CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418425
20 Hilbert basis elements
8 Hilbert basis elements of degree 1
20 extreme rays
16 support hyperplanes

embedding dimension = 16
rank = 8
external index = 1
internal index = 1
original monoid is integrally closed

size of triangulation   = 48
resulting sum of |det|s = 48

grading:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
with denominator = 4

degrees of extreme rays:
1: 8  2: 12  

multiplicity = 21/2

Hilbert series:
1 4 18 36 50 36 18 4 1 
denominator with 8 factors:
1: 4  2: 4  

degree of Hilbert Series as rational function = -4

The numerator of the Hilbert Series is symmetric.

Hilbert series with cyclotomic denominator:
1 4 18 36 50 36 18 4 1 
cyclotomic denominator:
1: 8  2: 4  

Hilbert quasi-polynomial of period 2:
 0:  480 1136 1216 784 330 89 14 1
 1:  390 1051 1186 779 330 89 14 1
with common denominator = 480

***********************************************************************

8 Hilbert basis elements of degree 1:
 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0
 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0
 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

12 further Hilbert basis elements of higher degree:
 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0
 0 0 1 1 0 1 1 0 2 0 0 0 0 1 0 1
 0 0 2 0 0 1 0 1 1 1 0 0 1 0 0 1
 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0
 0 1 0 1 2 0 0 0 0 1 1 0 0 0 1 1
 0 2 0 0 1 0 1 0 0 0 1 1 1 0 0 1
 1 0 0 1 0 0 1 1 1 0 1 0 0 2 0 0
 1 0 0 1 1 1 0 0 0 1 0 1 0 0 2 0
 1 0 1 0 0 0 0 2 0 1 1 0 1 1 0 0
 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1
 1 1 0 0 0 1 1 0 0 0 0 2 1 0 1 0
 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1

20 extreme rays:
 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0
 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0
 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0
 0 0 1 1 0 1 1 0 2 0 0 0 0 1 0 1
 0 0 2 0 0 1 0 1 1 1 0 0 1 0 0 1
 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0
 0 1 0 1 2 0 0 0 0 1 1 0 0 0 1 1
 0 2 0 0 1 0 1 0 0 0 1 1 1 0 0 1
 1 0 0 1 0 0 1 1 1 0 1 0 0 2 0 0
 1 0 0 1 1 1 0 0 0 1 0 1 0 0 2 0
 1 0 1 0 0 0 0 2 0 1 1 0 1 1 0 0
 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1
 1 1 0 0 0 1 1 0 0 0 0 2 1 0 1 0
 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1

16 support hyperplanes:
 0 0  0 -1  1  0  0 0  1 0 0 0 0 0 0 0
 0 0  0  0  0  0  0 0  1 0 0 0 0 0 0 0
 0 0  0  0  0  0  1 0  0 0 0 0 0 0 0 0
 0 0  0  0  0  1  0 0  0 0 0 0 0 0 0 0
 0 0  0  0  0  1  1 0 -1 0 0 0 0 0 0 0
 0 0  0  0  1  0  0 0  0 0 0 0 0 0 0 0
 0 0  0  1  0  0  0 0  0 0 0 0 0 0 0 0
 0 0  1  0  0  0  0 0  0 0 0 0 0 0 0 0
 0 0  1  2 -1 -1  1 0 -1 0 0 0 0 0 0 0
 0 1  0  0  0  0  0 0  0 0 0 0 0 0 0 0
 0 1  1  1 -1  0  0 0 -1 0 0 0 0 0 0 0
 0 1  1  2 -1 -1  0 0 -1 0 0 0 0 0 0 0
 1 0 -1 -1  1  1 -1 0  1 0 0 0 0 0 0 0
 1 0  0 -1  1  0 -1 0  1 0 0 0 0 0 0 0
 1 0  0  0  0  0  0 0  0 0 0 0 0 0 0 0
 1 1  1  1 -1 -1 -1 0  0 0 0 0 0 0 0 0

8 equations:
 1 0 0 0 0 0 0 -1 0  0  0 -1  1  0  0  0
 0 1 0 0 0 0 0 -1 0  1 -1 -1  1  1  0 -1
 0 0 1 0 0 0 0  1 0 -1  1  1 -2 -1  0  0
 0 0 0 1 0 0 0  1 0  0  0  1 -1 -1 -1  0
 0 0 0 0 1 0 0  1 0 -1 -1  0  0  0  0  0
 0 0 0 0 0 1 0  1 0  0  1  1 -2 -1 -1  0
 0 0 0 0 0 0 1 -1 0  1  0 -1  1  0  0 -1
 0 0 0 0 0 0 0  0 1  1  1  1 -1 -1 -1 -1

8 basis elements of lattice:
 1 0 0 0 0 0 0  1 0  1  0  0  0  0  1  0
 0 1 0 0 0 0 0  1 0  0  1  0  1  0  0  0
 0 0 1 0 0 0 0  1 0  0  1  0  1  1 -1  0
 0 0 0 1 0 0 0  1 0 -1  2  0  1  2 -1 -1
 0 0 0 0 1 0 0 -1 0  1 -1  0 -1 -1  1  1
 0 0 0 0 0 1 0 -1 0  0 -1  1  0 -1  1  0
 0 0 0 0 0 0 1 -1 0 -1  0  1  0  1 -1  0
 0 0 0 0 0 0 0  0 1  1 -1 -1 -1 -1  1  1