Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X4 [33X[0;0YToric varieties [22XX(∆)[122X[101X[1X[133X[101X23[33X[0;0YThis chapter concerns [5Xtoric[105X commands which deal with certain objects4associated to the (non-affine) toric varieties [22XX(∆)[122X.[133X567[1X4.1 [33X[0;0YRiemann-Roch spaces[133X[101X89[33X[0;0YLet [22X∆[122X denote a complete nonsingular fan.[133X1011[1X4.1-1 DivisorPolytope[101X1213[29X[2XDivisorPolytope[102X( [3XD[103X, [3XRays[103X ) [32X function1415[33X[0;0Y[13XInput[113X: [3XRays[103X is the list of smallest integer vectors in the rays for the fan16[22X∆[122X which determine the Weil divisors of [22XX(∆)[122X.[133X17[33X[0;0Y[3XD[103X is the list of coefficients for the a Weil divisor.[133X18[33X[0;0Y[13XOutput[113X: the linear expressions in the affine coordinates of the space of the19cone which must be positive for a point to be in the desired polytope.[133X2021[4X[32X Example [32X[104X22[4X[25Xgap>[125X [27XDivisorPolytope([6,6,0],[[2,-1],[-1,2],[-1,-1]]);[127X[104X23[4X[28X[ 2*x_1-x_2+6, -x_1+2*x_2+6, -x_1-x_2 ][128X[104X24[4X[32X[104X2526[33X[0;0YSee also Example 6.13 in [JV02].[133X2728[1X4.1-2 DivisorPolytopeLatticePoints[101X2930[29X[2XDivisorPolytopeLatticePoints[102X( [3XD[103X, [3XDelta[103X, [3XRays[103X ) [32X function3132[33X[0;0Y[13XInput[113X: [3XDelta[103X is the fan[133X33[33X[0;0Y[3XRays[103X is the [13Xordered[113X list of rays for [3XDelta[103X[133X34[33X[0;0Y[3XD[103X is the list of coefficients for a Weil divisor.[133X35[33X[0;0Y[13XOutput[113X: the list of points in [22XP_D ∩ L_0^*[122X which parameterize the elements in36the Riemann-Roch space [22XL(D)[122X, where [22XP_D[122X is the polytope associated to the37divisor [22XD[122X (see [10XDivisorPolytope[110X).[133X3839[4X[32X Example [32X[104X40[4X[25Xgap>[125X [27XDiv:=[6,6,0];; Rays:=[[2,-1],[-1,2],[-1,-1]];;[127X[104X41[4X[25Xgap>[125X [27XDelta0:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;[127X[104X42[4X[25Xgap>[125X [27XP_Div:=DivisorPolytopeLatticePoints(Div,Delta0,Rays);[127X[104X43[4X[28X[ [ -6, -6 ], [ -5, -5 ], [ -5, -4 ], [ -4, -5 ], [ -4, -4 ], [ -4, -3 ],[128X[104X44[4X[28X [ -4, -2 ], [ -3, -4 ], [ -3, -3 ], [ -3, -2 ], [ -3, -1 ], [ -3, 0 ],[128X[104X45[4X[28X [ -2, -4 ], [ -2, -3 ], [ -2, -2 ], [ -2, -1 ], [ -2, 0 ], [ -2, 1 ],[128X[104X46[4X[28X [ -2, 2 ], [ -1, -3 ], [ -1, -2 ], [ -1, -1 ], [ -1, 0 ], [ -1, 1 ],[128X[104X47[4X[28X [ 0, -3 ], [ 0, -2 ], [ 0, -1 ], [ 0, 0 ], [ 1, -2 ], [ 1, -1 ], [ 2, -2 ] ][128X[104X48[4X[32X[104X4950[1X4.1-3 RiemannRochBasis[101X5152[29X[2XRiemannRochBasis[102X( [3XD[103X, [3XDelta[103X, [3XRays[103X ) [32X function5354[33X[0;0Y[13XInput[113X: [3XDelta[103X is a complete and nonsingular fan[133X55[33X[0;0Y[3XD[103X is the list of coefficients for the Weil divisor[133X56[33X[0;0Y[3XRays[103X is a list of rays for the fan used to describe the Weil divisors.[133X57[33X[0;0Y[13XOutput[113X: A basis (a list of monomials) for the Riemann-Roch space of the58divisor represented by [3XD[103X.[133X5960[33X[0;0YFor details on how the Weil divisors can be expressed in terms of the rays61of the fan, please see section 3.3 in [Ful93]. This procedure does not check62if the fan is complete and nonsingular.