bnd do
tmp:=Y!.cobnd[dim-1][x];
tmp[1]:=tmp[1]-1;
tmp[Position(tmp{[2..Length(tmp)]},n)+1]:=-42;
tmp:=Filtered(tmp,i->not i = -42);
Y!.cobnd[dim-1][x]:=tmp;
if IsBound(Y!.free) then
if IsBound(Y!.free[dim-1]) then
if tmp[1]=1 then AddSet(Y!.free[dim-1],x); fi;
fi;
fi;
od;
return [dim-1,n];
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallGlobalFunction(CriticalCellsOfRegularCWComplex,
function(arg)
local Y,ContractSpace,cells,dim,c,pos,ppos, b,x, bbooll;
Y:=arg[1];
if not Y!.criticalCells=fail then
return Y!.criticalCells;
fi;
##############################
if Length(arg)>1 then
cells:=CocriticalCellsOfRegularCWComplex(Y,arg[2]);
if arg[2]<EvaluateProperty(Y,"dimension") then
Y!.criticalCells:=fail; fi;
return cells;
fi;
##############################
ContractSpace:=HAPContractRegularCWComplex;
#######
dim:=0;
while true do
if Y!.nrCells(dim)=0 then break; fi;
dim:=dim+1;
od;
dim:=dim-1;
#######
cells:=[];
ContractSpace(Y);
while true do
if
Sum(List( [1..Length(Y!.bnd)],i->Y!.nrCells(i-1)))=0
then
Y!.criticalCells:=cells;
Y!.nrCells:=function(k);
if k>EvaluateProperty(Y,"dimension") then return 0; fi;
return Length(Filtered(Y!.boundaries[k+1],x->not x[1]=0));
end;
Unbind(Y!.bnd);
Unbind(Y!.cobnd);
return cells; fi;
pos:=0;
while true do
pos:=pos+1;
ppos:=PositionProperty(Y!.bnd[dim+1]{[pos..Length(Y!.bnd[dim+1])]}, x->x[1]>0); if ppos=fail then dim:=dim-1; break; fi;
pos:=pos+ppos-1;
#######
#######
if dim=0 then bbooll:=true; else
bbooll:=false;
for b in Y!.bnd[dim+1][pos]{[2..Length(Y!.bnd[dim+1][pos])]} do
if bbooll then break; fi;
if Y!.cobnd[dim][b][1]=2 then bbooll:=true; break; fi;
od;
fi;
#######
#######
c:=HAPRemoveCellFromRegularCWComplex(Y,dim,pos);
Add(cells,c);
if bbooll then
ContractSpace(Y);
fi;
od;
od;
Y!.criticalCells:=cells;
Y!.nrCells:=function(k);
if k>EvaluateProperty(Y,"dimension") then return 0; fi;
return Length(Filtered(Y!.boundaries[k+1],x->not x[1]=0));
end;
Unbind(Y!.bnd);
Unbind(Y!.cobnd);
return cells;
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallGlobalFunction(CubicalComplexToRegularCWComplex,
function(arg)
local M,dim,C, Properties, Boundaries, Coboundaries, BinLst,
LstBin, bnd, Boundary, ArrayValueDim, Orientation,
Dimension, dimm, n, i, j, k, b, v;
M:=arg[1];
if Length(arg)>1 then dim:=arg[2];
else
dim:=EvaluateProperty(M,"dimension");
fi;
ArrayValueDim:=ArrayValueFunctions(EvaluateProperty(M,"dimension"));
C:=ChainComplex(M);
BinLst:=C!.coordinateToPosition;
LstBin:=C!.positionToCoordinate;
dimm:=Position(List([0..dim],i->C!.dimension(i)),0);
if dimm=fail then dimm:=dim; else dimm:=dimm-2; fi;
Properties:=[["dimension", dimm ]];
if Length(arg)=1 then
Dimension:=C!.dimension;
else
###
Dimension:=function(n);
if n<dim then return C!.dimension(n);
else return 0; fi;
end;
#######
fi;
#######################################
Boundary:=function(n,j)
local x,poscells,negcells,nn,a,b,cnt;
poscells:=[];
negcells:=[];
cnt:=0;
nn:=LstBin[n+1][j];
for x in [1..Length(nn)] do
if IsEvenInt(nn[x]) then
cnt:=cnt+1;
a:=StructuralCopy(nn);
a[x]:=a[x]+1;
b:=StructuralCopy(nn);
b[x]:=b[x]-1;
if IsOddInt(cnt) then
Add(poscells,a);
Add(negcells,b);
else
Add(poscells,b);
Add(negcells,a);
fi;
fi;
od;
Apply(poscells,x->ArrayValueDim(BinLst,x));
Apply(negcells,x->ArrayValueDim(BinLst,x));
return [poscells,negcells];
end;
################################
##############################
Boundaries:=[];
Boundaries[1]:=List([1..C!.dimension(0)],x->[1,0]);
Orientation:=[];
Orientation[1]:=List([1..C!.dimension(0)],x->[1]);
for n in [1..dim] do
Boundaries[n+1]:=[];
Orientation[n+1]:=[];
for i in [1..C!.dimension(n)] do
v:=StructuralCopy(Boundary(n,i));
bnd:=Concatenation([Length(v[1])+Length(v[2])],Flat(v));
Add(Boundaries[n+1],bnd);
Add(Orientation[n+1],
Concatenation(List([1..Length(v[1])],a->1),List([1..Length(v[2])],a->-1)));
od;
od;
Boundaries[dim+2]:=[];
##############################
### COBOUNDARIES BEGIN ######################
Coboundaries:=[];; #Coboundaries[n+1] contains the info on n-cells.
