Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346\GAPDocLabFile{toricvarieties} \makelabel{toricvarieties:Title page}{}{X7D2C85EC87DD46E5} \makelabel{toricvarieties:Copyright}{}{X81488B807F2A1CF1} \makelabel{toricvarieties:Acknowledgements}{}{X82A988D47DFAFCFA} \makelabel{toricvarieties:Table of Contents}{}{X8537FEB07AF2BEC8} \makelabel{toricvarieties:Introduction}{1}{X7DFB63A97E67C0A1} \makelabel{toricvarieties:What is the goal of the ToricVarieties package?}{1.1}{X82D29B587A1E08FF} \makelabel{toricvarieties:Installation of the ToricVarieties Package}{2}{X7EC76C1D7F46724F} \makelabel{toricvarieties:Toric varieties}{3}{X866558FA7BC3F2C8} \makelabel{toricvarieties:Toric variety: Category and Representations}{3.1}{X8108B9978021989B} \makelabel{toricvarieties:Toric varieties: Properties}{3.2}{X81C5B56F7A5E912E} \makelabel{toricvarieties:Toric varieties: Attributes}{3.3}{X7AA03F947802BFA6} \makelabel{toricvarieties:Toric varieties: Methods}{3.4}{X866EE174808EA7F9} \makelabel{toricvarieties:Toric varieties: Constructors}{3.5}{X7C1E65F7809F51A7} \makelabel{toricvarieties:Toric varieties: Examples}{3.6}{X802337377FDC8121} \makelabel{toricvarieties:The Hirzebruch surface of index 5}{3.6.1}{X7F674AD387A33155} \makelabel{toricvarieties:Toric subvarieties}{4}{X84370283823C138C} \makelabel{toricvarieties:Toric subvarieties: Category and Representations}{4.1}{X7A22F3137FA25458} \makelabel{toricvarieties:Toric subvarieties: Properties}{4.2}{X826EDD1B846E74B0} \makelabel{toricvarieties:Toric subvarieties: Attributes}{4.3}{X790B57E084CC7198} \makelabel{toricvarieties:Toric subvarieties: Methods}{4.4}{X7B50D40D858C8B3C} \makelabel{toricvarieties:Toric subvarieties: Constructors}{4.5}{X7C5DB208861E7E7F} \makelabel{toricvarieties:Affine toric varieties}{5}{X82F418F483E4D0D6} \makelabel{toricvarieties:Affine toric varieties: Category and Representations}{5.1}{X83355FC284165BD4} \makelabel{toricvarieties:Affine toric varieties: Properties}{5.2}{X80DB08C5837B0A49} \makelabel{toricvarieties:Affine toric varieties: Attributes}{5.3}{X7BBE823E8205F52F} \makelabel{toricvarieties:Affine toric varieties: Methods}{5.4}{X8012A86C8008CC21} \makelabel{toricvarieties:Affine toric varieties: Constructors}{5.5}{X846A65F77C4BEA35} \makelabel{toricvarieties:Affine toric Varieties: Examples}{5.6}{X8068F91F7C001DE7} \makelabel{toricvarieties:Affine space}{5.6.1}{X782DF75D8761D85B} \makelabel{toricvarieties:Projective toric varieties}{6}{X7EEBFF7883297DBC} \makelabel{toricvarieties:Projective toric varieties: Category and Representations}{6.1}{X7A7AC40C780CAF75} \makelabel{toricvarieties:Projective toric varieties: Properties}{6.2}{X826634D3848FC540} \makelabel{toricvarieties:Projective toric varieties: Attributes}{6.3}{X7903BE287F71B26E} \makelabel{toricvarieties:Projective toric varieties: Methods}{6.4}{X7D9E26467C26EFE6} \makelabel{toricvarieties:Projective toric varieties: Constructors}{6.5}{X81EFA5668447D0A4} \makelabel{toricvarieties:Projective toric varieties: Examples}{6.6}{X8403EE76819E200F} \makelabel{toricvarieties:PxP1 created by a polytope}{6.6.1}{X802DB11784310E99} \makelabel{toricvarieties:Toric morphisms}{7}{X7FA18F537F3F5237} \makelabel{toricvarieties:Toric morphisms: Category and Representations}{7.1}{X82A09A77805957FA} \makelabel{toricvarieties:Toric morphisms: