Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384############################################################################# #0 #O PersistentHomologyOfCrossedModule ## Input: A crossed module X and an integer number n ## Output: The matrix of persistent Betti numbers of X at degree n ## InstallGlobalFunction(PersistentHomologyOfCrossedModule, function(X,n) local p,Maps, PrimeOne,PrimeTwo,PrimeOneTwo; PrimeOne:=PrimeDivisors(Size(HomotopyGroup(X,1))); PrimeTwo:=PrimeDivisors(Size(HomotopyGroup(X,2))); PrimeOneTwo:=Set(Concatenation(PrimeOne,PrimeTwo)); if Length(PrimeOneTwo) <>1 then return fail; fi; p:=PrimeOneTwo[1]; Maps:=HomotopyLowerCentralSeriesOfCrossedModule(X); Maps:=CatOneGroupByCrossedModule(Maps); Maps:=NerveOfCatOneGroup(Maps,n+1); Maps:=ChainComplexOfSimplicialGroup(Maps); Maps:=List(Maps,f->TensorWithIntegersModP(f,p)); Maps:=List(Maps,f->HomologyVectorSpace(f,n)); return LinearHomomorphismsPersistenceMat(Maps); end); ## ################### end of PersistentHomologyOfCrossedModule ################ ############################################################################# #0 #O PersistentHomology ## Input: A crossed module X and an integer number n ## Output: The matrix of persistent Betti numbers of X at degree n ## InstallOtherMethod(PersistentHomology, "Persistent homology of crossed modules", [IsHapCrossedModule,IsInt], function(X,n) return PersistentHomologyOfCrossedModule(X,n); end); ## ################### end of PersistentHomology ############################### ############################################################################# #0 #O PersistentHomology ## Input: A cat-1-group C and an integer number n ## Output: The matrix of persistent Betti numbers of C at degree n ## InstallOtherMethod(PersistentHomology, "Persistent homology of cat-1-groups", [IsHapCatOneGroup,IsInt], function(C,n) local XC; XC:= CrossedModuleByCatOneGroup(C); return PersistentHomologyOfCrossedModule(XC,n); end); ## ################### end of PersistentHomology ###############################