Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W presentaciones.gd Manuel Delgado <[email protected]> #W Pedro A. Garcia-Sanchez <[email protected]> #W Jose Morais <[email protected]> ## ## #Y Copyright 2005 by Manuel Delgado, #Y Pedro Garcia-Sanchez and Jose Joao Morais #Y We adopt the copyright regulations of GAP as detailed in the #Y copyright notice in the GAP manual. ## ############################################################################# ############################################################################# ## #F FortenTruncatedNCForNumericalSemigroups(l) ## ## l contains the list of coefficients of a ## single linear equation. FortenTruncatedNCForNumericalSemigroups ## gives a minimal generator ## of the affine semigroup of nonnegative solutions of this equation ## with the first coordinate equal to one. ## ## Used for computing minimal presentations. ## ############################################################################# DeclareGlobalFunction("FortenTruncatedNCForNumericalSemigroups"); ############################################################################# ## #F GraphAssociatedToElementInNumericalSemigroup(n,s) ## ## Computes the graph associated to the element n ## the numerical semigroup s. ## Its vertices are those minimal generators m such that ## n-m in s ## Its edges are those pairs (m1,m2) of minimal generators ## such that n-(m1+m2) in s. ############################################################################# DeclareGlobalFunction("GraphAssociatedToElementInNumericalSemigroup"); ############################################################################# ## #F MinimalPresentationOfNumericalSemigroup(s) ## ## For a numerical semigroup s, give a minimal presentation ## the output is a list of pairs showing the relationship ## between the minimal generators of s ## the algorithm is the one given in ## -J. C. Rosales, {\em An algorithmic method to compute a minimal ## relation for any numerical semigroup}, Internat. J. Algebra Comput. ## {\bf 6} (1996), no. 4, 441--455. ############################################################################# DeclareGlobalFunction("MinimalPresentationOfNumericalSemigroup"); DeclareOperation("MinimalPresentation",[IsNumericalSemigroup]); ############################################################################# ## #F BettiElementsOfNumericalSemigroup(s) ## ## For a numerical semigroup s, returns the elements whose associated graphs ## are non-connected, or in other words, whose factorizations are used to ## construct any minimal presentation for s ## ############################################################################# DeclareGlobalFunction("BettiElementsOfNumericalSemigroup"); DeclareOperation("BettiElements", [IsNumericalSemigroup]); ############################################################################# ## #P IsUniquelyPresentedNumericalSemigroup(s) ## ## For a numerical semigroup s, checks it it has a unique minimal presentation ## Basado en GS-O ## ############################################################################# DeclareProperty("IsUniquelyPresented", IsNumericalSemigroup); DeclareSynonymAttr("IsUniquelyPresentedNumericalSemigroup", IsUniquelyPresented); ############################################################################# ## #P IsGenericNumericalSemigroup(s) ## ## For a numerical semigroup s, checks it it has a generic presentation, ## that is, in every relation all minimal generators appear. These semigroups are uniquely ## presented véase B-GS-G. ## ############################################################################# DeclareProperty("IsGeneric", IsNumericalSemigroup); DeclareSynonymAttr("IsGenericNumericalSemigroup", IsGeneric); ############################################################################# ## #F ShadedSetOfElementInNumericalSemigroup(x,s) ## computes the shading set of x in s as defined in ## -Székely, L. A.; Wormald, N. C. Generating functions for the Frobenius ## problem with 2 and 3 generators. Math. Chronicle 15 (1986), 49–57. ############################################################################# DeclareGlobalFunction("ShadedSetOfElementInNumericalSemigroup"); ############################################################################ ## #F PrimitiveElementsOfNumericalSemigroup(s) ## ## Computes the sets of elements in s, such that there exists a minimal ## solution to msg*x-msg*y = 0, such that x,y are factorizations of s ## ############################################################################# DeclareGlobalFunction("PrimitiveElementsOfNumericalSemigroup");