CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<?xml version="1.0" encoding="UTF-8"?>
2
3
<!--
4
5
Rings.xml MatricesForHomalg package documentation Mohamed Barakat
6
7
Copyright (C) 2007-2010, Mohamed Barakat, RWTH-Aachen University
8
9
-->
10
11
<Chapter Label="Rings">
12
<Heading>Rings</Heading>
13
14
<Section Label="Rings:Category">
15
<Heading>Rings: Category and Representations</Heading>
16
17
<#Include Label="IsHomalgRing">
18
19
<#Include Label="IsPreHomalgRing">
20
21
<#Include Label="IsHomalgRingElement">
22
23
<#Include Label="IsHomalgInternalRingRep">
24
25
</Section>
26
27
<Section Label="Rings:Constructors">
28
<Heading>Rings: Constructors</Heading>
29
30
This section describes how to construct rings for use with &MatricesForHomalg;,
31
which exploit the &GAP4;-built-in abilities to perform the necessary
32
ring operations. By this we also mean necessary matrix operations over
33
such rings. For the purposes of &MatricesForHomalg; only the ring of integers is
34
properly supported in &GAP4;. The &GAP4; extension packages &Gauss;
35
and &GaussForHomalg; extend these built-in abilities to operations
36
with sparse matrices over the ring <M>&ZZ; / p^n</M> for <M>p</M>
37
prime and <M>n</M> positive.<P/>
38
39
If a ring <M>R</M> is supported in &MatricesForHomalg; any of its residue class
40
rings <M>R/I</M> is supported as well, provided the ideal <M>I</M> of
41
relations admits a finite set of generators as a left resp. right
42
ideal (&see; <Ref Oper="\/"
43
Label="constructor for residue class rings" Style="Number"/>).
44
This is immediate for commutative noetherian rings.
45
46
<#Include Label="HomalgRingOfIntegers">
47
<#Include Label="HomalgFieldOfRationals">
48
<#Include Label="ResidueClassRingConstructor">
49
50
</Section>
51
52
<Section Label="Rings:Properties">
53
<Heading>Rings: Properties</Heading>
54
55
The following properties are declared for &homalg; rings. Note that
56
(apart from so-called true and immediate methods (&see;
57
<Ref Sect="Rings:LIRNG"/>)) there are no methods installed for ring
58
properties. This means that if the value of the ring
59
property <C>Prop</C> is not set for a &homalg; ring <A>R</A>, then
60
<P/>
61
62
<C>Prop</C>( <A>R</A> ); <P/>
63
64
will cause an error. One can use the usual &GAP4; mechanism to check if
65
the value of the property is set or not <P/>
66
67
<C>HasProp</C>( <A>R</A> ); <P/>
68
69
If you discover that a specific property <C>Prop</C> is missing for a
70
certain &homalg; ring <A>R</A> you can it add using the usual &GAP4;
71
mechanism <P/>
72
73
<C>SetProp</C>( <A>R</A>, true ); <P/>
74
75
or <P/>
76
77
<C>SetProp</C>( <A>R</A>, false ); <P/>
78
79
Be very cautious with setting "missing" properties to &homalg;
80
objects: If the value you set is mathematically wrong &homalg; will
81
probably draw wrong conclusions and might return wrong results.