for n in [0..dim] do
k:=2*(n+1)+1;#k:=1+2^(n+1);
Coboundaries[n+1]:=List(Boundaries[n+1],i->[0]);
for j in [1..Length(Boundaries[n+2])] do
b:=Boundaries[n+2][j];
#k:=Length(b);
for i in b{[2..k]} do
Coboundaries[n+1][i][1]:=Coboundaries[n+1][i][1]+1;
Add(Coboundaries[n+1][i],j);
od;
od;
# for b in Coboundaries[n+1] do
# Append(b,List([1..Length(b)-1],a->1));
# od;
od;
Coboundaries[dim+1]:=List(Boundaries[dim+1],a->[0]);
### COBOUNDARIES END ###############################
return Objectify(HapRegularCWComplex,
rec(
nrCells:=Dimension,
boundaries:=Boundaries,
coboundaries:=Coboundaries,
vectorField:=fail,
inverseVectorField:=fail,
criticalCells:=fail,
orientation:=Orientation,
coordinateToPosition:=BinLst,
positionToCoordinate:=LstBin,
properties:=Properties));
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallGlobalFunction(ChainComplexOfRegularCWComplex,
function(Y)
local
C, Dimension, Boundary, one, zero, n, dim, characteristic;
dim:=EvaluateProperty(Y,"dimension");
##########################
Dimension:=function(n);
if n<0 or n>dim then return 0; fi;
return Length(Y!.boundaries[n+1]);
end;
##########################
zero:=[];
for n in [1..dim+1] do
zero[n]:=List([1..Dimension(n-1)],i->0);
od;
if not IsBound(Y!.orientation) then
characteristic:=2;
one:=One(GF(2));
######################
Boundary:=function(n,k)
local b,i,j,B;
if n>dim then return [one]; fi;
b:=StructuralCopy(zero[n]);
B:=Y!.boundaries[n+1][k];
for i in [2..Length(B)] do
b[B[i]]:=1;
od;
return one*b;
end;
######################
else
characteristic:=0;
######################
Boundary:=function(n,k)
local b,i,j,B,sn;
b:=StructuralCopy(zero[n]);
B:=Y!.boundaries[n+1][k];
sn:=Y!.orientation[n+1][k];
for i in [2..Length(B)] do
b[B[i]]:=sn[i-1];
od;
return b;
end;
######################
fi;
return
Objectify(HapChainComplex,
rec(
dimension:=Dimension,
boundary:=Boundary,
properties:=[
["length",dim],
["type","chainComplex"],
["characteristic",characteristic]]
));
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallGlobalFunction(ChainComplexOfRegularCWComplexWithVectorField,
function(arg)
local
Y,basis, bool, bij,Dimension, Boundary, one, zero, b, n, dim, characteristic, DeformCell,DeformCellSgn, DeformCellSgnHtpy, HomotopicalDeformCell,
HDCrec, DCSrec, DCSHrec, AlgRed, HtpyRed, BoundaryRec;
Y:=arg[1];
#############################################
HtpyRed:=function(w)
local cnt, tog;
cnt:=1;
tog:=true;
while tog do
tog:=false;
while cnt<Length(w) do
if w[cnt]=-w[cnt+1] then
w[cnt]:=0; w[cnt+1]:=0;
cnt:=cnt+2; tog:=true;
else cnt:=cnt+1;
fi;
od;
w:=Filtered(w,i->not i=0);
od;
return w;
end;
#############################################
AlgRed:=AlgebraicReduction;
dim:=EvaluateProperty(Y,"dimension");
basis:=[];
bij:=[];
for n in [0..dim] do
basis[n+1]:=Filtered(CriticalCellsOfRegularCWComplex(Y),x->x[1]=n);
Apply(basis[n+1],x->x[2]);
bij[n+1]:=[];
for b in [1..Length(basis[n+1])] do
bij[n+1][basis[n+1][b]]:=b;
od;
od;
###############################
Dimension:=function(n);
if IsBound(basis[n+1]) then
return Length(basis[n+1]);
else
return 0; fi;
end;
###############################
zero:=[];
for n in [1..dim+1] do
zero[n]:=List([1..Dimension(n-1)],i->0);
od;
###############################
###############################
DeformCell:=function(n,k)
local x,f,bnd,def; #This will return a list of n-cells
#into which the k-th n-cell is deformed.
if [n,k] in Y!.criticalCells then
return [k];
fi;
if n>0 then
if IsBound(Y!.vectorField[n][k]) then return []; fi;
fi;
f:=Y!.inverseVectorField[n+1][k];
bnd:=Y!.boundaries[n+2][f];
def:=[];
for x in [2..Length(bnd)] do
if not bnd[x]=k then
Append(def,DeformCell(n,bnd[x]));
fi;
od;
return def;
end;
###############################
###############################
DCSrec:=List([1..dim+1],i->[]);;
###############################
###############################
DeformCellSgn:=function(n,kk)
local sgnn,x,f,k,sgnk,cnt,bnd,def,sn,tog,def1,def2;
#This will return a list of signed n-cells
#into which the k-th n-cell is deformed.
k:=AbsInt(kk);
sgnk:=SignInt(kk);
if [n,k] in Y!.criticalCells then
return [kk];
fi;
if n>0 then
if IsBound(Y!.vectorField[n][k]) then return []; fi;
fi;
if IsBound(DCSrec[n+1][k]) then
if sgnk=1 then return DCSrec[n+1][k];
else
return -DCSrec[n+1][k];
fi;
fi;
f:=Y!.inverseVectorField[n+1][k];
bnd:=Y!.boundaries[n+2][f];
sn:=Y!.orientation[n+2][f];
def:=[]; def1:=[];def2:=[];
for x in [2..Length(bnd)] do
if not bnd[x]=k then
Add(def1,sn[x-1]*bnd[x]);
else
sgnn:=sn[x-1];
break;
fi;
od;
cnt:=x+1;
for x in [cnt..Length(bnd)] do
Add(def2,sn[x-1]*bnd[x]);
od;
if sgnn=1 then
def:=-Concatenation(def1,def2);
else
def:=Concatenation(def2,def1);
fi;
Apply(def,x->DeformCellSgn(n,x));
def:=Flat(def);
Apply(def,x->[x,0]);
def:=AlgRed(def);
Apply(def,x->x[1]);
DCSrec[n+1][k]:=def;
if sgnk=1 then return def;
else
return -def;
fi;
end;
###############################
###############################
DCSHrec:=List([1..dim+1],i->[]);;
###############################
###############################
DeformCellSgnHtpy:=function(n,kk)
local sgnn,x,f,k,sgnk,cnt,bnd,def,defcp,sn,tog,def1,def2;
#This will return a list of signed n-cells
#into which the k-th n-cell is deformed.
