Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#! @Chapter Functions #! @Section Cone properties #! @Arguments cone #! @Returns the affine dimension #! @Description #! The affine dimension of the polyhedron in inhomogeneous computations. Its computation is triggered if necessary. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "AffineDim" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzAffineDim" ); #! @Arguments cone #! @Returns the class group in a special format #! @Description #! A normal affine monoid $M$ has a well-defined divisor class group. #! It is naturally isomorphic to the divisor class group of $K[M]$ where $K$ #! is a field (or any unique factorization domain). #! We represent it as a vector where the first entry is the rank. It is #! followed by sequence of pairs of entries <M>n,m</M>. Such two entries #! represent a free cyclic summand <M>(\mathbb{Z}/n\mathbb{Z})^m</M>. #! Not allowed in inhomogeneous computations. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "ClassGroup" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzClassGroup" ); #! @Arguments cone #! @Returns a matrix whose rows represent the congruences #! @Description #! The equations, congruences and support hyperplanes together #! describe the lattice points of the cone. #! <P/> #! This is part of the cone property <Q>Sublattice</Q>. DeclareGlobalFunction( "NmzCongruences" ); #! @Arguments cone #! @Returns a matrix whose rows are the degree 1 elements #! @Description #! Requires the presence of a grading. Not allowed in inhomogeneous computations. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "Deg1Elements" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzDeg1Elements" ); #! @Arguments cone #! @Returns the dehomgenization vector #! @Description #! Only for inhomogeneous computations. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "Dehomogenization" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzDehomogenization" ); #! @Arguments cone #! @Returns the embedding dimension of the cone #! @Description #! The embedding dimension is the dimension of the space in which the #! computation is done. It is the number of components of the output vectors. #! This value is always known directly after the creation of the cone. DeclareGlobalFunction( "NmzEmbeddingDimension" ); #! @Arguments cone #! @Returns a matrix whose rows represent the equations #! @Description #! The equations cut out the linear space generated by the cone. #! The equations, congruences and support hyperplanes together #! describe the lattice points of the cone. DeclareGlobalFunction( "NmzEquations" ); #! @Arguments cone #! @Returns a matrix whose rows represent the excluded faces #! @Description #! This is an alias for <C>NmzConeProperty( cone, "ExcludedFaces" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzExcludedFaces" ); #! @Arguments cone #! @Returns a matrix whose rows are the extreme rays #! @Description #! This is an alias for <C>NmzConeProperty( cone, "ExtremeRays" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzExtremeRays" ); #! @Arguments cone #! @Returns a matrix whose rows are the generators of <A>cone</A> #! @Description #! This is an alias for <C>NmzConeProperty( cone, "Generators" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzGenerators" ); #! @Arguments cone #! @Returns a vector representing the generator of the interior of <A>cone</A> #! @Description #! If <A>cone</A> is Gorenstein, this function returns the generator of the interior of <A>cone</A>. #! If <A>cone</A> is not Gorenstein, an error is raised. DeclareGlobalFunction( "NmzGeneratorOfInterior" ); #! @Arguments cone #! @Returns the grading vector #! @Description #! This is an alias for <C>NmzConeProperty( cone, "Grading" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzGrading" ); #! @Arguments cone #! @Returns a matrix whose rows are the Hilbert basis elements #! @Description #! This is an alias for <C>NmzConeProperty( cone, "HilbertBasis" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzHilbertBasis" ); #! @Arguments cone #! @Returns the Hilbert function as a quasipolynomial #! @Description #! The Hilbert function counts the lattice points degreewise. The result is a #! quasipolynomial <M>Q</M>, that is, a polynomial with periodic coefficients. It is #! given as list of polynomials <M>P_0, \ldots, P_{(p-1)}</M> such that <M>Q(i) = P_{(i \bmod p)} (i)</M>. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "HilbertQuasiPolynomial" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzHilbertQuasiPolynomial" ); #! @Arguments cone #! @Returns the Hilbert series as rational function #! @Description #! The result consists of a list with two entries. The first is the numerator #! polynomial. In inhomogeneous computations this can also be a Laurent #! polynomial. The second list entry represents the denominator. It is a list #! of pairs <M>[k_i, l_i]</M>. Such a pair represents the factor <M>(1-t^{k_i})^{l_i}</M>. