GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
gap4r8 / pkg / ModulePresentationsForCAP-2017.09.09 / gap / ModulePresentationNaturalTransformations.gd
673487 views#############################################################################
##
## ModulePresentationsForCAP package
##
## Copyright 2014, Sebastian Gutsche, TU Kaiserslautern
## Sebastian Posur, RWTH Aachen
##
#! @Chapter Module Presentations
##
#############################################################################
#######################################
##
#! @Section Natural Transformations
##
#######################################
#! @Description
#! The argument is a homalg ring $R$.
#! The output is the natural isomorphism from the identity functor
#! to the left standard module functor.
#! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{StandardModuleLeft}$
#! @Arguments R
DeclareAttribute( "NaturalIsomorphismFromIdentityToStandardModuleLeft",
IsHomalgRing );
#! @Description
#! The argument is a homalg ring $R$.
#! The output is the natural isomorphism from the identity functor
#! to the right standard module functor.
#! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{StandardModuleRight}$
#! @Arguments R
DeclareAttribute( "NaturalIsomorphismFromIdentityToStandardModuleRight",
IsHomalgRing );
#! @Description
#! The argument is a homalg ring $R$.
#! The output is the natural isomorphism from the identity functor
#! to the functor that gets rid of zero generators of left modules.
#! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{GetRidOfZeroGeneratorsLeft}$
#! @Arguments R
DeclareAttribute( "NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsLeft",
IsHomalgRing );
#! @Description
#! The argument is a homalg ring $R$.
#! The output is the natural isomorphism from the identity functor
#! to the functor that gets rid of zero generators of right modules.
#! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{GetRidOfZeroGeneratorsRight}$
#! @Arguments R
DeclareAttribute( "NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsRight",
IsHomalgRing );
#! @Description
#! The argument is a homalg ring $R$.
#! The output is the natural morphism from the identity functor
#! to the left less generators functor.
#! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{LessGeneratorsLeft}$
#! @Arguments R
DeclareAttribute( "NaturalIsomorphismFromIdentityToLessGeneratorsLeft",
IsHomalgRing );
#! @Description
#! The argument is a homalg ring $R$.
#! The output is the natural morphism from the identity functor
#! to the right less generator functor.
#! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{LessGeneratorsRight}$
#! @Arguments R
DeclareAttribute( "NaturalIsomorphismFromIdentityToLessGeneratorsRight",
IsHomalgRing );
#! @Description
#! The argument is a homalg ring $R$.
#! The output is the natural morphism from the identity functor
#! to the double dual functor in left Presentations category.
#! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{FunctorDoubleDualLeft}$
#! @Arguments R
DeclareAttribute( "NaturalTransformationFromIdentityToDoubleDualLeft",
IsHomalgRing );
#! @Description
#! The argument is a homalg ring $R$.
#! The output is the natural morphism from the identity functor
#! to the double dual functor in right Presentations category.
#! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{FunctorDoubleDualRight}$
#! @Arguments R
DeclareAttribute( "NaturalTransformationFromIdentityToDoubleDualRight",
IsHomalgRing );