k:=AbsInt(kk);
sgnk:=SignInt(kk);
if [n,k] in Y!.criticalCells then
DCSHrec[n+1][k]:=[];
return [kk];
fi;
if n>0 then
if IsBound(Y!.vectorField[n][k]) then
DCSHrec[n+1][k]:=[];
return []; fi;
fi;
if IsBound(DCSrec[n+1][k]) and IsBound(DCSHrec[n+1][k]) then
if sgnk=1 then return DCSrec[n+1][k];
else
return -DCSrec[n+1][k];
fi;
fi;
f:=Y!.inverseVectorField[n+1][k];
bnd:=Y!.boundaries[n+2][f];
sn:=Y!.orientation[n+2][f]; #CHECK THIS!!
def:=[];
for x in [2..Length(bnd)] do
if not bnd[x]=k then
Add(def,sn[x-1]*bnd[x]);
else
sgnn:=sn[x-1];
break;
fi;
od;
cnt:=x+1;
DCSHrec[n+1][k]:=[sgnn*f];
for x in [cnt..Length(bnd)] do
Add(def,sn[x-1]*bnd[x]);
od;
def:=sgnn*def;
defcp:=StructuralCopy(def);
Apply(def,xx->-DeformCellSgnHtpy(n,xx));
for x in defcp do
Append(DCSHrec[n+1][k], -SignInt(x)*DCSHrec[n+1][AbsInt(x)]);
od;
def:=Flat(def);
Apply(def,x->[x,0]);
def:=AlgRed(def);
Apply(def,x->x[1]);
DCSrec[n+1][k]:=def;
if sgnk=1 then return def;
else
return -def;
fi;
end;
###############################
###############################
HDCrec:=List([1..dim+1],i->[]);;
###############################
###############################
HomotopicalDeformCell:=function(n,kk)
local sgnn,x,f,k,sgnk,cnt,bnd,def,sn,tog,def1,def2;
#This will return an ordered list of signed
#n-cells into which the k-th n-cell is
#deformed.
k:=AbsInt(kk);
sgnk:=SignInt(kk);
if [n,k] in Y!.criticalCells then
return [kk];
fi;
if n>0 then
if IsBound(Y!.vectorField[n][k]) then return []; fi;
fi;
if IsBound(HDCrec[n+1][k]) then
if sgnk=1 then return HDCrec[n+1][k];
else
return -Reversed(HDCrec[n+1][k]);
fi;
fi;
f:=Y!.inverseVectorField[n+1][k];
bnd:=Y!.boundaries[n+2][f];
sn:=Y!.homotopyOrientation[n+2][f]; ##
def:=[]; def1:=[];def2:=[];
for x in [2..Length(bnd)] do
if not bnd[x]=k then
Add(def1,sn[x-1]*bnd[x]);
else
sgnn:=sn[x-1];
break;
fi;
od;
cnt:=x+1;
for x in [cnt..Length(bnd)] do
Add(def2,sn[x-1]*bnd[x]);
od;
if sgnn=1 then
def:=-Concatenation(Reversed(def1),Reversed(def2));
else
def:=Concatenation(def2,def1);
fi;
Apply(def,x->HomotopicalDeformCell(n,x));
def:=Flat(def);
Apply(def,x->[x,0]);
def:=HtpyRed(def);
Apply(def,x->x[1]);
HDCrec[n+1][k]:=def;
if sgnk=1 then return def;
else
return -Reversed(def);
fi;
end;
###############################
###############################
BoundaryRec:=List([1..dim+1],i->[]);
if not IsBound(Y!.orientation) then
characteristic:=2;
one:=One(GF(2));
######################
Boundary:=function(n,k)
local b,i,j,B;
if IsBound(BoundaryRec[n+1][AbsInt(k)]) then return
SignInt(k)*BoundaryRec[n+1][AbsInt(k)]; fi;
b:=StructuralCopy(zero[n]);
B:=Y!.boundaries[n+1][basis[n+1][k]];
B:=B{[2..Length(B)]};
Apply(B,x->DeformCell(n-1,x));
B:=Concatenation(B);
Apply(B,i->bij[n][i]);
for i in B do
b[i]:=b[i]+1;
od;
BoundaryRec[n+1][k]:=one*b;
return 1*BoundaryRec[n+1][k];
end;
######################
else
characteristic:=0;
######################
Boundary:=function(n,k)
local b,i,j,B,sn;
if IsBound(BoundaryRec[n+1][AbsInt(k)]) then return
SignInt(k)*BoundaryRec[n+1][AbsInt(k)]; fi;
b:=StructuralCopy(zero[n]);
B:=Y!.boundaries[n+1][basis[n+1][k]];
B:=B{[2..Length(B)]};
sn:=Y!.orientation[n+1][basis[n+1][k]];
B:=List([1..Length(B)],i->sn[i]*B[i]);
Apply(B,x->DeformCellSgn(n-1,x));
B:=Concatenation(B);
Apply(B,i->SignInt(i)*bij[n][AbsInt(i)]);
for i in B do
#b[AbsInt(i)]:=b[AbsInt(i)]+SignInt(i)*sn[AbsInt(i)];
b[AbsInt(i)]:=b[AbsInt(i)]+SignInt(i);
od;
BoundaryRec[n+1][k]:=b;
return 1*BoundaryRec[n+1][k];
end;
######################
fi;
if IsBound(Y!.orientation) then DeformCell:=DeformCellSgn; fi;
if Length(arg)=2 then DeformCell:=DeformCellSgnHtpy; fi;
if Length(arg)=1 then DCSHrec:=fail; fi;
return
Objectify(HapChainComplex,
rec(
dimension:=Dimension,
boundary:=Boundary,
deform:=DeformCell,
htpy:=DCSHrec,
homotopicalDeform:=HomotopicalDeformCell,
basis:=basis,
bij:=bij,
properties:=[
["length",dim],
["type","chainComplex"],
["characteristic",characteristic]]
));
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallMethod( ChainComplex,
"for regular CW spaces, using discrete vector fields",
[IsHapRegularCWComplex],
function(Y)
CriticalCellsOfRegularCWComplex(Y);
return ChainComplexOfRegularCWComplexWithVectorField(Y);
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallMethod( CochainComplex,
"for regular CW spaces, using discrete vector fields",
[IsHapRegularCWComplex],
function(Y) local C;
CriticalCellsOfRegularCWComplex(Y);
C:=ChainComplexOfRegularCWComplexWithVectorField(Y);