[133X6364[4X[32X Example [32X[104X65[4X[25Xgap>[125X [27XDiv:=[6,6,0];; Rays:=[[2,-1],[-1,2],[-1,-1]];;[127X[104X66[4X[25Xgap>[125X [27XDelta0:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;[127X[104X67[4X[25Xgap>[125X [27XRiemannRochBasis(Div,Delta0,Rays);[127X[104X68[4X[28X[ 1/(x_1^6*x_2^6), 1/(x_1^5*x_2^5), 1/(x_1^5*x_2^4), 1/(x_1^4*x_2^5),[128X[104X69[4X[28X 1/(x_1^4*x_2^4), 1/(x_1^4*x_2^3), 1/(x_1^4*x_2^2), 1/(x_1^3*x_2^4),[128X[104X70[4X[28X 1/(x_1^3*x_2^3), 1/(x_1^3*x_2^2), 1/(x_1^3*x_2), 1/x_1^3, 1/(x_1^2*x_2^4),[128X[104X71[4X[28X 1/(x_1^2*x_2^3), 1/(x_1^2*x_2^2), 1/(x_1^2*x_2), 1/x_1^2, x_2/x_1^2,[128X[104X72[4X[28X x_2^2/x_1^2, 1/(x_1*x_2^3), 1/(x_1*x_2^2), 1/(x_1*x_2), 1/x_1, x_2/x_1,[128X[104X73[4X[28X 1/x_2^3, 1/x_2^2, 1/x_2, 1, x_1/x_2^2, x_1/x_2, x_1^2/x_2^2 ][128X[104X74[4X[32X[104X757677[1X4.2 [33X[0;0YTopological invariants[133X[101X7879[33X[0;0YThroughout this section, [22XX(∆)[122X [13Xmust be non-singular[113X.[133X8081[1X4.2-1 EulerCharacteristic[101X8283[29X[2XEulerCharacteristic[102X( [3XDelta[103X ) [32X function8485[33X[0;0Y[13XInput[113X: [3XDelta[103X is a nonsingular fan of cones, represented by its list of86maximal cones.[133X87[33X[0;0Y[13XOutput[113X: the Euler characteristic of the toric variety [22XX(∆)[122X, where [22X∆[122X is a fan88determined by [3XDelta[103X.[133X8990[4X[32X Example [32X[104X91[4X[25Xgap>[125X [27XCones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;[127X[104X92[4X[25Xgap>[125X [27XEulerCharacteristic(Cones);[127X[104X93[4X[28X3[128X[104X94[4X[32X[104X9596[33X[0;0YNote: [22XX(∆)[122X [13Xmust be non-singular[113X here.[133X9798[1X4.2-2 BettiNumberToric[101X99100[29X[2XBettiNumberToric[102X( [3XDelta[103X, [3Xk[103X ) [32X function101102[33X[0;0Y[13XInput[113X: [3XDelta[103X represents a nonsingular fan [22X∆[122X (represented by maximal cones),[133X103[33X[0;0Y[3Xk[103X is an integer.[133X104[33X[0;0Y[13XOutput[113X: the [3Xk[103X-th Betti number of the toric variety [22XX(∆)[122X.[133X105106[33X[0;0YThe [10XBettiNumberToric[110X procedure does not check if [3XDelta[103X is nonsingular. It is107possible that this procedure outputs nonsense when [3XDelta[103X is not represented108by maximal cones or is nonsingular.[133X109110[4X[32X Example [32X[104X111[4X[25Xgap>[125X [27XCones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;[127X[104X112[4X[25Xgap>[125X [27XBettiNumberToric(Cones,1);[127X[104X113[4X[28X0[128X[104X114[4X[25Xgap>[125X [27XBettiNumberToric(Cones,2);[127X[104X115[4X[28X1[128X[104X116[4X[25Xgap>[125X [27XCones:=[[[2,-1],[-1,1]],[[-1,1],[-1,0]],[[-1,0],[2,-1]]];;[127X[104X117[4X[25Xgap>[125X [27XBettiNumberToric(Cones,1);[127X[104X118[4X[28X0[128X[104X119[4X[25Xgap>[125X [27XBettiNumberToric(Cones,2);[127X[104X120[4X[28X1[128X[104X121[4X[32X[104X122123[33X[0;0YNot to be confused with the Betti number of a polycyclically presented124torsion free group, already available in [5XGAP[105X.[133X125126127[1X4.3 [33X[0;0YPoints over a finite field[133X[101X128129[1X4.3-1 CardinalityOfToricVariety[101X130131[29X[2XCardinalityOfToricVariety[102X( [3XCones[103X, [3Xq[103X ) [32X function132133[33X[0;0Y[13XInput[113X: [3XCones[103X is the list of maximal cones of a fan [22X∆[122X, [3Xq[103X is a prime power.[133X134[33X[0;0Y[13XOutput[113X: The size of the set of [22XGF(q)[122X-rational points of the toric variety135[22XX(∆)[122X.[133X136137[33X[0;0YNote: [22XX(∆)[122X [13Xmust be non-singular[113X here.[133X138139[4X[32X Example [32X[104X140[4X[25Xgap>[125X [27XCones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;[127X[104X141[4X[25Xgap>[125X [27XCardinalityOfToricVariety(Cones,3);[127X[104X142[4X[28X13[128X[104X143[4X[25Xgap>[125X [27XCardinalityOfToricVariety(Cones,4);[127X[104X144[4X[28X21[128X[104X145[4X[25Xgap>[125X [27XCardinalityOfToricVariety(Cones,5);[127X[104X146[4X[28X31[128X[104X147[4X[25Xgap>[125X [27XCardinalityOfToricVariety(Cones,7);[127X[104X148[4X[28X57[128X[104X149[4X[32X[104X150151152153