Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346gap> START_TEST("NormalizInterface: rp2poly.tst"); # gap> M := [ > [ 1, 1, 1, 0, 0, 0 ], > [ 1, 1, 0, 1, 0, 0 ], > [ 1, 0, 1, 0, 1, 0 ], > [ 1, 0, 0, 1, 0, 1 ], > [ 1, 0, 0, 0, 1, 1 ], > [ 0, 1, 1, 0, 0, 1 ], > [ 0, 1, 0, 1, 1, 0 ], > [ 0, 1, 0, 0, 1, 1 ], > [ 0, 0, 1, 1, 1, 0 ], > [ 0, 0, 1, 1, 0, 1 ], > ];; gap> cone := NmzCone(["normalization", M]);; gap> NmzCompute(cone); true gap> NmzPrintConeProperties(cone); Generators = [ [ 0, 0, 1, 1, 0, 1 ], [ 0, 0, 1, 1, 1, 0 ], [ 0, 1, 0, 0, 1, 1 ], [ 0, 1, 0, 1, 1, 0 ], [ 0, 1, 1, 0, 0, 1 ], [ 1, 0, 0, 0, 1, 1 ], [ 1, 0, 0, 1, 0, 1 ], [ 1, 0, 1, 0, 1, 0 ], [ 1, 1, 0, 1, 0, 0 ], [ 1, 1, 1, 0, 0, 0 ] ] ExtremeRays = [ [ 0, 0, 1, 1, 0, 1 ], [ 0, 0, 1, 1, 1, 0 ], [ 0, 1, 0, 0, 1, 1 ], [ 0, 1, 0, 1, 1, 0 ], [ 0, 1, 1, 0, 0, 1 ], [ 1, 0, 0, 0, 1, 1 ], [ 1, 0, 0, 1, 0, 1 ], [ 1, 0, 1, 0, 1, 0 ], [ 1, 1, 0, 1, 0, 0 ], [ 1, 1, 1, 0, 0, 0 ] ] SupportHyperplanes = [ [ -2, 1, 1, 1, 1, 1 ], [ -1, -1, 2, 2, -1, 2 ], [ -1, -1, 2, 2, 2, -1 ], [ -1, 2, -1, -1, 2, 2 ], [ -1, 2, -1, 2, 2, -1 ], [ -1, 2, 2, -1, -1, 2 ], [ 0, 0, 0, 0, 0, 1 ], [ 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 1, 0, 0 ], [ 0, 0, 1, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0 ], [ 1, -2, 1, 1, 1, 1 ], [ 1, 0, 0, 0, 0, 0 ], [ 1, 1, -2, 1, 1, 1 ], [ 1, 1, 1, -2, 1, 1 ], [ 1, 1, 1, 1, -2, 1 ], [ 1, 1, 1, 1, 1, -2 ], [ 2, -1, -1, -1, 2, 2 ], [ 2, -1, -1, 2, -1, 2 ], [ 2, -1, 2, -1, 2, -1 ], [ 2, 2, -1, 2, -1, -1 ], [ 2, 2, 2, -1, -1, -1 ] ] HilbertBasis = [ [ 0, 0, 1, 1, 0, 1 ], [ 0, 0, 1, 1, 1, 0 ], [ 0, 1, 0, 0, 1, 1 ], [ 0, 1, 0, 1, 1, 0 ], [ 0, 1, 1, 0, 0, 1 ], [ 1, 0, 0, 0, 1, 1 ], [ 1, 0, 0, 1, 0, 1 ], [ 1, 0, 1, 0, 1, 0 ], [ 1, 1, 0, 1, 0, 0 ], [ 1, 1, 1, 0, 0, 0 ], [ 1, 1, 1, 1, 1, 1 ] ] Deg1Elements = [ [ 0, 0, 1, 1, 0, 1 ], [ 0, 0, 1, 1, 1, 0 ], [ 0, 1, 0, 0, 1, 1 ], [ 0, 1, 0, 1, 1, 0 ], [ 0, 1, 1, 0, 0, 1 ], [ 1, 0, 0, 0, 1, 1 ], [ 1, 0, 0, 1, 0, 1 ], [ 1, 0, 1, 0, 1, 0 ], [ 1, 1, 0, 1, 0, 0 ], [ 1, 1, 1, 0, 0, 0 ] ] Sublattice = [ [ [ 1, 0, 0, 0, 0, -1 ], [ 0, 1, 0, 0, 0, -1 ], [ 0, 0, 1, 0, 0, -1 ], [ 0, 0, 0, 1, 0, -1 ], [ 0, 0, 0, 0, 1, -1 ], [ 0, 0, 0, 0, 0, 3 ] ], [ [ 3, 0, 0, 0, 0, 1 ], [ 0, 3, 0, 0, 0, 1 ], [ 0, 0, 3, 0, 0, 1 ], [ 0, 0, 0, 3, 0, 1 ], [ 0, 0, 0, 0, 3, 1 ], [ 0, 0, 0, 0, 0, 1 ] ], 3 ] OriginalMonoidGenerators = [ [ 1, 1, 1, 0, 0, 0 ], [ 1, 1, 0, 1, 0, 0 ], [ 1, 0, 1, 0, 1, 0 ], [ 1, 0, 0, 1, 0, 1 ], [ 1, 0, 0, 0, 1, 1 ], [ 0, 1, 1, 0, 0, 1 ], [ 0, 1, 0, 1, 1, 0 ], [ 0, 1, 0, 0, 1, 1 ], [ 0, 0, 1, 1, 1, 0 ], [ 0, 0, 1, 1, 0, 1 ] ] MaximalSubspace = [ ] Grading = [ 1/3, 1/3, 1/3, 1/3, 1/3, 1/3 ] TriangulationSize = 18 TriangulationDetSum = 21 GradingDenom = 3 UnitGroupIndex = 1 InternalIndex = 1 Multiplicity = 21 Rank = 6 EmbeddingDim = 6 IsPointed = true IsDeg1ExtremeRays = true IsDeg1HilbertBasis = false IsIntegrallyClosed = false IsInhomogeneous = false ClassGroup = [ 16 ] HilbertSeries = [ t^4+4*t^3+11*t^2+4*t+1, [ [ 1, 6 ] ] ] HilbertQuasiPolynomial = [ 7/40*t^5+7/8*t^4+53/24*t^3+25/8*t^2+157/60*t+1 ] IsTriangulationNested = false IsTriangulationPartial = false # gap> STOP_TEST("rp2poly.tst", 0);