Properties}{7.2}{X82BECE3A7EA231D1} \makelabel{toricvarieties:Toric morphisms: Attributes}{7.3}{X79DB44C17CFE1F59} \makelabel{toricvarieties:Toric morphisms: Methods}{7.4}{X7DE931AA84720706} \makelabel{toricvarieties:Toric morphisms: Constructors}{7.5}{X7D94D43D8463F158} \makelabel{toricvarieties:Toric morphisms: Examples}{7.6}{X83CE579A7B2021DE} \makelabel{toricvarieties:Morphism between toric varieties and their class groups}{7.6.1}{X7D1DD8EA8098C432} \makelabel{toricvarieties:Toric divisors}{8}{X7FDB76897833225A} \makelabel{toricvarieties:Toric divisors: Category and Representations}{8.1}{X7F19CA2285A48A77} \makelabel{toricvarieties:Toric divisors: Properties}{8.2}{X7E508A068393A363} \makelabel{toricvarieties:Toric divisors: Attributes}{8.3}{X853500FD794001B8} \makelabel{toricvarieties:Toric divisors: Methods}{8.4}{X868C3EF185DDF025} \makelabel{toricvarieties:Toric divisors: Constructors}{8.5}{X863E167D799CBE31} \makelabel{toricvarieties:Toric divisors: Examples}{8.6}{X7FE84D6F87076DA0} \makelabel{toricvarieties:Divisors on a toric variety}{8.6.1}{X7A7080E77E93A36F} \makelabel{toricvarieties:Index}{Ind}{X83A0356F839C696F} \makelabel{toricvarieties:ToricVarieties}{}{X8537FEB07AF2BEC8} \makelabel{toricvarieties:IsToricVariety}{3.1.1}{X7A99B0697F11DEB1} \makelabel{toricvarieties:IsNormalVariety}{3.2.1}{X7D6DF89D7836A3D8} \makelabel{toricvarieties:IsAffine}{3.2.2}{X7E2687347A75468E} \makelabel{toricvarieties:IsProjective}{3.2.3}{X7EC041A77E7E46D2} \makelabel{toricvarieties:IsComplete}{3.2.4}{X7D689F21828A4278} \makelabel{toricvarieties:IsSmooth}{3.2.5}{X86CBF5497EC15CFC} \makelabel{toricvarieties:HasTorusfactor}{3.2.6}{X87B517958002AE71} \makelabel{toricvarieties:HasNoTorusfactor}{3.2.7}{X83AF576586EFA7A6} \makelabel{toricvarieties:IsOrbifold}{3.2.8}{X78CBF9007E82E5DF} \makelabel{toricvarieties:AffineOpenCovering}{3.3.1}{X82AB95E9870A50A6} \makelabel{toricvarieties:CoxRing}{3.3.2}{X78F279E67EE26EBF} \makelabel{toricvarieties:ListOfVariablesOfCoxRing}{3.3.3}{X87C2F08C84052EB9} \makelabel{toricvarieties:ClassGroup}{3.3.4}{X872024617ADBE423} \makelabel{toricvarieties:PicardGroup}{3.3.5}{X854A7BDA84D12EEC} \makelabel{toricvarieties:TorusInvariantDivisorGroup}{3.3.6}{X8025428782FE96E1} \makelabel{toricvarieties:MapFromCharacterToPrincipalDivisor}{3.3.7}{X86539CAC7DFFA60B} \makelabel{toricvarieties:Dimension}{3.3.8}{X7E6926C6850E7C4E} \makelabel{toricvarieties:DimensionOfTorusfactor}{3.3.9}{X7843850F8735A926} \makelabel{toricvarieties:CoordinateRingOfTorus}{3.3.10}{X8514A91A7CEA7092} \makelabel{toricvarieties:IsProductOf}{3.3.11}{X876EF14B845E275E} \makelabel{toricvarieties:CharacterLattice}{3.3.12}{X81E2EA227D69040A} \makelabel{toricvarieties:TorusInvariantPrimeDivisors}{3.3.13}{X84594CD787F6BA94} \makelabel{toricvarieties:IrrelevantIdeal}{3.3.14}{X78BB13787BA1C31C} \makelabel{toricvarieties:MorphismFromCoxVariety}{3.3.15}{X78CFA34884706A16} \makelabel{toricvarieties:CoxVariety}{3.3.16}{X8761518B7F4F6C58} \makelabel{toricvarieties:FanOfVariety}{3.3.17}{X7F89CB52790F3E87} \makelabel{toricvarieties:CartierTorusInvariantDivisorGroup}{3.3.18}{X7BEC4BCD7B3B3522} \makelabel{toricvarieties:NameOfVariety}{3.3.19}{X853D172E78C7D0B2} \makelabel{toricvarieties:twitter}{3.3.20}{X820E750381030706} \makelabel{toricvarieties:UnderlyingSheaf}{3.4.1}{X7DB5B6CB86F766A5} \makelabel{toricvarieties:CoordinateRingOfTorus (for a variety