return HomToIntegers(C);
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallMethod( SparseChainComplex,
"for regular CW spaces, using discrete vector fields",
[IsHapRegularCWComplex],
function(Y)
CriticalCellsOfRegularCWComplex(Y);
return SparseChainComplexOfRegularCWComplexWithVectorField(Y);
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallOtherMethod( Homology,
"Homology of a regular CW spaces, using discrete vector fields",
[IsHapRegularCWComplex,IsInt],
function(Y,n) local C, H, m, bool;
if not IsBound(Y!.orientation) then
OrientRegularCWComplex(Y);
fi;
m:=Minimum(n+1,Dimension(Y));
bool:=Y!.vectorField=fail or Y!.criticalCells=fail;
if bool then
if m=Dimension(Y) then CriticalCellsOfRegularCWComplex(Y);
else
CocriticalCellsOfRegularCWComplex(Y,m); fi;
fi;
C:=ChainComplex(Y);
H:=Homology(C,n);
if m<Dimension(Y) and bool then
Y!.vectorField:=fail;
Y!.criticalCells:=fail;
Y!.properties:=Filtered(Y!.properties,x->not x[1]="codim");
fi;
return H;
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallOtherMethod( Cohomology,
"Coomology of a regular CW spaces, using discrete vector fields",
[IsHapRegularCWComplex,IsInt],
function(Y,n) local C, H, m, bool;
if not IsBound(Y!.orientation) then
OrientRegularCWComplex(Y);
fi;
m:=Minimum(n+1,Dimension(Y));
bool:=Y!.vectorField=fail or Y!.criticalCells=fail;
if bool then
if m=Dimension(Y) then CriticalCellsOfRegularCWComplex(Y);
else
CocriticalCellsOfRegularCWComplex(Y,m); fi;
fi;
C:=ChainComplex(Y);
H:=Cohomology(HomToIntegers(C),n);
if m<Dimension(Y) and bool then
Y!.vectorField:=fail;
Y!.criticalCells:=fail;
Y!.properties:=Filtered(Y!.properties,x->not x[1]="codim");
fi;
return H;
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallGlobalFunction(SparseChainComplexOfRegularCWComplex,
function(Y)
local
C, Dimension, Boundary, one, n, dim, characteristic;
#Dimension:=Y!.nrCells;
##########################
Dimension:=function(n);
if n<0 then return 0; fi;
return Length(Y!.boundaries[n+1]);
end;
##########################
dim:=EvaluateProperty(Y,"dimension");
if not IsBound(Y!.orientation) then
characteristic:=2;
one:=One(GF(2));
######################
Boundary:=function(n,k)
local b,i,j,B;
b:=[];
B:=Y!.boundaries[n+1][k];
for i in [2..Length(B)] do
Add(b,[B[i],one]);
od;
return b;
end;
######################
else
characteristic:=0;
######################
Boundary:=function(n,k)
local b,i,j,B,sn;
b:=[];
B:=Y!.boundaries[n+1][k];
sn:=Y!.orientation[n+1][k];
for i in [2..Length(B)] do
Add(b,[B[i],sn[i-1]]);
od;
return b;
end;
######################
fi;
return
Objectify(HapSparseChainComplex,
rec(
dimension:=Dimension,
boundary:=Boundary,
properties:=[
["length",dim],
["type","chainComplex"],
["characteristic",characteristic]]
));
end);
##########################################################
##########################################################
##########################################################
##########################################################
InstallGlobalFunction(SparseChainComplexOfRegularCWComplexWithVectorField,
function(Y)
local
basis, bij,Dimension, Boundary, one, zero, b, n, dim, characteristic, DeformCell,DeformCellSgn;
dim:=EvaluateProperty(Y,"dimension");
basis:=[];
bij:=[];
for n in [0..dim] do
basis[n+1]:=Filtered(CriticalCellsOfRegularCWComplex(Y),x->x[1]=n);
Apply(basis[n+1],x->x[2]);
bij[n+1]:=[];
for b in [1..Length(basis[n+1])] do
bij[n+1][basis[n+1][b]]:=b;
od;
od;
###############################
Dimension:=function(n);
return Length(basis[n+1]);
end;
###############################
zero:=[];
for n in [1..dim+1] do
zero[n]:=List([1..Dimension(n-1)],i->0);
od;
###############################
###############################
DeformCell:=function(n,k)
local x,f,bnd,def; #This will return a list of n-cells
#into which the k-th n-cell is deformed.
if [n,k] in Y!.criticalCells then
return [k];
fi;
if n>0 then
if IsBound(Y!.vectorField[n][k]) then return []; fi;
fi;
f:=Y!.inverseVectorField[n+1][k];
bnd:=Y!.boundaries[n+2][f];
def:=[];
for x in [2..Length(bnd)] do
if not bnd[x]=k then
Append(def,DeformCell(n,bnd[x]));
fi;
od;
return def;
end;
###############################
###############################
###############################
###############################
DeformCellSgn:=function(n,kk)
local sgnn,x,f,k,sgnk,cnt,bnd,def,sn,tog,def1,def2;
#This will return a list of signed n-cells
#into which the k-th n-cell is deformed.
