Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Path: gap4r8 / pkg / ModulePresentationsForCAP-2017.09.09 / gap / ModulePresentationNaturalTransformations.gd
Views: 418346############################################################################# ## ## ModulePresentationsForCAP package ## ## Copyright 2014, Sebastian Gutsche, TU Kaiserslautern ## Sebastian Posur, RWTH Aachen ## #! @Chapter Module Presentations ## ############################################################################# ####################################### ## #! @Section Natural Transformations ## ####################################### #! @Description #! The argument is a homalg ring $R$. #! The output is the natural isomorphism from the identity functor #! to the left standard module functor. #! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{StandardModuleLeft}$ #! @Arguments R DeclareAttribute( "NaturalIsomorphismFromIdentityToStandardModuleLeft", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is the natural isomorphism from the identity functor #! to the right standard module functor. #! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{StandardModuleRight}$ #! @Arguments R DeclareAttribute( "NaturalIsomorphismFromIdentityToStandardModuleRight", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is the natural isomorphism from the identity functor #! to the functor that gets rid of zero generators of left modules. #! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{GetRidOfZeroGeneratorsLeft}$ #! @Arguments R DeclareAttribute( "NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsLeft", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is the natural isomorphism from the identity functor #! to the functor that gets rid of zero generators of right modules. #! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{GetRidOfZeroGeneratorsRight}$ #! @Arguments R DeclareAttribute( "NaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsRight", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is the natural morphism from the identity functor #! to the left less generators functor. #! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{LessGeneratorsLeft}$ #! @Arguments R DeclareAttribute( "NaturalIsomorphismFromIdentityToLessGeneratorsLeft", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is the natural morphism from the identity functor #! to the right less generator functor. #! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{LessGeneratorsRight}$ #! @Arguments R DeclareAttribute( "NaturalIsomorphismFromIdentityToLessGeneratorsRight", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is the natural morphism from the identity functor #! to the double dual functor in left Presentations category. #! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{FunctorDoubleDualLeft}$ #! @Arguments R DeclareAttribute( "NaturalTransformationFromIdentityToDoubleDualLeft", IsHomalgRing ); #! @Description #! The argument is a homalg ring $R$. #! The output is the natural morphism from the identity functor #! to the double dual functor in right Presentations category. #! @Returns a natural transformation $\mathrm{Id} \rightarrow \mathrm{FunctorDoubleDualRight}$ #! @Arguments R DeclareAttribute( "NaturalTransformationFromIdentityToDoubleDualRight", IsHomalgRing );