Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346LoadPackage( "ModulePres" ); LoadPackage( "Homological" ); Qxyzt := HomalgFieldOfRationalsInSingular( ) * "x,y,z,t"; S := GradedRing( Qxyzt ); WeightsOfIndeterminates( S ); wmat := HomalgMatrix( "[ \ x*y, y*z, z*t, 0, 0, 0,\ x^3*z,x^2*z^2,0, x*z^2*t, -z^2*t^2, 0,\ x^4, x^3*z, 0, x^2*z*t, -x*z*t^2, 0,\ 0, 0, x*y, -y^2, x^2-t^2, 0,\ 0, 0, x^2*z, -x*y*z, y*z*t, 0,\ 0, 0, x^2*y-x^2*t,-x*y^2+x*y*t,y^2*t-y*t^2,0,\ 0, 0, 0, 0, -1, 1 \ ]", 7, 6, S ); S0 := GradedFreeLeftPresentation( 1, S ); SetIsAdditiveCategory( CocomplexCategory( CapCategory( S0 ) ), true ); SetIsAdditiveCategory( ComplexCategory( CapCategory( S0 ) ), true ); M := AsGradedLeftPresentation( wmat ); res := FreeResolutionComplexOfModule( M ); res := res[ 1 ]; homres := DualOnComplex( res ); CE := CartanEilenbergResolution( homres, FreeResolutionCocomplexOfModule ); homCE := DualOnCocomplexCocomplex( CE ); trhomCE := TransposeComplexOfComplex( homCE ); LG := LiftNaturalTransformationToGradedModuleFunctorLeft( NaturalIsomorphismFromIdentityToLessGeneratorsLeft( S ) ); SwitchGeneralizedMorphismStandard( "threearrow" ); entry1 := SpectralSequenceEntry( trhomCE, 3, -1, 1 ); underlying_object1 := UnderlyingHonestObject( Source( entry1 ) ); ViewObj( UnderlyingMatrix( underlying_object1 ) ); Print( "\n" ); Display( ApplyFunctor( LG, underlying_object1 ) ); SwitchGeneralizedMorphismStandard( "span" ); trhomCE := TransposeComplexOfComplex( homCE ); entry2 := SpectralSequenceEntry( trhomCE, 3, -1, 1 ); underlying_object2 := UnderlyingHonestObject( Source( entry2 ) ); ViewObj( UnderlyingMatrix( underlying_object2 ) ); Print( "\n" ); Display( ApplyFunctor( LG, underlying_object2 ) ); SwitchGeneralizedMorphismStandard( "cospan" ); trhomCE := TransposeComplexOfComplex( homCE ); entry3 := SpectralSequenceEntry( trhomCE, 3, -1, 1 ); underlying_object3 := UnderlyingHonestObject( Source( entry3 ) ); ViewObj( UnderlyingMatrix( underlying_object3 ) ); Print( "\n" ); Display( ApplyFunctor( LG, underlying_object3 ) );