k:=AbsInt(kk);
sgnk:=SignInt(kk);
if [n,k] in Y!.criticalCells then
return [kk];
fi;
if n>0 then
if IsBound(Y!.vectorField[n][k]) then return []; fi;
fi;
f:=Y!.inverseVectorField[n+1][k];
bnd:=Y!.boundaries[n+2][f];
sn:=Y!.orientation[n+2][f];
def:=[]; def1:=[];def2:=[];
for x in [2..Length(bnd)] do
if not bnd[x]=k then
Add(def1,sn[x-1]*bnd[x]);
else
sgnn:=sn[x-1];
break;
fi;
od;
cnt:=x+1;
for x in [cnt..Length(bnd)] do
Add(def2,sn[x-1]*bnd[x]);
od;
if sgnn=1 then
def:=-Concatenation(Reversed(def1),Reversed(def2));
else
def:=Concatenation(def2,def1);
fi;
Apply(def,x->DeformCellSgn(n,x));
if sgnk=1 then return Flat(def);
else
return -Reversed(Flat(def));
fi;
end;
###############################
###############################
if not IsBound(Y!.orientation) then
characteristic:=2;
one:=One(GF(2));
######################
Boundary:=function(n,k)
local b,i,j,B;
b:=[];
B:=Y!.boundaries[n+1][basis[n+1][k]];
B:=B{[2..Length(B)]};
Apply(B,x->DeformCell(n-1,x));
B:=Concatenation(B);
Apply(B,i->bij[n][i]);
for i in B do
Add(b,[i,one]);
#b[i]:=b[i]+1;
od;
b:=SortedList(b);
for i in [1..Length(b)-1] do
if b[i][1]=b[i+1][1] then
b[i+1][2]:=b[i+1][2]+b[i][2];
b[i][2]:=0;
fi;
od;
b:=Filtered(b,x->not IsZero(x[2]));
return b;
end;
######################
else
characteristic:=0;
######################
Boundary:=function(n,k)
local b,i,j,B,sn;
b:=[];
B:=Y!.boundaries[n+1][basis[n+1][k]];
B:=B{[2..Length(B)]};
sn:=Y!.orientation[n+1][basis[n+1][k]];
B:=List([1..Length(B)],i->sn[i]*B[i]);
Apply(B,x->DeformCellSgn(n-1,x));
B:=Concatenation(B);
Apply(B,i->SignInt(i)*bij[n][AbsInt(i)]);
for i in B do
#b[AbsInt(i)]:=b[AbsInt(i)]+SignInt(i);
Add(b,[AbsInt(i),SignInt(i)]);
od;
b:=SortedList(b);
for i in [1..Length(b)-1] do
if b[i][1]=b[i+1][1] then
b[i+1][2]:=b[i+1][2]+b[i][2];
b[i][2]:=0;
fi;
od;
b:=Filtered(b,x->not IsZero(x[2]));
return b;
end;
######################
fi;
if IsBound(Y!.orientation) then DeformCell:=DeformCellSgn; fi;
return
Objectify(HapSparseChainComplex,
rec(
dimension:=Dimension,
boundary:=Boundary,
deform:=DeformCell,
basis:=basis,
bij:=bij,
properties:=[
["length",dim],
["type","chainComplex"],
["characteristic",characteristic]]
));
end);
##########################################################
##########################################################
#######################################################
#######################################################
InstallGlobalFunction(HAPRegularCWComplex,
function(arg)
local bnd, Y, dim, Coboundaries, k, i, j, n, b;
bnd:=arg[1];
Y:=Objectify(HapRegularCWComplex, rec());
dim:=PositionProperty(bnd,IsEmpty)-2;
Y!.properties:=[["dimension",dim]];
### COBOUNDARIES BEGIN ######################
Coboundaries:=[];; #Coboundaries[n+1] contains the info on n-cells.
for n in [0..dim] do
#k:=2*(n+1)+1;#k:=1+2^(n+1);
Coboundaries[n+1]:=List(bnd[n+1],i->[0]);
for j in [1..Length(bnd[n+2])] do
b:=bnd[n+2][j];
k:=Length(b);
for i in b{[2..k]} do
Coboundaries[n+1][i][1]:=Coboundaries[n+1][i][1]+1;
Add(Coboundaries[n+1][i],j);
od;
od;
od;
Coboundaries[dim+1]:=List(bnd[dim+1],a->[0]);
### COBOUNDARIES END ###############################
Y!.boundaries:=bnd;
Y!.coboundaries:=Coboundaries;
Y!.vectorField:=fail;
Y!.inverseVectorField:=fail;
Y!.criticalCells:=fail;
if Length(arg)=2 then Y!.orientation:=arg[2];
else OrientRegularCWComplex(Y); fi;
####################
Y!.nrCells:=function(n);
if n>dim then return 0; fi;
return Length(Filtered(Y!.boundaries[n+1],x->not x[1]=0));
end;
####################
return Y;
end);
#######################################################
#######################################################
#######################################################
#######################################################
InstallGlobalFunction(ContractedRegularCWComplex,
function(W)
local Y, V,perm, d, d1, n, x, i, b, cnt, bnd, dim , F, bool, orien;
if IsBound(W!.orientation) then
Y:=RegularCWComplex(W!.boundaries,W!.orientation);
else
Y:=RegularCWComplex(W!.boundaries);
fi;
if IsBound(Y!.orientation) then bool:=true;
orien:=StructuralCopy(Y!.orientation);
else bool:=false; fi;
HAPContractRegularCWComplex(Y);
bnd:=StructuralCopy(Y!.bnd);
perm:=[]; ##perm[d][i] will be the new position of
##the old i-th cell of dimension d;
for d in [1..Length(bnd)] do
perm[d]:=[];
cnt:=0;
for n in [1..Length(bnd[d])] do
if bnd[d][n][1]=0 then cnt:=cnt+1;
else
perm[d][n]:=n-cnt;
fi;
od;
od;
for d in [1..Length(bnd)] do
F:=Filtered([1..Length(bnd[d])],i->not bnd[d][i][1]=0);
#bnd[d]:=Filtered(bnd[d],x->not x[1]=0);
bnd[d]:=bnd[d]{F};
if bool and IsBound(orien[d]) then orien[d]:=orien[d]{F}; fi;
if d>1 then
d1:=d-1;
for x in bnd[d] do
for i in [2..Length(x)] do
x[i]:=perm[d1][x[i]];
od;
od;
fi;
od;
if bool then V:=RegularCWComplex(bnd, orien);
else V:= RegularCWComplex(bnd);fi;
V!.perm:=perm;
return V;
end);
