Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<?xml version="1.0" encoding="UTF-8"?>12<!--34Rings.xml MatricesForHomalg package documentation Mohamed Barakat56Copyright (C) 2007-2010, Mohamed Barakat, RWTH-Aachen University78-->910<Chapter Label="Rings">11<Heading>Rings</Heading>1213<Section Label="Rings:Category">14<Heading>Rings: Category and Representations</Heading>1516<#Include Label="IsHomalgRing">1718<#Include Label="IsPreHomalgRing">1920<#Include Label="IsHomalgRingElement">2122<#Include Label="IsHomalgInternalRingRep">2324</Section>2526<Section Label="Rings:Constructors">27<Heading>Rings: Constructors</Heading>2829This section describes how to construct rings for use with &MatricesForHomalg;,30which exploit the &GAP4;-built-in abilities to perform the necessary31ring operations. By this we also mean necessary matrix operations over32such rings. For the purposes of &MatricesForHomalg; only the ring of integers is33properly supported in &GAP4;. The &GAP4; extension packages &Gauss;34and &GaussForHomalg; extend these built-in abilities to operations35with sparse matrices over the ring <M>&ZZ; / p^n</M> for <M>p</M>36prime and <M>n</M> positive.<P/>3738If a ring <M>R</M> is supported in &MatricesForHomalg; any of its residue class39rings <M>R/I</M> is supported as well, provided the ideal <M>I</M> of40relations admits a finite set of generators as a left resp. right41ideal (&see; <Ref Oper="\/"42Label="constructor for residue class rings" Style="Number"/>).43This is immediate for commutative noetherian rings.4445<#Include Label="HomalgRingOfIntegers">46<#Include Label="HomalgFieldOfRationals">47<#Include Label="ResidueClassRingConstructor">4849</Section>5051<Section Label="Rings:Properties">52<Heading>Rings: Properties</Heading>5354The following properties are declared for &homalg; rings. Note that55(apart from so-called true and immediate methods (&see;56<Ref Sect="Rings:LIRNG"/>)) there are no methods installed for ring57properties. This means that if the value of the ring58property <C>Prop</C> is not set for a &homalg; ring <A>R</A>, then59<P/>6061<C>Prop</C>( <A>R</A> ); <P/>6263will cause an error. One can use the usual &GAP4; mechanism to check if64the value of the property is set or not <P/>6566<C>HasProp</C>( <A>R</A> ); <P/>6768If you discover that a specific property <C>Prop</C> is missing for a69certain &homalg; ring <A>R</A> you can it add using the usual &GAP4;70mechanism <P/>7172<C>SetProp</C>( <A>R</A>, true ); <P/>7374or <P/>7576<C>SetProp</C>( <A>R</A>, false ); <P/>7778Be very cautious with setting "missing" properties to &homalg;79objects: If the value you set is mathematically wrong &homalg; will80probably draw wrong conclusions and might return wrong results.8182<#Include Label="IsZero:rings">83<#Include Label="ContainsAField">84<#Include Label="IsRationalsForHomalg">85<#Include Label="IsFieldForHomalg">86<#Include Label="IsDivisionRingForHomalg">87<#Include Label="IsIntegersForHomalg">88<#Include Label="IsResidueClassRingOfTheIntegers">89<#Include Label="IsBezoutRing">90<#Include Label="IsIntegrallyClosedDomain">91<#Include Label="IsUniqueFactorizationDomain">92<#Include Label="IsKaplanskyHermite">93<#Include Label="IsDedekindDomain">94<#Include Label="IsDiscreteValuationRing">95<#Include Label="IsFreePolynomialRing">96<#Include Label="IsWeylRing">97<#Include Label="IsLocalizedWeylRing">98<#Include Label="IsGlobalDimensionFinite">99<#Include Label="IsLeftGlobalDimensionFinite">100<#Include Label="IsRightGlobalDimensionFinite">101<#Include Label="HasInvariantBasisProperty">102<#Include Label="HasLeftInvariantBasisProperty">103<#Include Label="HasRightInvariantBasisProperty">104<#Include Label="IsLocal">105<#Include Label="IsSemiLocalRing">106<#Include Label="IsIntegralDomain">107<#Include Label="IsHereditary">108<#Include Label="IsLeftHereditary">109<#Include Label="IsRightHereditary">110<#Include Label="IsHermite">111<#Include Label="IsLeftHermite">112<#Include Label="IsRightHermite">113<#Include Label="IsNoetherian">114<#Include Label="IsLeftNoetherian">115<#Include Label="IsRightNoetherian">116<#Include Label="IsCohenMacaulay">117<#Include Label="IsGorenstein">118<#Include Label="IsKoszul">119<#Include Label="IsArtinian">120<#Include Label="IsLeftArtinian">121<#Include Label="IsRightArtinian">122<#Include Label="IsOreDomain">123<#Include Label="IsLeftOreDomain">124<#Include Label="IsRightOreDomain">125<#Include Label="IsPrincipalIdealRing">126<#Include Label="IsLeftPrincipalIdealRing">127<#Include Label="IsRightPrincipalIdealRing">128<#Include Label="IsRegular">129<#Include Label="IsFiniteFreePresentationRing">130<#Include Label="IsLeftFiniteFreePresentationRing">131<#Include Label="IsRightFiniteFreePresentationRing">132<#Include Label="IsSimpleRing">133<#Include Label="IsSemiSimpleRing">134<#Include Label="IsSuperCommutative">135<#Include Label="BasisAlgorithmRespectsPrincipalIdeals">136<#Include Label="AreUnitsCentral">137<#Include Label="IsMinusOne">138<#Include Label="IsMonic:ringelement">139<#Include Label="IsMonicUptoUnit:ringelement">140<#Include Label="IsLeftRegular:ringelement">141<#Include Label="IsRightRegular:ringelement">142<#Include Label="IsRegular:ringelement">143144</Section>145146<Section Label="Rings:Attributes">147<Heading>Rings: Attributes</Heading>148149<#Include Label="Inverse:ring_element">150151<#Include Label="homalgTable">152<#Include Label="RingElementConstructor">153<#Include Label="TypeOfHomalgMatrix">154<#Include Label="ConstructorForHomalgMatrices">155<#Include Label="Zero:ring">156<#Include Label="One:ring">157<#Include Label="MinusOne">158<#Include Label="ProductOfIndeterminates">159<#Include Label="RationalParameters">160<#Include Label="IndeterminatesOfPolynomialRing">161<#Include Label="RelativeIndeterminatesOfPolynomialRing">162<#Include Label="IndeterminateCoordinatesOfRingOfDerivations">163<#Include Label="RelativeIndeterminateCoordinatesOfRingOfDerivations">164<#Include Label="IndeterminateDerivationsOfRingOfDerivations">165<#Include Label="RelativeIndeterminateDerivationsOfRingOfDerivations">166<#Include Label="IndeterminateAntiCommutingVariablesOfExteriorRing">167<#Include Label="RelativeIndeterminateAntiCommutingVariablesOfExteriorRing">168<#Include Label="IndeterminatesOfExteriorRing">169<#Include Label="CoefficientsRing">170<#Include Label="KrullDimension">171<#Include Label="LeftGlobalDimension">172<#Include Label="RightGlobalDimension">173<#Include Label="GlobalDimension">174<#Include Label="GeneralLinearRank">175<#Include Label="ElementaryRank">176<#Include Label="StableRank">177<#Include Label="AssociatedGradedRing">178179</Section>180181<Section Label="Rings:Operations">182<Heading>Rings: Operations and Functions</Heading>183184</Section>185186<!-- ############################################################ -->187188</Chapter>189190191