Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418386############################################################################### ## #F Props.gi The SymbCompCC package D�rte Feichtenschlager ## ############################################################################### ## #M AbelianInvariants( grp_pres ) ## ## Input: p-power-poly-pcp-groups grp_pres ## ## Output: a list which describes the abelian invariants of grp_pres ## InstallMethod( AbelianInvariants, [ IsPPPPcpGroups ], 0, function( grp_pres ) local p, rel, n, d, m, expo, expo_vec, Zero0, One1, A, l_a, null_vec, i, j, k, S, Ab, l_ab, pos, PrimeP; if grp_pres!.m > 0 then Error( "The function needs an infinite coclass sequence as input." ); fi; ## Initialize p := grp_pres!.prime; rel := grp_pres!.rel; n := grp_pres!.n; d := grp_pres!.d; m := grp_pres!.m; expo := grp_pres!.expo; expo_vec := grp_pres!.expo_vec; Zero0 := Int2PPowerPoly( p, 0 ); One1 := Int2PPowerPoly( p, 1 ); PrimeP := Int2PPowerPoly( p, p ); null_vec := []; for i in [1..n+d+m] do null_vec[i] := Zero0; od; A := []; l_a := 0; for i in [1..Length(rel)] do for j in [1..Length(rel[i])] do l_a := l_a + 1; ## initialize A[l_a] := StructuralCopy( null_vec ); if i <= n then if j <> i then A[l_a][i] := PPP_Add( A[l_a][i], One1 ); else A[l_a][i] := PPP_Add( A[l_a][i], PrimeP ); fi; elif i <= n+d then if j <> i then A[l_a][i] := PPP_Add( A[l_a][i], One1 ); else A[l_a][i] := PPP_Add( A[l_a][i], expo ); fi; else ## d < i <= m if j <> i then A[l_a][i] := PPP_Add( A[l_a][i], One1 ); else A[l_a][i] := PPP_Add( A[l_a][i], expo_vec[i] ); fi; fi; ## add the relation for k in [1..Length(rel[i][j])] do pos := rel[i][j][k][1]; if pos <= n then A[l_a][pos] := PPP_Subtract( A[l_a][pos], Int2PPowerPoly( p, rel[i][j][k][2] ) ); else A[l_a][pos] := PPP_Subtract( A[l_a][pos], rel[i][j][k][2] ); fi; od; od; od; A := PPowerPolyMat2PPowerPolyLocMat( A ); S := SmithNormalFormPPowerPoly( A ); l_ab := 0; Ab := []; for i in [1..Length( S[1] )] do if S[i][i][1] <> One1 then l_ab := l_ab + 1; Ab[l_ab] := S[i][i][2]; fi; od; return Ab; end); ############################################################################### ## #M ZeroCohomologyPPPPcps( grp_pres, p ) ## ## Input: p-power-poly-pcp-groups grp_pres and a prime p ## ## Output: a list which describes the zero-mod-p-cohomology of grp_pres ## InstallMethod( ZeroCohomologyPPPPcps, [ IsPPPPcpGroups, IsInt ], 0, function( grp_pres, p ) local Ab, coho, i; if grp_pres!.m > 0 then Error( "The function needs an infinite coclass sequence as input." ); fi; ## check if not IsPrime( p ) or p < 0 then return Error( "Wrong input, the second parameter has to be a positive prime." ); fi; ## catch trivial case if not p = grp_pres!.prime then return []; fi; return [ p ]; end); ############################################################################### ## #M ZeroCohomologyPPPPcps( grp_pres ) ## ## Input: p-power-poly-pcp-groups grp_pres ## ## Output: a list which describes the zero integral cohomology of grp_pres ## InstallMethod( ZeroCohomologyPPPPcps, [ IsPPPPcpGroups ], 0, function( grp_pres ) if grp_pres!.m > 0 then Error( "The function needs an infinite coclass sequence as input." ); fi; return [ 0 ]; end); ############################################################################### ## #M FirstCohomologyPPPPcps( grp_pres, p ) ## ## Input: p-power-poly-pcp-groups grp_pres and a prime p ## ## Output: a list which describes the first-mod-p-cohomology of grp_pres ## InstallMethod( FirstCohomologyPPPPcps, [ IsPPPPcpGroups, IsInt ], 0, function( grp_pres, p ) local Ab, coho, i; if grp_pres!.m > 0 then Error( "The function needs an infinite coclass sequence as input." ); fi; ## check if not IsPrime( p ) or p < 0 then return Error( "Wrong input, the second parameter has to be a positive prime." ); fi; ## catch trivial case if not p = grp_pres!.prime then return []; fi; ## Ab := AbelianInvariants( grp_pres ); coho := []; for i in [1..Length( Ab )] do coho[i] := p; od; return coho; end); ############################################################################### ## #M FirstCohomologyPPPPcps( grp_pres ) ## ## Input: p-power-poly-pcp-groups grp_pres ## ## Output: a list which describes the first integral cohomology of grp_pres ## InstallMethod( FirstCohomologyPPPPcps, [ IsPPPPcpGroups ], 0, function( grp_pres ) if grp_pres!.m > 0 then Error( "The function needs an infinite coclass sequence as input." ); fi; return [ ]; end); ############################################################################### ## #M SecondCohomologyPPPPcps( grp_pres, p ) ## ## Input: p-power-poly-pcp-groups grp_pres and a prime p ## ## Output: a list which describes the second-mod-p-cohomology of grp_pres ## InstallMethod( SecondCohomologyPPPPcps, [ IsPPPPcpGroups, IsInt ], 0, function( grp_pres, p ) local Ab, Schur, coho, l_c, i; if grp_pres!.m > 0 then Error( "The function needs an infinite coclass sequence as input." ); fi; ## check if not IsPrime( p ) or p < 0 then return Error( "Wrong input, the second parameter has to be a positive prime." ); fi; ## catch trivial case if not p = grp_pres!.prime then return []; fi; ## Ab := AbelianInvariants( grp_pres ); Schur := SchurMultiplicatorsStructurePPPPcps( grp_pres ); coho := []; for i in [1..Length( Ab )] do coho[i] := p; od; l_c := Length( coho ); for i in [1..Length( Schur )] do coho[l_c+i] := p; od; return coho; end); ############################################################################### ## #M SecondCohomologyPPPPcps( grp_pres ) ## ## Input: p-power-poly-pcp-groups grp_pres ## ## Output: a list which describes the second integral cohomology of grp_pres ## InstallMethod( SecondCohomologyPPPPcps, [ IsPPPPcpGroups ], 0, function( grp_pres ) if grp_pres!.m > 0 then Error( "The function needs an infinite coclass sequence as input." ); fi; return AbelianInvariants( grp_pres ); end); #E Props.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here