#######################################################
#######################################################
################################################
################################################
InstallGlobalFunction(VerticesOfRegularCWCell,
function(Y,n,k)
local V, U, N, tmp, v ;
if n=0 then return [k]; fi;
N:=n+1;
V:=StructuralCopy(Y!.boundaries[N][k]);
V:=V{[2..Length(V)]};
V:=SSortedList(V);
N:=N-1;
while N>1 do
tmp:=[];
for v in V do
U:=StructuralCopy(Y!.boundaries[N][v]);
U:=U{[2..Length(U)]};
Append(tmp,U);
od;
tmp:=SSortedList(tmp);
V:=tmp;
N:=N-1;
od;
return V;
end);
################################################
################################################
################################################
################################################
InstallGlobalFunction(BoundaryOfRegularCWCell,
function(Y,n,k)
local V, U, N, tmp, v , cells;
if n=0 then return []; fi;
N:=n+1;
V:=StructuralCopy(Y!.boundaries[N][k]);
V:=V{[2..Length(V)]};
V:=SSortedList(V);
cells:=List(V,i->[N-1,i]);
N:=N-1;
while N>1 do
tmp:=[];
for v in V do
U:=StructuralCopy(Y!.boundaries[N][v]);
U:=U{[2..Length(U)]};
Append(tmp,U);
Append(cells,List(U,i->[N-1,i]));
od;
tmp:=SSortedList(tmp);
cells:=SSortedList(cells);
V:=tmp;
N:=N-1;
od;
return cells;
end);
################################################
################################################
#######################################################
#######################################################
InstallGlobalFunction(SimplifiedRegularCWComplex,
function(Y)
local W , a, b, OnceSimplifiedRegularCWComplex;
#######################################################
#######################################################
OnceSimplifiedRegularCWComplex:=function(W)
local Y, perm, cnt, JoinCells, d, d1, n, x, i, b, cobnd, bnd, dim , F, bool, orien, pos;
if IsBound(W!.orientation) then
Y:=RegularCWComplex(StructuralCopy(W!.boundaries),StructuralCopy(W!.orientation));
else
Y:=RegularCWComplex(StructuralCopy(W!.boundaries));
fi;
if IsBound(Y!.orientation) then bool:=true;
orien:=StructuralCopy(Y!.orientation);
else bool:=false; fi;
bnd:=Y!.boundaries;
cobnd:=Y!.coboundaries;
###################################################
###################################################
JoinCells:=function(d1,n)
#The n-th cell in dimension d=d1-1 is removed
#assuming it has a coboundary of size 2.
local V1,V2,V3,cob, d, a, b, d2,d3, m, s, t, pos, poss ;
##
##CHECK IF REMOVAL SHOULD TAKE PLACE
V1:=BoundaryOfRegularCWCell(Y,d1-1,n);
V2:=BoundaryOfRegularCWCell(Y,d1,cobnd[d1][n][2]);
V3:=BoundaryOfRegularCWCell(Y,d1,cobnd[d1][n][3]);
#if not Size(V1)=Size(Intersection(V1,V2,V3)) then Print([d1-1,n],V1,V2,V3,"\n\n");
# fi;
if
not (
cobnd[d1][n][1] =2
and bnd[d1][n][1]>0
and 1+Size(V1)=Size(Intersection(V2,V3)) )
then return false; fi;
##
##CHECK DONE
d2:=d1+1;
d3:=d2+1;
cob:=StructuralCopy(cobnd[d1][n]);
if not SortedList(cobnd[d2][cob[2]])= SortedList(cobnd[d2][cob[3]]) then return false; fi;
##
##REDUCE COBOUNDARIES OF BOUNDARIES OF nTH CELL
if d1>1 then
d:=d1-1;
for m in bnd[d1][n]{[2..Length(bnd[d1][n])]} do
t:=cobnd[d][m]{[2..Length(cobnd[d][m])]};
poss:=Position(t,n);
Remove(t,poss);
cobnd[d][m]:=Concatenation([Length(t)],t);
od;
fi;
##
##COBOUNDARIES OF BOUNDARIES REDUCED
##
##REMOVE nTH CELL, ITS COBOUNDARY, AND ADJUST ITS PRESENCE IN BOUNDARIES
##OF ITS COBOUNDARIES
bnd[d1][n]:=[0];
cobnd[d1][n]:=[0];
s:=bnd[d2][cob[2]];
s:=s{[2..Length(s)]};
pos:=Position(s,n);
Remove(s,pos);
if bool then a:=orien[d2][cob[2]][pos]; Remove(orien[d2][cob[2]],pos); fi;
t:=bnd[d2][cob[3]];
t:=t{[2..Length(t)]};
pos:=Position(t,n);
Remove(t,pos);
if bool then b:=orien[d2][cob[3]][pos]; Remove(orien[d2][cob[3]],pos); fi;
bnd[d2][cob[2]]:=Concatenation([Length(s)+Length(t)],s,t);
if bool then orien[d2][cob[2]]:=Concatenation(orien[d2][cob[2]],-a*b*orien[d2][cob[3]]); fi;
##
##nTH CELL AND ITS PRESENCE REMOVED
##
##FOR SECOND CELL OF DIMENSION n+1 REDUCE THE BOUNDARIES OF ITS
##COBOUNDARIES
for m in cobnd[d2][cob[3]]{[2..Length(cobnd[d2][cob[3]])]} do
t:=bnd[d3][m]{[2..Length(bnd[d3][m])]};
pos:=Position(t,cob[3]);
Remove(t,pos);
bnd[d3][m]:=Concatenation([Length(t)],t);
if bool then Remove(orien[d3][m],pos); fi;
od;
##
##SECOND CELL BOUNDARIES OF ITS COBOUNDARIES REDUCED
##
##REMOVE PRESENCE OF SECOND CELL IN COBOUNDARIES OF ITS BOUNDARIES
for m in bnd[d2][cob[3]]{[2..Length(bnd[d2][cob[3]])]} do
if cobnd[d1][m][1]>0 then
t:=cobnd[d1][m]{[2..Length(cobnd[d1][m])]};
pos:=Position(t,cob[3]);
t[pos]:=cob[2];
t:=SSortedList(t);
cobnd[d1][m]:=Concatenation([Length(t)],t);
fi;
od;
bnd[d2][cob[3]]:=[0];
cobnd[d2][cob[3]]:=[0];
end;
###################################################
###################################################
###################################################
######SIMPLIFICATION STARTS########################