82
83
<#Include Label="IsZero:rings">
84
<#Include Label="ContainsAField">
85
<#Include Label="IsRationalsForHomalg">
86
<#Include Label="IsFieldForHomalg">
87
<#Include Label="IsDivisionRingForHomalg">
88
<#Include Label="IsIntegersForHomalg">
89
<#Include Label="IsResidueClassRingOfTheIntegers">
90
<#Include Label="IsBezoutRing">
91
<#Include Label="IsIntegrallyClosedDomain">
92
<#Include Label="IsUniqueFactorizationDomain">
93
<#Include Label="IsKaplanskyHermite">
94
<#Include Label="IsDedekindDomain">
95
<#Include Label="IsDiscreteValuationRing">
96
<#Include Label="IsFreePolynomialRing">
97
<#Include Label="IsWeylRing">
98
<#Include Label="IsLocalizedWeylRing">
99
<#Include Label="IsGlobalDimensionFinite">
100
<#Include Label="IsLeftGlobalDimensionFinite">
101
<#Include Label="IsRightGlobalDimensionFinite">
102
<#Include Label="HasInvariantBasisProperty">
103
<#Include Label="HasLeftInvariantBasisProperty">
104
<#Include Label="HasRightInvariantBasisProperty">
105
<#Include Label="IsLocal">
106
<#Include Label="IsSemiLocalRing">
107
<#Include Label="IsIntegralDomain">
108
<#Include Label="IsHereditary">
109
<#Include Label="IsLeftHereditary">
110
<#Include Label="IsRightHereditary">
111
<#Include Label="IsHermite">
112
<#Include Label="IsLeftHermite">
113
<#Include Label="IsRightHermite">
114
<#Include Label="IsNoetherian">
115
<#Include Label="IsLeftNoetherian">
116
<#Include Label="IsRightNoetherian">
117
<#Include Label="IsCohenMacaulay">
118
<#Include Label="IsGorenstein">
119
<#Include Label="IsKoszul">
120
<#Include Label="IsArtinian">
121
<#Include Label="IsLeftArtinian">
122
<#Include Label="IsRightArtinian">
123
<#Include Label="IsOreDomain">
124
<#Include Label="IsLeftOreDomain">
125
<#Include Label="IsRightOreDomain">
126
<#Include Label="IsPrincipalIdealRing">
127
<#Include Label="IsLeftPrincipalIdealRing">
128
<#Include Label="IsRightPrincipalIdealRing">
129
<#Include Label="IsRegular">
130
<#Include Label="IsFiniteFreePresentationRing">
131
<#Include Label="IsLeftFiniteFreePresentationRing">
132
<#Include Label="IsRightFiniteFreePresentationRing">
133
<#Include Label="IsSimpleRing">
134
<#Include Label="IsSemiSimpleRing">
135
<#Include Label="IsSuperCommutative">
136
<#Include Label="BasisAlgorithmRespectsPrincipalIdeals">
137
<#Include Label="AreUnitsCentral">
138
<#Include Label="IsMinusOne">
139
<#Include Label="IsMonic:ringelement">
140
<#Include Label="IsMonicUptoUnit:ringelement">
141
<#Include Label="IsLeftRegular:ringelement">
142
<#Include Label="IsRightRegular:ringelement">
143
<#Include Label="IsRegular:ringelement">
144
145
</Section>
146
147
<Section Label="Rings:Attributes">
148
<Heading>Rings: Attributes</Heading>
149
150
<#Include Label="Inverse:ring_element">
151
152
<#Include Label="homalgTable">
153
<#Include Label="RingElementConstructor">
154
<#Include Label="TypeOfHomalgMatrix">
155
<#Include Label="ConstructorForHomalgMatrices">
156
<#Include Label="Zero:ring">
157
<#Include Label="One:ring">
158
<#Include Label="MinusOne">
159
<#Include Label="ProductOfIndeterminates">
160
<#Include Label="RationalParameters">
161
<#Include Label="IndeterminatesOfPolynomialRing">
162
<#Include Label="RelativeIndeterminatesOfPolynomialRing">
163
<#Include Label="IndeterminateCoordinatesOfRingOfDerivations">
164
<#Include Label="RelativeIndeterminateCoordinatesOfRingOfDerivations">
165
<#Include Label="IndeterminateDerivationsOfRingOfDerivations">
166
<#Include Label="RelativeIndeterminateDerivationsOfRingOfDerivations">
167
<#Include Label="IndeterminateAntiCommutingVariablesOfExteriorRing">
168
<#Include Label="RelativeIndeterminateAntiCommutingVariablesOfExteriorRing">
169
<#Include Label="IndeterminatesOfExteriorRing">
170
<#Include Label="CoefficientsRing">
171
<#Include Label="KrullDimension">
172
<#Include Label="LeftGlobalDimension">
173
<#Include Label="RightGlobalDimension">
174
<#Include Label="GlobalDimension">
175
<#Include Label="GeneralLinearRank">
176
<#Include Label="ElementaryRank">
177
<#Include Label="StableRank">
178
<#Include Label="AssociatedGradedRing">
179
180
</Section>
181
182
<Section Label="Rings:Operations">
183
<Heading>Rings: Operations and Functions</Heading>
184
185
</Section>
186
187
<!-- ############################################################ -->
188
189
</Chapter>
190
191