Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384#(C) Graham Ellis, 2005-2006 ##################################################################### ##################################################################### InstallGlobalFunction(PresentationOfResolution_alt, function(R) local Dimension, Boundary, Elts, Mult, Inv, F, Frels, Fgens, gens, rels, FirstBoundaryHomomorphism, Boundary2Relator, Relator2Word, start, b, r, x; if not (IsHapResolution(R) or IsHapNonFreeResolution(R) or IsHapEquivariantCWComplex(R)) then Print("This function must be applied to a resolution. \n"); return fail; fi; if not EvaluateProperty(R,"reduced")=true then if R!.dimension(0)>1 then Print("This function must be applied to a REDUCED resolution. \n"); return fail; fi; fi; if not EvaluateProperty(R,"characteristic")=0 then Print("This function only works in characteristic 0. \n"); return fail; fi; Dimension:=R!.dimension; Boundary:=R!.boundary; Elts:=R!.elts; F:=FreeGroup(Dimension(1)); Fgens:=GeneratorsOfGroup(F); Frels:=[]; gens:=[]; ##################################################################### Mult:=function(g,h) local pos; pos:=Position(Elts,Elts[g]*Elts[h]); if pos=fail then Add(Elts,Elts[g]*Elts[h]); pos:=Length(Elts); fi; return pos; end; ##################################################################### ##################################################################### Inv:=function(g) local pos; pos:= Position(Elts,Elts[g]^-1); if pos=fail then Add(Elts,Elts[g]^-1); pos:=Length(Elts); fi; return pos; end; ##################################################################### start:=List([1..Dimension(2)],x->List(Boundary(2,x),y->y[2])); if Length(Intersection(start))=0 then ############################################### Boundary:=function(n,k) local w; w:=Inv(R!.boundary(n,k)[1][2]) ; return List(R!.boundary(n,k),x->[x[1],Mult(w,x[2])]); end; ############################################## start:=List([1..Dimension(2)],x->List(Boundary(2,x),y->y[2])); fi; start:=SortedList(Intersection(start))[1]; ##################################################################### FirstBoundaryHomomorphism:=function(x) local r; r:=Boundary(1,x[1]); r:=List(r,y->Mult(x[2],y[2])); if x[1]>0 then return r; else return Reversed(r); fi; end; ##################################################################### ##################################################################### Boundary2Relator:=function(b) local c, rel, w; b:=SortedList(AlgebraicReduction(b)); #I'm assuming a regular CW-space. rel:=[start]; while Length(b)>0 do for x in b do w:=FirstBoundaryHomomorphism(x); if w[1]= rel[Length(rel)] then Append(rel, [w[2]]); RemoveSet(b,x); break; else if w[2]= rel[Length(rel)] then Append(rel, [w[1]]); RemoveSet(b,x); break; fi; fi; od; od; return rel; end; ##################################################################### for r in [1..Dimension(2)] do Append(Frels,[Boundary2Relator(Boundary(2,r))]); od; for r in Frels do if (not Inv(r[2]) in gens) then AddSet(gens,r[2]);fi; if (not Inv(r[Length(r)-1]) in gens) then AddSet(gens,r[Length(r)-1]);fi; od; ##################################################################### Relator2Word:=function(r) local w,v,g,h; w:=Identity(F); for v in [2..Length(r)] do for g in gens do if Mult(r[v-1],g)=r[v] then h:=Position(gens,g); break; fi; if Mult(r[v-1],Inv(g))=r[v] then