for d in [0..Dimension(Y)-1] do
d1:=d+1;
for n in [1..Length(bnd[d1])] do
if cobnd[d1][n][1] =2 and bnd[d1][n][1]>0 then
JoinCells(d1,n);
fi;
od;
od;
######SIMPLIFICATION DONE##########################
###################################################
perm:=[]; ##perm[d][i] will be the new position of
##the old i-th cell of dimension d;
for d in [1..Length(bnd)] do
perm[d]:=[];
cnt:=0;
for n in [1..Length(bnd[d])] do
if bnd[d][n][1]=0 then cnt:=cnt+1;
else
perm[d][n]:=n-cnt;
fi;
od;
od;
for d in [1..Length(bnd)] do
F:=Filtered([1..Length(bnd[d])],i->not bnd[d][i][1]=0);
bnd[d]:=bnd[d]{F};
if bool and IsBound(orien[d]) then orien[d]:=orien[d]{F}; fi;
if d>1 then
d1:=d-1;
for x in bnd[d] do
for i in [2..Length(x)] do
x[i]:=StructuralCopy(perm[d1][x[i]]);
od;
od;
fi;
od;
if bool then return RegularCWComplex(bnd, orien);
else
return RegularCWComplex(bnd);
fi;
end;
#######################################################
#######################################################
W:=OnceSimplifiedRegularCWComplex(Y);
#return W;
a:=Size(Y);
b:=Size(W);
while a>b do
W:=OnceSimplifiedRegularCWComplex(W);
a:=b;
b:=Size(W);
od;
return W;
end);
#######################################################
#######################################################
#####################################################
#####################################################
InstallGlobalFunction(IsPureRegularCWComplex,
function(Y)
local n, x, dim, bool;
dim:=Dimension(Y);
bool:=true;
for n in [1..dim] do
if not bool then break; fi;
for x in Y!.coboundaries[n] do
if x[1]=0 then bool:=false; break; fi;
od;
od;
return bool;
end);
#####################################################
#####################################################
#####################################################
#####################################################
InstallGlobalFunction(BoundaryOfPureRegularCWComplex,
function(Y)
local F, n, m, d, t, i, x, bool, perm, cnt, d1, dim, bnd, cobnd, orien, B;
if not IsPureRegularCWComplex(Y) then return fail; fi;
dim:=Dimension(Y);
bnd:=Y!.boundaries*1;
cobnd:=Y!.coboundaries*1;
if IsBound(Y!.orientation) then
orien:=Y!.orientation*1; bool:=true;
else bool:=false;
fi;
bnd[dim+1]:=[];
d:=dim;
for n in [1..Length(bnd[d])] do
if cobnd[d][n][1]>1 then
if d>1 then
t:=bnd[d][n];
for m in t{[2..Length(t)]} do
cobnd[d-1][m][1]:=cobnd[d-1][m][1]-1;
od;
fi;
bnd[d][n]:=[0];
fi;
od;
for d in Reversed([1..dim-1]) do
for n in [1..Length(bnd[d])] do
if cobnd[d][n][1]=0 then
if d>1 then
t:=bnd[d][n];
for m in t{[2..Length(t)]} do
cobnd[d-1][m][1]:=cobnd[d-1][m][1]-1;
od;
fi;
bnd[d][n]:=[0];
fi;
od;
od;
perm:=[]; ##perm[d][i] will be the new position of
##the old i-th cell of dimension d;
for d in [1..Length(bnd)] do
perm[d]:=[];
cnt:=0;
for n in [1..Length(bnd[d])] do
if bnd[d][n][1]=0 then cnt:=cnt+1;
else
perm[d][n]:=n-cnt;
fi;
od;
od;
for d in [1..Length(bnd)] do
F:=Filtered([1..Length(bnd[d])],i->not bnd[d][i][1]=0);
#bnd[d]:=Filtered(bnd[d],x->not x[1]=0);
bnd[d]:=bnd[d]{F};
if bool and IsBound(orien[d]) then orien[d]:=orien[d]{F}; fi;
if d>1 then
d1:=d-1;
for x in bnd[d] do
for i in [2..Length(x)] do
x[i]:=perm[d1][x[i]];
od;
od;
fi;
od;
if IsBound(orien) then
B:=RegularCWComplex(bnd,orien);
B!.perm:=perm;
return B;
else
B:=RegularCWComplex(bnd);
B!.perm:=perm;
return B;
fi;
end);
#####################################################
#####################################################
##################################################
##################################################
InstallGlobalFunction(OrientRegularCWComplex,
function(Y)
local bnd, cobnd, orien, dim, d, d1, d2, x, i, j, b, bb, sn, m, S, T, s, t,
L, bool ;
if IsBound(Y!.orientation) then
if not Y!.orientation=fail then
return ;
fi;fi;
dim:=Dimension(Y);
bnd:=Y!.boundaries;
cobnd:=Y!.coboundaries;
orien:=bnd*0;
for x in orien do
Apply(x,y->y{[2..Length(y)]});
od;
Apply(orien[1], x->x+1);
Apply(orien[2],x->[1,-1]);
#######################
for d in [3..dim+1] do
d1:=d-1;
d2:=d-2;
for i in [1..Length(bnd[d])] do
b:=bnd[d][i]{[2..Length(bnd[d][i])]};
bb:=[];
for j in [1..Length(b)] do
Add(bb, bnd[d1][b[j]]{[2..Length(bnd[d1][b[j]])]} );
od;
orien[d][i][1]:=1;
S:=[1..Length(b)];
T:=[1..Length(b)];
for s in [2..Length(b)] do
Unbind(S[s]);
od;
Unbind(T[1]);
while 0 in orien[d][i] do
###############################
bool:=false;
for s in S do
for t in T do
L:=Intersection(bb[s], bb[t]);
if Length(L)>0 then
S[t]:=t;
Unbind(T[t]);
bool:=true;
if orien[d][i][s]*orien[d1][b[s]][Position(bb[s],L[1])]=
orien[d1][b[t]][Position(bb[t],L[1])]
then orien[d][i][t]:=-1;
else
orien[d][i][t]:=1;
fi;
break;
fi;
od;
od;
###############################
od;
od;
od;
#######################
Y!.orientation:=orien;
end);
##################################################
##################################################
