CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418425
17 Hilbert basis elements
16 Hilbert basis elements of degree 1
10 generators of integral closure of the ideal
16 extreme rays
2 module generators over original monoid
24 support hyperplanes

embedding dimension = 7
rank = 7 (maximal)
external index = 1
internal index = 1
original monoid is not integrally closed

size of partial triangulation   = 1
resulting sum of |det|s = 2

grading:
1 1 1 1 1 1 -2 

degrees of extreme rays:
1: 16  

Hilbert basis elements are not of degree 1

ideal is not primary to the ideal generated by the indeterminates

***********************************************************************

16 Hilbert basis elements of degree 1:
 0 0 0 0 0 1 0
 0 0 0 0 1 0 0
 0 0 0 1 0 0 0
 0 0 1 0 0 0 0
 0 0 1 1 0 1 1
 0 0 1 1 1 0 1
 0 1 0 0 0 0 0
 0 1 0 0 1 1 1
 0 1 0 1 1 0 1
 0 1 1 0 0 1 1
 1 0 0 0 0 0 0
 1 0 0 0 1 1 1
 1 0 0 1 0 1 1
 1 0 1 0 1 0 1
 1 1 0 1 0 0 1
 1 1 1 0 0 0 1

1 further Hilbert basis elements of higher degree:
 1 1 1 1 1 1 2

10 generators of integral closure of the ideal:
 0 0 1 1 0 1
 0 0 1 1 1 0
 0 1 0 0 1 1
 0 1 0 1 1 0
 0 1 1 0 0 1
 1 0 0 0 1 1
 1 0 0 1 0 1
 1 0 1 0 1 0
 1 1 0 1 0 0
 1 1 1 0 0 0

16 extreme rays:
 0 0 0 0 0 1 0
 0 0 0 0 1 0 0
 0 0 0 1 0 0 0
 0 0 1 0 0 0 0
 0 0 1 1 0 1 1
 0 0 1 1 1 0 1
 0 1 0 0 0 0 0
 0 1 0 0 1 1 1
 0 1 0 1 1 0 1
 0 1 1 0 0 1 1
 1 0 0 0 0 0 0
 1 0 0 0 1 1 1
 1 0 0 1 0 1 1
 1 0 1 0 1 0 1
 1 1 0 1 0 0 1
 1 1 1 0 0 0 1

2 module generators over original monoid:
 0 0 0 0 0 0 0
 1 1 1 1 1 1 2

24 support hyperplanes:
 0 0 0 0 0 0  1
 0 0 0 0 0 1  0
 0 0 0 0 1 0  0
 0 0 0 1 0 0  0
 0 0 1 0 0 0  0
 0 0 1 1 0 1 -1
 0 0 1 1 1 0 -1
 0 1 0 0 0 0  0
 0 1 0 0 1 1 -1
 0 1 0 1 1 0 -1
 0 1 1 0 0 1 -1
 0 1 1 1 1 1 -2
 1 0 0 0 0 0  0
 1 0 0 0 1 1 -1
 1 0 0 1 0 1 -1
 1 0 1 0 1 0 -1
 1 0 1 1 1 1 -2
 1 1 0 1 0 0 -1
 1 1 0 1 1 1 -2
 1 1 1 0 0 0 -1
 1 1 1 0 1 1 -2
 1 1 1 1 0 1 -2
 1 1 1 1 1 0 -2
 1 1 1 1 1 1 -3