CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
4 Toric varieties X(∆)
3
4
This chapter concerns toric commands which deal with certain objects
5
associated to the (non-affine) toric varieties X(∆).
6
7
8
4.1 Riemann-Roch spaces
9
10
Let ∆ denote a complete nonsingular fan.
11
12
4.1-1 DivisorPolytope
13
14
DivisorPolytope( D, Rays )  function
15
16
Input: Rays is the list of smallest integer vectors in the rays for the fan
17
∆ which determine the Weil divisors of X(∆).
18
D is the list of coefficients for the a Weil divisor.
19
Output: the linear expressions in the affine coordinates of the space of the
20
cone which must be positive for a point to be in the desired polytope.
21
22
 Example 
23
gap> DivisorPolytope([6,6,0],[[2,-1],[-1,2],[-1,-1]]);
24
[ 2*x_1-x_2+6, -x_1+2*x_2+6, -x_1-x_2 ]
25

26
27
See also Example 6.13 in [JV02].
28
29
4.1-2 DivisorPolytopeLatticePoints
30
31
DivisorPolytopeLatticePoints( D, Delta, Rays )  function
32
33
Input: Delta is the fan
34
Rays is the ordered list of rays for Delta
35
D is the list of coefficients for a Weil divisor.
36
Output: the list of points in P_D ∩ L_0^* which parameterize the elements in
37
the Riemann-Roch space L(D), where P_D is the polytope associated to the
38
divisor D (see DivisorPolytope).
39
40
 Example 
41
gap> Div:=[6,6,0];; Rays:=[[2,-1],[-1,2],[-1,-1]];;
42
gap> Delta0:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
43
gap> P_Div:=DivisorPolytopeLatticePoints(Div,Delta0,Rays);
44
[ [ -6, -6 ], [ -5, -5 ], [ -5, -4 ], [ -4, -5 ], [ -4, -4 ], [ -4, -3 ],
45
 [ -4, -2 ], [ -3, -4 ], [ -3, -3 ], [ -3, -2 ], [ -3, -1 ], [ -3, 0 ],
46
 [ -2, -4 ], [ -2, -3 ], [ -2, -2 ], [ -2, -1 ], [ -2, 0 ], [ -2, 1 ],
47
 [ -2, 2 ], [ -1, -3 ], [ -1, -2 ], [ -1, -1 ], [ -1, 0 ], [ -1, 1 ],
48
 [ 0, -3 ], [ 0, -2 ], [ 0, -1 ], [ 0, 0 ], [ 1, -2 ], [ 1, -1 ], [ 2, -2 ] ]
49

50
51
4.1-3 RiemannRochBasis
52
53
RiemannRochBasis( D, Delta, Rays )  function
54
55
Input: Delta is a complete and nonsingular fan
56
D is the list of coefficients for the Weil divisor
57
Rays is a list of rays for the fan used to describe the Weil divisors.
58
Output: A basis (a list of monomials) for the Riemann-Roch space of the
59
divisor represented by D.
60
61
For details on how the Weil divisors can be expressed in terms of the rays
62
of the fan, please see section 3.3 in [Ful93]. This procedure does not check
63
if the fan is complete and nonsingular.
64
65
 Example 
66
gap> Div:=[6,6,0];; Rays:=[[2,-1],[-1,2],[-1,-1]];;
67
gap> Delta0:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
68
gap> RiemannRochBasis(Div,Delta0,Rays);
69
[ 1/(x_1^6*x_2^6), 1/(x_1^5*x_2^5), 1/(x_1^5*x_2^4), 1/(x_1^4*x_2^5),
70
 1/(x_1^4*x_2^4), 1/(x_1^4*x_2^3), 1/(x_1^4*x_2^2), 1/(x_1^3*x_2^4),
71
 1/(x_1^3*x_2^3), 1/(x_1^3*x_2^2), 1/(x_1^3*x_2), 1/x_1^3, 1/(x_1^2*x_2^4),
72
 1/(x_1^2*x_2^3), 1/(x_1^2*x_2^2), 1/(x_1^2*x_2), 1/x_1^2, x_2/x_1^2,
73
 x_2^2/x_1^2, 1/(x_1*x_2^3), 1/(x_1*x_2^2), 1/(x_1*x_2), 1/x_1, x_2/x_1,
74
 1/x_2^3, 1/x_2^2, 1/x_2, 1, x_1/x_2^2, x_1/x_2, x_1^2/x_2^2 ]
75

76
77
78
4.2 Topological invariants
79
80
Throughout this section, X(∆) must be non-singular.
81
82
4.2-1 EulerCharacteristic
83
84
EulerCharacteristic( Delta )  function
85
86
Input: Delta is a nonsingular fan of cones, represented by its list of
87
maximal cones.
88
Output: the Euler characteristic of the toric variety X(∆), where ∆ is a fan
89
determined by Delta.
90
91
 Example 
92
gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
93
gap> EulerCharacteristic(Cones);
94
3
95

96
97
Note: X(∆) must be non-singular here.
98
99
4.2-2 BettiNumberToric
100
101
BettiNumberToric( Delta, k )  function
102
103
Input: Delta represents a nonsingular fan ∆ (represented by maximal cones),
104
k is an integer.
105
Output: the k-th Betti number of the toric variety X(∆).
106
107
The BettiNumberToric procedure does not check if Delta is nonsingular. It is
108
possible that this procedure outputs nonsense when Delta is not represented
109
by maximal cones or is nonsingular.
110
111
 Example 
112
gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
113
gap> BettiNumberToric(Cones,1);
114
0
115
gap> BettiNumberToric(Cones,2);
116
1
117
gap> Cones:=[[[2,-1],[-1,1]],[[-1,1],[-1,0]],[[-1,0],[2,-1]]];;
118
gap> BettiNumberToric(Cones,1);
119
0
120
gap> BettiNumberToric(Cones,2);
121
1
122

123
124
Not to be confused with the Betti number of a polycyclically presented
125
torsion free group, already available in GAP.
126
127
128
4.3 Points over a finite field
129
130
4.3-1 CardinalityOfToricVariety
131
132
CardinalityOfToricVariety( Cones, q )  function
133
134
Input: Cones is the list of maximal cones of a fan ∆, q is a prime power.
135
Output: The size of the set of GF(q)-rational points of the toric variety
136
X(∆).
137
138
Note: X(∆) must be non-singular here.
139
140
 Example 
141
gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
142
gap> CardinalityOfToricVariety(Cones,3);
143
13
144
gap> CardinalityOfToricVariety(Cones,4);
145
21
146
gap> CardinalityOfToricVariety(Cones,5);
147
31
148
gap> CardinalityOfToricVariety(Cones,7);
149
57
150

151
152
153