#############################################
#############################################
InstallGlobalFunction(HAP_Sequence2Boundaries,
function(Y)
local orien, b, i, bb, newb, neworien, pos, s, t;
for i in [1..Y!.nrCells(2)] do
b:=Y!.boundaries[3][i];
orien:=Y!.orientation[3][i];
bb:=List(b{[2..Length(b)]}, j->Y!.boundaries[2][j]{[2,3]});
s:=bb[1];
Unbind(bb[1]);
newb:=[b[1],b[2]];
neworien:=[orien[1]];
while Length(newb)<Length(b) do
for t in bb do
if Length(Intersection(s,t))>0 then pos:=Position(bb,t); break; fi;
od;
s:=bb[pos];
Unbind(bb[pos]);
Add(newb,b[pos+1]);
Add(neworien,orien[pos]);
od;
Y!.boundaries[3][i]:=newb;
Y!.orientation[3][i]:=neworien;
od;
end);
#############################################
#############################################
############################################
InstallGlobalFunction(CubicalComplex,
function(A)
local dim, dims;
dim:=ArrayDimension(A);
dims:=ArrayDimensions(A);
return Objectify(HapCubicalComplex,
rec(
binaryArray:=A,
properties:=[
["dimension",dim],
["arraySize",dims]]
));
end);
############################################
############################################
############################################
InstallGlobalFunction(ReadImageAsWeightFunction,
function(file,f)
local MM,F, M, A, B, C, Y, k,k1, i,j,W, weight, coord, x1;
MM:=ReadImageAsFilteredPureCubicalComplex(file,f);
A:=PureCubicalComplexToCubicalComplex(MM);;
A:=0*A!.binaryArray;
for i in [1..f] do
F:=FiltrationTerm(MM,i);
F:=PureCubicalComplexToCubicalComplex(F);
A:=A+F!.binaryArray;
od;
B:=A*0;;
for i in [1..Length(A)] do
for j in [1..Length(A[1])] do
if A[i][j]>0 then B[i][j]:=1; fi;
od;od;
M:=CubicalComplex(B);
C:=ChainComplex(M);
W:=[];
for k in [1..1+Dimension(M)] do
W[k]:=[];k1:=k-1;
for i in [1..C!.dimension(k1)] do
coord:=C!.positionToCoordinate[k][i];
W[k][i]:=A[coord[2]][coord[1]];
od;
od;
Unbind(C);
Y:=CubicalComplexToRegularCWComplex(M);
Unbind(M);
#####################
weight:=function(k,i);
return W[k+1][i];
end;
#####################
return [Y, weight];
end);
#######################################################
#######################################################
######################################################
#######################################################
InstallGlobalFunction(EulerIntegral,
function(Y,weight)
local k, i, eulint, alpha, sn;
eulint:=0;
for k in [0..Dimension(Y)] do
sn:=(-1)^k;
alpha:=0;
for i in [1..Y!.nrCells(k)] do
alpha:=alpha+weight(k,i);
od;
eulint:=eulint+sn*alpha;
od;
return eulint;
end);
######################################################
######################################################
#####################################
#####################################
InstallGlobalFunction(HAP_PureCubicalPairToCWMap,
function(M,A)
local F, YA, YM;
YA:=RegularCWComplex(A);
YM:=RegularCWComplex(M);
################
################
F:=function(n,k)
local x,i, v;
x:=YA!.positionToCoordinate[n+1][k];
v:=1*YM!.coordinateToPosition;
for i in Reversed(x) do
v:=v[i];
od;
return v;
end;
################
################
return Objectify(HapRegularCWMap,
rec(
source:=YA,
target:=YM,
mapping:=F
));
end);
######################################
######################################
######################################
######################################
InstallGlobalFunction(GraphOfRegularCWComplex,
function(Y)
local A, n, x;
n:=Y!.nrCells(0);
A:=NullMat(n,n);
for x in Y!.boundaries[2] do
A[x[2]][x[3]]:=1;
A[x[3]][x[2]]:=1;
od;
return IncidenceMatrixToGraph(A);
end);
######################################
######################################
######################################
######################################
InstallGlobalFunction(HomotopyGraph,
function(W)
local Y, V, A, n, x, i;
if Dimension(W)=1 then
return ContractedComplex(Graph(W));
fi;
Y:=1*W!.boundaries{[1..3]};
Add(Y,[]);
Y:=RegularCWComplex(Y);
CocriticalCellsOfRegularCWComplex(Y,2);
V:=SSortedList(Flat(Y!.vectorField[2]));
n:=Y!.nrCells(0);
A:=NullMat(n,n);
#for x in Y!.boundaries[2] do
for i in [1..Y!.nrCells(1)] do
if not i in V then
x:=Y!.boundaries[2][i];
A[x[2]][x[3]]:=1;
A[x[3]][x[2]]:=1;
fi;
od;
return ContractedComplex(IncidenceMatrixToGraph(A));
end);
######################################
######################################
######################################
######################################
InstallGlobalFunction(DeformationRetract,
function(Y)
local R,map, perm, invperm, P, IP, i;
R:=ContractedComplex(Y);
perm:=R!.perm;
invperm:=[];
for P in perm do
IP:=[];
for i in [1..Length(P)] do
if IsBound(P[i]) then
IP[P[i]]:=i;
fi;
od;
Add(invperm,IP);
od;
##################
map:=function(n,k);
return invperm[n+1][k];
end;
##################
return Objectify(HapRegularCWMap,
rec(
source:=R,
target:=Y,
mapping:=map));
end);
######################################
######################################