Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418386#cmm (c2mm) #http://en.wikipedia.org/wiki/Wallpaper_group#Group_cmm M := [ [1,2,4], [1,4,7], [2,3,6], [2,4,5], [2,5,6], [3,6,7], [4,5,8], [4,7,8], [5,6,9], [5,8,9], [6,7,8], [6,8,9] ]; G1 := Group( (1,2) ); G2 := Group( (3,4) ); C := Group( (1,2)(3,4) ); V4 := Group( (1,2),(3,4) ); iso := rec( 1 := V4, 2 := G1, 3 := V4, 7 := G2, 9 := C ); mu:=[ [ [6], [6,9], [5,6,9], [6,8,9], x -> (1,2)(3,4) ], [ [6], [6,9], [6,8,9], [5,6,9], x -> (1,2)(3,4) ] ]; dim := 2; # 1: 12 x 86 matrix with rank 11 and kernel dimension 1. Time: 0.000 sec. # 2: 86 x 237 matrix with rank 72 and kernel dimension 14. Time: 0.000 sec. # 3: 237 x 575 matrix with rank 160 and kernel dimension 77. Time: 0.012 sec. # 4: 575 x 1604 matrix with rank 408 and kernel dimension 167. Time: 0.104 sec. # 5: 1604 x 4890 matrix with rank 1187 and kernel dimension 417. Time: 0.780 sec. # 6: 4890 x 15627 matrix with rank 3692 and kernel dimension 1198. Time: 8.184 sec. # 7: 15627 x 51105 matrix with rank 11922 and kernel dimension 3705. Time: 82.674 sec. # 8: 51105 x 168363 matrix with rank 39168 and kernel dimension 11937. Time: 901.792 sec. # Cohomology dimension at degree 0: GF(2)^(1 x 1) # Cohomology dimension at degree 1: GF(2)^(1 x 3) # Cohomology dimension at degree 2: GF(2)^(1 x 5) # Cohomology dimension at degree 3: GF(2)^(1 x 7) # Cohomology dimension at degree 4: GF(2)^(1 x 9) # Cohomology dimension at degree 5: GF(2)^(1 x 11) # Cohomology dimension at degree 6: GF(2)^(1 x 13) # Cohomology dimension at degree 7: GF(2)^(1 x 15) #--------------------------------------------------------------------------------------------------- #matrix sizes: # [ 12, 124, 709, 4517, 30692, 211056, 1458659 ] #factors: # [ .., 5.71774, 6.37094, 6.79478, 6.87658, 6.91124 ] #cohomology over Z, computed: #----------------------------------------------->>>> Z^(1 x 1) #----------------------------------------------->>>> 0 #----------------------------------------------->>>> Z/< 2 > + Z/< 2 > + Z/< 2 > #----------------------------------------------->>>> Z/< 2 > + Z/< 2 > #cohomology over Z, guessed based on Z/nZ calculations and the fact that the orbifold is concatinable: #---------->>>> Z^(1 x 1) #---------->>>> 0 #---------->>>> Z/< 2 > ^ 3 #---------->>>> Z/< 2 > ^ 2 #---------->>>> Z/< 2 > ^ 5 #---------->>>> Z/< 2 > ^ 4 #---------->>>> Z/< 2 > ^ 7 # V4 leads to growing non-periodic cohomologies #cohomology over GF(2): # 1: 12 x 124 matrix with rank 11 and kernel dimension 1. # 2: 124 x 709 matrix with rank 110 and kernel dimension 14. # 3: 709 x 4517 matrix with rank 594 and kernel dimension 115. # 4: 4517 x 30692 matrix with rank 3916 and kernel dimension 601. # 5: 30692 x 211056 matrix with rank 26767 and kernel dimension 3925. # 6: 211056 x 1458659 matrix with rank 184278 and kernel dimension 26778. # Cohomology dimension at degree 0: GF(2)^(1 x 1) # Cohomology dimension at degree 1: GF(2)^(1 x 3) # Cohomology dimension at degree 2: GF(2)^(1 x 5) # Cohomology dimension at degree 3: GF(2)^(1 x 7) # Cohomology dimension at degree 4: GF(2)^(1 x 9) # Cohomology dimension at degree 5: GF(2)^(1 x 11) #cohomology over Z/4Z: #---------->>>> Z/4Z^(1 x 1) #---------->>>> Z/4Z/< ZmodnZObj(2,4) > ^ (1 x 3) (changed for better readability) #---------->>>> Z/4Z/< ZmodnZObj(2,4) > ^ (1 x 5) (same here) #---------->>>> Z/4Z/< ZmodnZObj(2,4) > ^ (1 x 7) (same here)