h:=-Position(gens,g); break; fi; od; w:=w*Fgens[AbsoluteValue(h)]^SignInt(h); od; return w; end; ##################################################################### rels:= List(Frels,g->Relator2Word(g)); return rec( freeGroup:=F, relators:=rels, gens:=gens ); end); ##################################################################### ##################################################################### ##################################################################### ##################################################################### InstallGlobalFunction(ResolutionToResolutionOfFpGroup, function(R) local P,FF,epi,F,G,FFhomF,x,Iso,OldElts,gensFF,tmp; OldElts:=StructuralCopy(R!.elts); P:=PresentationOfResolution(R); F:=P.freeGroup/P.relators; G:=Group(R!.elts{P.gens}); epi:=EpimorphismFromFreeGroup(G);; FF:=Source(epi);; gensFF:=GeneratorsOfGroup(FF); tmp:=List(gensFF,x->x^-1); gensFF:=Concatenation(gensFF,tmp); FFhomF:=GroupHomomorphismByImagesNC(FF,F, GeneratorsOfGroup(FF), GeneratorsOfGroup(F)); #################################### Iso:=function(L) local t,x,pos,cnt,w,nodup,newelts,Tips,NewTips,elts; cnt:=0; nodup:=[]; newelts:=[]; Tips:=[Identity(FF)]; NewTips:=[]; elts:=[]; while Length(Tips)>0 do for t in Tips do for x in gensFF do w:=Image(epi,t*x); if not w in elts then Add(elts,w); Add(NewTips,t*x); ###### pos:=Position(L,Image(epi,t*x)); if IsInt(pos) then if not IsBound(nodup[pos]) then newelts[pos]:=Image(FFhomF,t*x); cnt:=cnt+1; nodup[pos]:=pos; fi; fi; if cnt=Length(L) then break; fi; ###### fi; od; if cnt=Length(L) then break; fi; od; if cnt=Length(L) then break; fi; Tips:=NewTips; NewTips:=[]; od; return newelts; end; #################################### R!.elts:=Iso(OldElts); R!.group:=F; R!.isomorphism:=Iso; end); ##################################################################### ##################################################################### ##################################################################### ##################################################################### InstallGlobalFunction(PresentationOfResolution, function(R) local Dimension, Boundary, Elts, Mult, Inv, HGens,HRels,HRels1, Tree,Verts, NTree, NNTree, VertElts, index, cnt, gens, Gens, F, src,trg, B,i,a, b,bb,x,y,g,lst,bool; if not (IsHapResolution(R) or IsHapEquivariantCWComplex(R)) then Print("This function must be applied to a resolution. \n"); return fail; fi; if IsHapResolution(R) and not EvaluateProperty(R,"characteristic")=0 then Print("This function only works in characteristic 0. \n"); return fail; fi; Dimension:=R!.dimension; Boundary:=R!.boundary; Elts:=R!.elts; ######Let's make sure the first two boundaries of R are computed. i:=List([1..Dimension(1)],i->Boundary(1,i)); i:=List([1..Dimension(2)],i->Boundary(2,i)); i:=0; ##################################################################### Mult:=function(g,h) local pos; pos:=Position(Elts,Elts[g]*Elts[h]); if pos=fail then Add(Elts,Elts[g]*Elts[h]); pos:=Length(Elts); fi; return pos; end; ##################################################################### ##################################################################### Inv:=function(g) local pos; pos:= Position(Elts,Elts[g]^-1); if pos=fail then Add(Elts,Elts[g]^-1); pos:=Length(Elts); fi; return