Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W frobenius-extra-4ti2i.gi Ignacio Ojeda <[email protected]> #W Carlos Jesús Moreno Ávila <[email protected]> #W Manuel Delgado <[email protected]> #W Pedro Garcia-Sanchez <[email protected]> ## #Y Copyright 2015-- Universidad de Extremadura and Universidad de Granada, Spain ############################################################################# ############################################################################# ## #F FrobeniusNumber(s) ## ## Computes the Frobenius Number of the numerical semigroup <s>. ## ## The definition of Frobenius Number can be found in ## the book ## - Rosales, J. C.; García-Sánchez, P. A. Numerical semigroups. ## Developments in Mathematics, 20. Springer, New York, 2009. ## The main algorithm used appears in ## - Roune, B.H. The slice algorithm for irreducible decomposition of ## monomial ideals.J. Symbolic Comput. 44 (2009), no. 4, 358–381. ## ## REQUERIMENTS: 4ti2Interface ############################################################################# InstallMethod(FrobeniusNumber, "method using 4ti2 for the calculaction of the Frobenius number", [IsNumericalSemigroup],50, function( S ) local v, n, M, msm, MonomialIdeal, MaximalStandardMonomials, BelongsToMonomialIdeal, MinimalGeneratingSystemOfMonomialIdeal, QuotientOfMonomialIdealByMonomial; Info(InfoNumSgps,2,"Using 4ti2Interface for the calculation of the Frobenius number"); MonomialIdeal := function(v) local n, I, M, E, upperbound, C, m, L, ap, i; n := Length(v); I := 4ti2Interface_groebner_matrix( TransposedMat([v]), v ); I := I{[1 .. Length(I)]}{[2 .. n]}; M := []; for i in I do Add(M,List(i,x->Maximum(x,0))); od; return M; end; MinimalGeneratingSystemOfMonomialIdeal := function(M) return Filtered(M, m->not(BelongsToMonomialIdeal(Difference(M,[m]),m))); end; BelongsToMonomialIdeal := function(M,m) return ForAny(M, x->ForAll(m-x, y -> y>=0)); end; QuotientOfMonomialIdealByMonomial := function(M,m) local n,quotient,f,g; n := Length(m); quotient := []; for f in M do g := List(f-m, x->Maximum(x,0)); if IsZero(g) then return [g]; fi; Add(quotient,g); od; return quotient; end; MaximalStandardMonomials := function(M,S,p,i,msm) local n, C, q, M1, S1,tr; tr:=function(v) return List(v-1, x->Maximum(x,0)); end; n := Length(M[1]); M := MinimalGeneratingSystemOfMonomialIdeal(M); if ForAll(Sum(M), x->x=1) then Add(msm,p); return msm; fi; q:=First(M{[i..Length(M)]}, qq->not(IsZero(tr(qq)) or BelongsToMonomialIdeal(S,tr(qq)))); if q<>fail then q:=tr(q); M1 := QuotientOfMonomialIdealByMonomial(M,q); S1 := QuotientOfMonomialIdealByMonomial(S,q); msm := MaximalStandardMonomials(M1,MinimalGeneratingSystemOfMonomialIdeal(S1),p+q,1,msm); Add(S,q); i:=i+1; msm := MaximalStandardMonomials(M,MinimalGeneratingSystemOfMonomialIdeal(S),p,i,msm); return msm; fi; return msm; end; v := MinimalGeneratingSystemOfNumericalSemigroup(S); n := Length(v); M := MonomialIdeal(v); msm := MaximalStandardMonomials(M,[],Zero([1 .. n-1]),1,[]); return Maximum(msm*v{[2 .. Length(v)]})-v[1]; #return maximum S-degree - v_1 end); ############################################################################# ## #F AperyList(s) ## ## Computes the Apery set of the numerical semigroup <s> with respect to ## the multiplicit of <s> ## ## The definition of Apery set can be found in ## the book ## - Rosales, J. C.; García-Sánchez, P. A. Numerical semigroups. ## Developments in Mathematics, 20. Springer, New York, 2009. ## The main algorithm used appears in ## - Roune, B.H. The slice algorithm for irreducible decomposition of ## monomial ideals.J. Symbolic Comput. 44 (2009), no. 4, 358–381. ## ## REQUERIMENTS: 4ti2Interface ############################################################################# InstallMethod(AperyList, "method using 4ti2 for the calculaction of the Apery set", [IsNumericalSemigroup],50, function( S ) local v, n, M, msm, c, L, MonomialIdeal, MaximalStandardMonomials, BelongsToMonomialIdeal, MinimalGeneratingSystemOfMonomialIdeal, QuotientOfMonomialIdealByMonomial, LatticePointsInBoxGivenByDiagonal; Info(InfoNumSgps,2,"Using 4ti2Interface for the calculation of the Apery set"); MonomialIdeal := function(v) local n, I, M, E, upperbound, C, m, L, ap, i; n := Length(v); I := 4ti2Interface_groebner_matrix( TransposedMat([v]), v ); I := I{[1 .. Length(I)]}{[2 .. n]}; M := []; for i in I do Add(M,List(i,x->Maximum(x,0))); od; return M; end; MinimalGeneratingSystemOfMonomialIdeal := function(M) return Filtered(M, m->not(BelongsToMonomialIdeal(Difference(M,[m]),m))); end; BelongsToMonomialIdeal := function(M,m) return ForAny(M, x->ForAll(m-x, y -> y>=0)); end; QuotientOfMonomialIdealByMonomial := function(M,m) local n,quotient,f,g; n := Length(m); quotient := []; for f in M do g := List(f-m, x->Maximum(x,0)); if IsZero(g) then return [g]; fi; Add(quotient,g); od; return quotient; end; MaximalStandardMonomials := function(M,S,p,i,msm) local n, C, q, M1, S1,tr; tr:=function(v) return List(v-1, x->Maximum(x,0)); end; n := Length(M[1]); M := MinimalGeneratingSystemOfMonomialIdeal(M); if ForAll(Sum(M), x->x=1) then Add(msm,p); return msm; fi; q:=First(M{[i..Length(M)]}, qq->not(IsZero(tr(qq)) or BelongsToMonomialIdeal(S,tr(qq)))); if q<>fail then q:=tr(q); M1 := QuotientOfMonomialIdealByMonomial(M,q); S1 := QuotientOfMonomialIdealByMonomial(S,q); msm := MaximalStandardMonomials(M1,MinimalGeneratingSystemOfMonomialIdeal(S1),p+q,1,msm); Add(S,q); i:=i+1; msm := MaximalStandardMonomials(M,MinimalGeneratingSystemOfMonomialIdeal(S),p,i,msm); return msm; fi; return msm; end; LatticePointsInBoxGivenByDiagonal := function( lowerconer, uppercorner ) local V,i; V := []; for i in [1 .. Length(lowerconer)] do Add(V,[lowerconer[i] .. uppercorner[i]]); od; return Cartesian(V); end; v := MinimalGeneratingSystemOfNumericalSemigroup(S); n := Length(v); M := MonomialIdeal(v); msm := MaximalStandardMonomials(M,[],Zero([1 .. n-1]),1,[]); L := []; for c in msm do L := Union(L,LatticePointsInBoxGivenByDiagonal(Zero([1 .. n-1]),c)); od; L:= L*v{[2 .. Length(v)]}; return List([0..v[1]-1], i->First(L, y->(y-i) mod v[1]=0)); end);