Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## ## FakeLocalizeRing.gi LocalizeRingForHomalg package ## ## Copyright 2013, Mohamed Barakat, University of Kaiserslautern ## Vinay Wagh, Indian Institute of Technology Guwahati ## ## Declarations of procedures for "fake" localized rings. ## ############################################################################# #! @Chapter Fake localize ring #################################### # #! @Section Attributes: # #################################### #! @Description #! Generators of prime ideal at which the base of the fake local ring is localized at #! @Returns a &homalg; matrix DeclareAttribute( "GeneratorsOfPrimeIdeal", IsHomalgRing ); #################################### # # global functions and operations: # #################################### #! @Section constructor methods: ################################################################################ ## The ring of the type k(X)[Y] is used mainly in Quillen-Suslin (esp. proc Horrocks) ## These rings will not be used for computaions like Groebner Basis and related. ## Such ring is called "fake" local ring. ################################################################################ # Here we want to localize at a prime ideal p in k[X] # The expected ring in the algorithm is k[X]_p[Y] #! @Description #! Constructor for the fake ring localized at prime ideal #! second line of documentation #! @Returns DeclareOperation( "LocalizeBaseRingAtPrime", [ IsHomalgRing, IsList, IsList ] ); #! @Description #! Constructor for the fake ring localized at prime ideal #! @Returns DeclareOperation( "LocalizeBaseRingAtPrime", [ IsHomalgRing, IsList ] ); #! @Description #! Constructor for elements of fake local ring localized at prime ideal #! @Returns DeclareGlobalFunction( "ElementOfHomalgFakeLocalRing" ); #! @Description #! #! @Returns DeclareOperation( "BlindlyCopyMatrixPropertiesToFakeLocalMatrix", [ IsHomalgMatrix, IsHomalgMatrix ] ); #! @Description #! Constructor for matrices over fake local ring localized at prime ideal #! @Returns DeclareOperation( "MatrixOverHomalgFakeLocalRing", [ IsHomalgMatrix, IsHomalgRing ] ); #! @Description #! Returns globalR modulo the prime ideal #! @Returns DeclareOperation( "AssociatedResidueClassRing", [ IsHomalgRing ] ); #! @Description #! Returns globalR modulo the prime ideal #! @Returns DeclareOperation( "AssociatedResidueClassRing", [ IsHomalgRingElement ] ); #! @Description #! Returns globalR modulo the prime ideal #! @Returns DeclareOperation( "AssociatedResidueClassRing", [ IsHomalgMatrix ] );