Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 41834612[1X Toric [101X345[1X toric varieties and some combinatorial geometry computations [101X6781.9.49101107/03/2017121314David Joyner15161718David Joyner19Email: [7Xmailto:[email protected][107X20Homepage: [7Xhttps://sites.google.com/site/wdjoyner/[107X21Address: [33X[0;14YW. David Joyner[133X22[33X[0;14YMathematics Department[133X23[33X[0;14YU. S. Naval Academy[133X24[33X[0;14YAnnapolis, MD 21402[133X25[33X[0;14YUSA[133X26272829-------------------------------------------------------30[1XCopyright[101X31[33X[0;0Y© 2004-2017 David Joyner.[133X323334-------------------------------------------------------35[1XAcknowledgements[101X36[33X[0;0YThe code for the [5Xtoric[105X package was written during the summer of 2002. It was37put into [5XGAP[105X package format in the summer of 2004.[133X3839[33X[0;0Y[5Xtoric[105X is free software; you can redistribute it and/or modify it under the40terms of the MIT License.[133X4142[33X[0;0Y[5Xtoric[105X is distributed in the hope that it will be useful, but WITHOUT ANY43WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS44FOR A PARTICULAR PURPOSE. See the MIT License for more details.[133X4546[33X[0;0YThis documentation was prepared with the [5XGAPDoc[105X package of Frank Lübeck and47Max Neunhöffer. Moreover, a bug in toric 1.8 was fixed with the help of Max48Horn, and this documentation was modified accordingly. Finally, I thank49Alexander Konovalov and Max Horn for transferring this package to the new50Git repository.[133X515253-------------------------------------------------------545556[1XContents (toric)[101X57581 [33X[0;0YIntroduction[133X591.1 [33X[0;0YIntroduction to the [5Xtoric[105X package[133X601.2 [33X[0;0YIntroduction to constructing toric varieties[133X611.2-1 [33X[0;0YGeneralities[133X621.2-2 [33X[0;0YBasic combinatorial geometry constructions[133X631.2-3 [33X[0;0YBasic affine toric variety constructions[133X641.2-4 [33X[0;0YRiemann-Roch spaces and related constructions[133X652 [33X[0;0YCones and semigroups[133X662.1 [33X[0;0YCones[133X672.1-1 InsideCone682.1-2 InDualCone692.1-3 PolytopeLatticePoints702.1-4 Faces712.1-5 ConesOfFan722.1-6 NumberOfConesOfFan732.1-7 ToricStar742.2 [33X[0;0YSemigroups[133X752.2-1 DualSemigroupGenerators763 [33X[0;0YAffine toric varieties[133X773.1 [33X[0;0YIdeals defining affine toric varieties[133X783.1-1 EmbeddingAffineToricVariety794 [33X[0;0YToric varieties [22XX(∆)[122X[133X804.1 [33X[0;0YRiemann-Roch spaces[133X814.1-1 DivisorPolytope824.1-2 DivisorPolytopeLatticePoints834.1-3 RiemannRochBasis844.2 [33X[0;0YTopological invariants[133X854.2-1 EulerCharacteristic864.2-2 BettiNumberToric874.3 [33X[0;0YPoints over a finite field[133X884.3-1 CardinalityOfToricVariety899091[32X929394