GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
#! @Chapter Examples and Tests
#! @Section Basic Commands
LoadPackage( "LinearAlgebraForCAP" );;
#! @Example
Q := HomalgFieldOfRationals();;
a := VectorSpaceObject( 3, Q );
#! <A vector space object over Q of dimension 3>
b := VectorSpaceObject( 4, Q );
#! <A vector space object over Q of dimension 4>
homalg_matrix := HomalgMatrix( [ [ 1, 0, 0, 0 ],
[ 0, 1, 0, -1 ],
[ -1, 0, 2, 1 ] ], 3, 4, Q );
#! <A 3 x 4 matrix over an internal ring>
alpha := VectorSpaceMorphism( a, homalg_matrix, b );
#! <A morphism in Category of matrices over Q>
Display( alpha );
#! [ [ 1, 0, 0, 0 ],
#! [ 0, 1, 0, -1 ],
#! [ -1, 0, 2, 1 ] ]
#!
#! A morphism in Category of matrices over Q
homalg_matrix := HomalgMatrix( [ [ 1, 1, 0, 0 ],
[ 0, 1, 0, -1 ],
[ -1, 0, 2, 1 ] ], 3, 4, Q );
#! <A 3 x 4 matrix over an internal ring>
beta := VectorSpaceMorphism( a, homalg_matrix, b );
#! <A morphism in Category of matrices over Q>
CokernelObject( alpha );
#! <A vector space object over Q of dimension 1>
c := CokernelProjection( alpha );;
Display( c );
#! [ [ 0 ],
#! [ 1 ],
#! [ -1/2 ],
#! [ 1 ] ]
#!
#! A split epimorphism in Category of matrices over Q
gamma := UniversalMorphismIntoDirectSum( [ c, c ] );;
Display( gamma );
#! [ [ 0, 0 ],
#! [ 1, 1 ],
#! [ -1/2, -1/2 ],
#! [ 1, 1 ] ]
#!
#! A morphism in Category of matrices over Q
colift := CokernelColift( alpha, gamma );;
IsEqualForMorphisms( PreCompose( c, colift ), gamma );
#! true
FiberProduct( alpha, beta );
#! <A vector space object over Q of dimension 2>
F := FiberProduct( alpha, beta );
#! <A vector space object over Q of dimension 2>
p1 := ProjectionInFactorOfFiberProduct( [ alpha, beta ], 1 );
#! <A morphism in Category of matrices over Q>
Display( PreCompose( p1, alpha ) );
#! [ [ 0, 1, 0, -1 ],
#! [ -1, 0, 2, 1 ] ]
#!
#! A morphism in Category of matrices over Q
Pushout( alpha, beta );
#! <A vector space object over Q of dimension 5>
i1 := InjectionOfCofactorOfPushout( [ alpha, beta ], 1 );
#! <A morphism in Category of matrices over Q>
i2 := InjectionOfCofactorOfPushout( [ alpha, beta ], 2 );
#! <A morphism in Category of matrices over Q>
u := UniversalMorphismFromDirectSum( [ b, b ], [ i1, i2 ] );
#! <A morphism in Category of matrices over Q>
Display( u );
#! [ [ 0, 1, 1, 0, 0 ],
#! [ 1, 0, 1, 0, -1 ],
#! [ -1/2, 0, 1/2, 1, 1/2 ],
#! [ 1, 0, 0, 0, 0 ],
#! [ 0, 1, 0, 0, 0 ],
#! [ 0, 0, 1, 0, 0 ],
#! [ 0, 0, 0, 1, 0 ],
#! [ 0, 0, 0, 0, 1 ] ]
#!
#! A morphism in Category of matrices over Q
KernelObjectFunctorial( u, IdentityMorphism( Source( u ) ), u ) = IdentityMorphism( VectorSpaceObject( 3, Q ) );
#! true
IsZero( CokernelObjectFunctorial( u, IdentityMorphism( Range( u ) ), u ) );
#! true
DirectProductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] );
#! true
CoproductFunctorial( [ u, u ] ) = DirectSumFunctorial( [ u, u ] );
#! true
IsOne( FiberProductFunctorial( [ [ u, IdentityMorphism( Source( u ) ), u ], [ u, IdentityMorphism( Source( u ) ) , u ] ] ) );
#! true
IsOne( PushoutFunctorial( [ [ u, IdentityMorphism( Range( u ) ), u ], [ u, IdentityMorphism( Range( u ) ) , u ] ] ) );
#! true
#! @EndExample