pos; end; ##################################################################### ############################### HGens:=List([1..Dimension(1)],i->Boundary(1,i)); ############################### ############################### Tree:=[]; Verts:=[1]; while Length(Verts)<Dimension(0) do for x in HGens do if AbsInt(x[1][1]) in Verts and not AbsInt(x[2][1]) in Verts then Add(Verts, AbsInt(x[2][1])); Add(Tree,[x[1],x[2],Position(HGens,x)]); fi; if AbsInt(x[2][1]) in Verts and not AbsInt(x[1][1]) in Verts then Add(Verts, AbsInt(x[1][1])); Add(Tree,[x[1],x[2],Position(HGens,x)]); fi; od; od; NTree:=1*Tree; Tree:=List(Tree,x->x[3]); Verts:=SSortedList(Verts); ############################### NTree:=SSortedList(NTree); NNTree:=[]; if Length(NTree)>0 then a:=NTree[1]; RemoveSet(NTree,a); AddSet(NNTree,a); while Length(NTree)>0 do a:=1*Random(NTree); for x in NNTree do if AbsInt(x[1][1])=AbsInt(a[1][1]) then RemoveSet(NTree,a); g:=a[1][2]*1; a[1][2]:=x[1][2]*1; a[2][2]:= Mult( x[1][2], Mult(Inv(g),a[2][2]))*1; AddSet(NNTree,a); break; fi; if AbsInt(x[1][1])=AbsInt(a[2][1]) then RemoveSet(NTree,a); g:=a[2][2]*1; a[2][2]:=x[1][2]*1; a[1][2]:= Mult( x[1][2], Mult(Inv(g),a[1][2]))*1; AddSet(NNTree,a); break; fi; if AbsInt(x[2][1])=AbsInt(a[1][1]) then RemoveSet(NTree,a); g:=a[1][2]*1; a[1][2]:=x[2][2]*1; a[2][2]:= Mult( x[2][2], Mult(Inv(g),a[2][2]))*1; AddSet(NNTree,a); break; fi; if AbsInt(x[2][1])=AbsInt(a[2][1]) then RemoveSet(NTree,a); g:=a[2][2]*1; a[2][2]:=x[2][2]*1; a[1][2]:= Mult( x[2][2], Mult(Inv(g),a[1][2]))*1; AddSet(NNTree,a); break; fi; od; od; fi; NTree:=NNTree; VertElts:=[]; if Length(NTree)=0 then VertElts[1]:=1;fi; for x in NTree do VertElts[AbsInt(x[1][1])]:=x[1][2]; VertElts[AbsInt(x[2][1])]:=x[2][2]; od; ########################## #HRels will be a list of relators given as ordered edges of a polygon. HRels:=[]; for i in [1..Dimension(2)] do b:=[]; for x in StructuralCopy(Boundary(2,i)) do y:=StructuralCopy(HGens[AbsInt(x[1])]); if SignInt(x[1])<0 then y[1][1]:=-y[1][1]; y[2][1]:=-y[2][1]; fi; y[1][2]:=Mult(x[2],y[1][2]); y[2][2]:=Mult(x[2],y[2][2]); Add(b,[y[1],y[2],x[1]]); od; B:=1*b; bb:=[b[1]]; b:=Difference(b,bb); src:=bb[1][1]; trg:=bb[1][2]; while Length(b)>0 do lst:=StructuralCopy(trg); lst:=StructuralCopy([-lst[1],lst[2]]); for x in b do if x[1]=lst then src:=x[1]; trg:=x[2]; break; fi; if x[2]=lst then src:=x[2]; trg:=x[1]; break; fi; od; Add(bb,x); b:=Difference(b,bb); od; Add(HRels,bb); od; ################################### cnt:=0; index:=[]; Gens:=[]; for i in [1..Length(HGens)] do if not i in Tree then cnt:=cnt+1; index[i]:=cnt; Add(Gens,HGens[i]);fi; od; #Gens contains the information needed to return gens Gens:=List(Gens,x-> [ [x[1][1],VertElts[AbsInt(x[1][1])]] , [x[2][1],Mult( Mult(VertElts[AbsInt(x[1][1])],Inv(x[1][2])) ,x[2][2])] ] ); Gens:=List(Gens,x-> Mult(x[2][2], Inv(VertElts[AbsInt(x[2][1])]))); HRels1:=[]; for x in HRels do a:=Filtered(x,a->not AbsInt(a[3]) in Tree); a:=List(a,i->SignInt(i[3])*index[AbsInt(i[3])]); Add(HRels1,a); od; F:=FreeGroup(Length(HGens)-Length(Tree)); gens:=GeneratorsOfGroup(F); HRels:=[]; for x in HRels1 do a:=Identity(F); for i in x do a:=a*gens[AbsInt(i)]^SignInt(i); od; Add(HRels,a); od; return rec( freeGroup:=F, relators:=HRels, gens:=Gens ); end); ##################################################################### #####################################################################