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "HilbertSeries" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzHilbertSeries" ); #! @Arguments cone #! @Returns inclusion-exclusion data #! @Description #! List of faces which are internally have been used in the inclusion-exclusion #! scheme. Given as a list pairs. The first pair entry is a key of generators #! contained in the face (compare also <Ref Func="NmzTriangulation"/>) and the #! multiplicity with which it was considered. #! Only available with excluded faces or strict constraints as input. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "InclusionExclusionData" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzInclusionExclusionData" ); #! @Arguments cone #! @Returns <K>true</K> if all extreme rays have degree 1; <K>false</K> otherwise #! @Description #! This is an alias for <C>NmzConeProperty( cone, "IsDeg1ExtremeRays" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzIsDeg1ExtremeRays" ); #! @Arguments cone #! @Returns <K>true</K> if all Hilbert basis elements have degree 1; <K>false</K> otherwise #! @Description #! This is an alias for <C>NmzConeProperty( cone, "IsDeg1HilbertBasis" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzIsDeg1HilbertBasis" ); #! @Arguments cone #! @Returns whether the cone is Gorenstein #! @Description #! Returns true if <A>cone</A> is Gorenstein, false otherwise. DeclareGlobalFunction( "NmzIsGorenstein" ); #! @Arguments cone #! @Returns whether the cone is inhomogeneous #! @Description #! This value is always known directly after the creation of the cone. DeclareGlobalFunction( "NmzIsInhomogeneous" ); #! @Arguments cone #! @Returns <K>true</K> if the cone is integrally closed; <K>false</K> otherwise #! @Description #! It is integrally closed when the Hilbert basis is a subset of the original monoid generators. So it is only computable if we have original monoid generators. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "IsIntegrallyClosed" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzIsIntegrallyClosed" ); #! @Arguments cone #! @Returns <K>true</K> if the cone is pointed; <K>false</K> otherwise #! @Description #! This is an alias for <C>NmzConeProperty( cone, "IsPointed" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzIsPointed" ); #! @Arguments cone #! @Returns <K>true</K> if is the monomial ideal is primary to the irrelevant maximal ideal, <K>false</K> otherwise #! @Description #! Only used with the input type <C>rees_algebra</C>. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "IsReesPrimary" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzIsReesPrimary" ); #! @Arguments cone #! @Returns a matrix whose rows generate the maximale linear subspace #! @Description #! This is an alias for <C>NmzConeProperty( cone, "MaximalSubspace" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzMaximalSubspace" ); #! @Arguments cone #! @Returns a matrix whose rows are the module generators #! @Description #! This is an alias for <C>NmzConeProperty( cone, "ModuleGenerators" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzModuleGenerators" ); #! @Arguments cone #! @Returns a matrix whose rows are the module generators over the original monoid #! @Description #! A minimal system of generators of the integral closure over the original monoid. #! Requires the existence of original monoid generators. Not allowed in inhomogeneous computations. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "ModuleGeneratorsOverOriginalMonoid" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzModuleGeneratorsOverOriginalMonoid" ); #! @Arguments cone #! @Returns the rank of the module of lattice points in the polyhedron as a module over the recession monoid #! @Description #! Only for inhomogeneous computations. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "ModuleRank" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzModuleRank" ); #! @Arguments cone #! @Description #! This is an alias for <C>NmzConeProperty( cone, "Multiplicity" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzMultiplicity" ); #! @Arguments cone #! @Returns a matrix whose rows are the original monoid generators #! @Description #! This is an alias for <C>NmzConeProperty( cone, "OriginalMonoidGenerators" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzOriginalMonoidGenerators" ); #! @Arguments cone #! @Returns the rank of the cone #! @Description #! This value is the rank of the lattice generated by the lattice points of the cone. #! <P/> #! This is part of the cone property <Q>Sublattice</Q>. DeclareGlobalFunction( "NmzRank" ); #! @Arguments cone #! @Returns the rank of the recession cone #! @Description #! Only for inhomogeneous computations. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "RecessionRank" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzRecessionRank" ); #! @Arguments cone #! @Description #! the multiplicity of a monomial ideal, provided it is primary to the maximal #! ideal generated by the indeterminates. Used only with the input type #! <C>rees_algebra</C>. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "ReesPrimaryMultiplicity" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzReesPrimaryMultiplicity" ); #! @Arguments cone #! @Returns a matrix whose rows represent the support hyperplanes #! @Description #! The equations cut out the linear space generated by the cone. #! The equations, congruences and support hyperplanes together #! describe the lattice points of the cone. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "SupportHyperplanes" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzSupportHyperplanes" ); #! @Arguments cone #! @Returns the triangulation #! @Description #! This returns a list of the maximal simplicial cones in a triangulation, i.e., a list of cones dividing the #! cone into simplicial cones. Each cone in the list is represented by a pair. #! The first entry of such a pair is the key of the simplex, i.e., a list of integers $a_1,\dots,a_n$ #! referring to the <Ref Func="NmzGenerators"/> (counting from 0) which are used in this simplicial cone. #! The second entry of each pair in the list is the absolute value of the determinant of the generator matrix of the simplicial cone. #! <P/> #! This is an alias for <C>NmzConeProperty( cone, "Triangulation" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzTriangulation" ); #! @Arguments cone #! @Returns sum of the absolute values of the determinants of the simplicial cones in the used triangulation #! @Description #! This is an alias for <C>NmzConeProperty( cone, "TriangulationDetSum" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzTriangulationDetSum" ); #! @Arguments cone #! @Returns the number of simplicial cones in the used triangulation #! @Description #! This is an alias for <C>NmzConeProperty( cone, "TriangulationSize" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzTriangulationSize" ); #! @Arguments cone #! @Returns a matrix whose rows are the vertices of the polyhedron <A>cone</A> with float coordinates #! @Description #! The rows of this matrix represent the vertices of <A>cone</A>, printed as floats for better readability. #! The result might be inexact, and should therefore not be used for computations. DeclareGlobalFunction( "NmzVerticesFloat" ); #! @Arguments cone #! @Returns a matrix whose rows are the vertices of the polyhedron #! @Description #! This is an alias for <C>NmzConeProperty( cone, "VerticesOfPolyhedron" );</C> see <Ref Func="NmzConeProperty"/>. DeclareGlobalFunction( "NmzVerticesOfPolyhedron" ); #! @Description #! This is an alias for NmzConeProperty( cone, "ConeDecomposition" ); #! @Arguments cone DeclareGlobalFunction( "NmzConeDecomposition" ); #! @Description #! This is an alias for NmzConeProperty( cone, "EmbeddingDim" ); #! @Arguments cone DeclareGlobalFunction( "NmzEmbeddingDim" ); #! @Description #! This is an alias for NmzConeProperty( cone, "ExternalIndex" ); #! @Arguments cone DeclareGlobalFunction( "NmzExternalIndex" ); #! @Description #! This is an alias for NmzConeProperty( cone, "GradingDenom" ); #! @Arguments cone DeclareGlobalFunction( "NmzGradingDenom" ); #! @Description #! This is an alias for NmzConeProperty( cone, "IntegerHull" ); #! @Arguments cone DeclareGlobalFunction( "NmzIntegerHull" ); #! @Description #! This is an alias for NmzConeProperty( cone, "InternalIndex" ); #! @Arguments cone DeclareGlobalFunction( "NmzInternalIndex" ); #! @Description #! This is an alias for NmzConeProperty( cone, "StanleyDec" ); #! @Arguments cone DeclareGlobalFunction( "NmzStanleyDec" ); #! @Description #! This is an alias for NmzConeProperty( cone, "Sublattice" ); #! @Arguments cone DeclareGlobalFunction( "NmzSublattice" ); #! @Description #! This is an alias for NmzConeProperty( cone, "UnitGroupIndex" ); #! @Arguments cone DeclareGlobalFunction( "NmzUnitGroupIndex" ); #! @Description #! This is an alias for NmzConeProperty( cone, "NmzWeightedEhrhartQuasiPolynomial" ); #! @Arguments cone DeclareGlobalFunction( "NmzWeightedEhrhartQuasiPolynomial" ); #! @Description #! This is an alias for NmzConeProperty( cone, "NmzWeightedEhrhartSeries" ); #! @Arguments cone DeclareGlobalFunction( "NmzWeightedEhrhartSeries" ); #! @Description #! This is an alias for NmzConeProperty( cone, "WitnessNotIntegrallyClosed" ); #! @Arguments cone DeclareGlobalFunction( "NmzWitnessNotIntegrallyClosed" );