Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384# p31m # http://en.wikipedia.org/wiki/Wallpaper_group#Group_p31m M := [ [1,2,3], [1,2,4], [1,3,4], [2,3,6], [2,5,6], [2,4,7], [2,5,7], [3,4,7], [3,6,7] ]; S3 := Group( (1,2,3), (1,2) ); C3 := Group( (1,2,3) ); C2 := Group( (1,2) ); iso := rec( 1 := C3, 5 := S3, 6 := C2, 7 := C2 ); mu := [ [ [2], [1,2], [1,2,3], [1,2,4], x -> (1,2,3) ], [ [2], [1,2], [1,2,4], [1,2,3], x -> (1,3,2) ] ]; dim := 3; # 1: 9 x 72 matrix with rank 8 and kernel dimension 1. Time: 0.000 sec. # 2: 72 x 261 matrix with rank 63 and kernel dimension 9. Time: 0.008 sec. # 3: 261 x 1033 matrix with rank 197 and kernel dimension 64. Time: 0.440 sec. # 4: 1033 x 5037 matrix with rank 834 and kernel dimension 199. Time: 33.354 sec. # 5: 5037 x 26911 matrix with rank 4201 and kernel dimension 836. Time: 7623.669 sec. # Cohomology dimension at degree 0: GF(3)^(1 x 1) # Cohomology dimension at degree 1: GF(3)^(1 x 1) # Cohomology dimension at degree 2: GF(3)^(1 x 1) # Cohomology dimension at degree 3: GF(3)^(1 x 2) # Cohomology dimension at degree 4: GF(3)^(1 x 2) #--------------------------------------------------------------------------------------- #------------------------- new triangulation: ------------------------------- # 1: 9 x 105 matrix with rank 8 and kernel dimension 1. Time: 0.000 sec. # 2: 105 x 736 matrix with rank 96 and kernel dimension 9. Time: 0.004 sec. # 3: 736 x 5963 matrix with rank 638 and kernel dimension 98. Time: 0.196 sec. # 4: 5963 x 53053 matrix with rank 5323 and kernel dimension 640. Time: 13.921 sec. # 5: 53053 x 497007 matrix with rank 47728 and kernel dimension 5325. Time: 1054.590 sec. # Cohomology dimension at degree 0: GF(2)^(1 x 1) # Cohomology dimension at degree 1: GF(2)^(1 x 1) # Cohomology dimension at degree 2: GF(2)^(1 x 2) # Cohomology dimension at degree 3: GF(2)^(1 x 2) # Cohomology dimension at degree 4: GF(2)^(1 x 2) #----------------------------------------------->>>> Z^(1 x 1) #----------------------------------------------->>>> 0 #----------------------------------------------->>>> Z/< 6 > #----------------------------------------------->>>> Z/< 2 > # in 3 h, 14 GB #------------------------- old triangulation: -------------------------------- # matrix sizes: # [ 9, 153, 2432, 50651, 1133693 ] # factors: # [ 17, 15.8954, 20.8269, 22.3824 ] #cohomology over Z: #------->>>> Z^(1 x 1) #------->>>> 0 #------->>>> Z/< 6 > #homology over Z: #------->>>> Z^(1 x 1) #------->>>> Z/< 6 > #------->>>> Z/< 2 > # 1: 9 x 153 matrix with rank 8 and kernel dimension 1. Time: 0.000 sec. # 2: 153 x 2432 matrix with rank 144 and kernel dimension 9. Time: 0.052 sec. # 3: 2432 x 50651 matrix with rank 2286 and kernel dimension 146. Time: 2.612 sec. # 4: 50651 x 1133693 matrix with rank 48363 and kernel dimension 2288. Time: 1139.408 sec. # 5: 1133693 x 25853535 exceeded memory (-o 15g) # Cohomology dimension at degree 0: GF(2)^(1 x 1) # Cohomology dimension at degree 1: GF(2)^(1 x 1) # Cohomology dimension at degree 2: GF(2)^(1 x 2) # Cohomology dimension at degree 3: GF(2)^(1 x 2)