Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## ## HomalgSubmodule.gd Modules package ## ## Copyright 2007-2010 Mohamed Barakat, University of Kaiserslautern ## ## Declarations for homalg submodules. ## ############################################################################# #################################### # # properties: # #################################### ## <#GAPDoc Label="IsPrimeIdeal"> ## <ManSection> ## <Prop Arg="J" Name="IsPrimeIdeal"/> ## <Returns><C>true</C> or <C>false</C></Returns> ## <Description> ## Check if the &homalg; submodule <A>J</A> is a prime ideal. The ring has to be commutative. <Br/> ## (no method installed) ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareProperty( "IsPrimeIdeal", IsHomalgModule ); #################################### # # attributes: # #################################### ## <#GAPDoc Label="ResidueClassRing"> ## <ManSection> ## <Attr Arg="J" Name="ResidueClassRing"/> ## <Returns>a &homalg; ring</Returns> ## <Description> ## In case <A>J</A> was defined as a (left/right) ideal of the ring <M>R</M> the residue class ring <M>R/</M><A>J</A> is returned. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareAttribute( "ResidueClassRing", IsHomalgModule ); #################################### # # global functions and operations: # #################################### # constructors: DeclareOperation( "Subobject", [ IsHomalgMatrix, IsHomalgModule ] ); DeclareOperation( "Subobject", [ IsList, IsHomalgModule ] ); DeclareOperation( "Subobject", [ IsHomalgRelations, IsHomalgModule ] ); DeclareOperation( "LeftSubmodule", [ IsRingElement ] ); DeclareOperation( "LeftSubmodule", [ IsHomalgRing ] ); DeclareOperation( "LeftSubmodule", [ IsList ] ); DeclareOperation( "LeftSubmodule", [ IsList, IsHomalgRing ] ); DeclareOperation( "ZeroLeftSubmodule", [ IsHomalgRing ] ); DeclareOperation( "RightSubmodule", [ IsRingElement ] ); DeclareOperation( "RightSubmodule", [ IsHomalgRing ] ); DeclareOperation( "RightSubmodule", [ IsList ] ); DeclareOperation( "RightSubmodule", [ IsList, IsHomalgRing ] ); DeclareOperation( "ZeroRightSubmodule", [ IsHomalgRing ] ); DeclareOperation( "LeftIdealOfMinors", [ IsInt, IsHomalgMatrix ] ); DeclareOperation( "LeftIdealOfMaximalMinors", [ IsHomalgMatrix ] ); DeclareOperation( "RightIdealOfMinors", [ IsInt, IsHomalgMatrix ] ); DeclareOperation( "RightIdealOfMaximalMinors", [ IsHomalgMatrix ] ); # basic operations: DeclareOperation( "DecideZero", [ IsRingElement, IsHomalgModule ] ); DeclareOperation( "MatrixOfSubobjectGenerators", [ IsHomalgObject ] ); DeclareOperation( "RadicalIdealMembership", [ IsHomalgRingElement, IsHomalgObject ] );