and a list of variables)}{3.4.2}{X7D01CCCE78FA1FDE} \makelabel{toricvarieties:CharacterToRationalFunction}{3.4.4}{X80DBA6A18199A4A4} \makelabel{toricvarieties:CoxRing (for a variety and a string of variables)}{3.4.5}{X80917C0C82171774} \makelabel{toricvarieties:WeilDivisorsOfVariety}{3.4.6}{X79474EA085374986} \makelabel{toricvarieties:Fan}{3.4.7}{X80D0196B80DC94F3} \makelabel{toricvarieties:ToricVariety}{3.5.1}{X84CA1FBC8057E3E0} \makelabel{toricvarieties:IsToricSubvariety}{4.1.1}{X85CA472F7A14BF8C} \makelabel{toricvarieties:IsClosed}{4.2.1}{X81D5A4A97AA9D4B0} \makelabel{toricvarieties:IsOpen}{4.2.2}{X8247435184B2DE47} \makelabel{toricvarieties:IsWholeVariety}{4.2.3}{X7A9968777C5E19A4} \makelabel{toricvarieties:UnderlyingToricVariety}{4.3.1}{X7D9CEB4A878CC07C} \makelabel{toricvarieties:InclusionMorphism}{4.3.2}{X84AE669679A57F17} \makelabel{toricvarieties:AmbientToricVariety}{4.3.3}{X87ADD8677D3DC498} \makelabel{toricvarieties:ClosureOfTorusOrbitOfCone}{4.4.1}{X7E9E173183C04931} \makelabel{toricvarieties:ToricSubvariety}{4.5.1}{X851CDD807D40B7EF} \makelabel{toricvarieties:IsAffineToricVariety}{5.1.1}{X7ED0399F81CBB82D} \makelabel{toricvarieties:CoordinateRing}{5.3.1}{X81BCE73D8353F9DE} \makelabel{toricvarieties:ListOfVariablesOfCoordinateRing}{5.3.2}{X7F459CD178502F4E} \makelabel{toricvarieties:MorphismFromCoordinateRingToCoordinateRingOfTorus}{5.3.3}{X82A61ED17E17D0C2} \makelabel{toricvarieties:ConeOfVariety}{5.3.4}{X8642EA7886E09E44} \makelabel{toricvarieties:CoordinateRing (for affine Varieties)}{5.4.1}{X85926C9D8411CCC1} \makelabel{toricvarieties:Cone}{5.4.2}{X822975FC7F646FE5} \makelabel{toricvarieties:IsProjectiveToricVariety}{6.1.1}{X7D7A64ED86E8C558} \makelabel{toricvarieties:AffineCone}{6.3.1}{X7C3748B8878B799A} \makelabel{toricvarieties:PolytopeOfVariety}{6.3.2}{X791054957C1EE370} \makelabel{toricvarieties:ProjectiveEmbedding}{6.3.3}{X7CD1FB1E83F80D5F} \makelabel{toricvarieties:Polytope}{6.4.1}{X855106007DE72898} \makelabel{toricvarieties:IsToricMorphism}{7.1.1}{X85AC9E7B86C259AF} \makelabel{toricvarieties:IsMorphism}{7.2.1}{X7F66120A814DC16B} \makelabel{toricvarieties:IsProper}{7.2.2}{X7B15A1848387B3C8} \makelabel{toricvarieties:SourceObject}{7.3.1}{X7912BF2F79064BB9} \makelabel{toricvarieties:UnderlyingGridMorphism}{7.3.2}{X81558ABE8360E43D} \makelabel{toricvarieties:ToricImageObject}{7.3.3}{X7F82AD6D7A967E25} \makelabel{toricvarieties:RangeObject}{7.3.4}{X7ABADFCD80C507FB} \makelabel{toricvarieties:MorphismOnWeilDivisorGroup}{7.3.5}{X81B87EE486EFA0A4} \makelabel{toricvarieties:ClassGroup (for toric morphisms)}{7.3.6}{X7F542C0880E1598D} \makelabel{toricvarieties:MorphismOnCartierDivisorGroup}{7.3.7}{X782D88777AA3E1F4} \makelabel{toricvarieties:PicardGroup (for toric morphisms)}{7.3.8}{X804B025C873DF32C} \makelabel{toricvarieties:UnderlyingListList}{7.4.1}{X7FE514BB782DD216} \makelabel{toricvarieties:ToricMorphism (for a source and a matrix)}{7.5.1}{X7B53B2C67B98043E} \makelabel{toricvarieties:ToricMorphism (for a source, matrix and target)}{7.5.2}{X7AC924D486FADC47} \makelabel{toricvarieties:IsToricDivisor}{8.1.1}{X8664662078263B5A} \makelabel{toricvarieties:IsCartier}{8.2.1}{X7E721696878A61F4} \makelabel{toricvarieties:IsPrincipal}{8.2.2}{X84DE6ECE85F7D2F2} \makelabel{toricvarieties:IsPrimedivisor}{8.2.3}{X844EFF227C868438} \makelabel{toricvarieties:IsBasepointFree}{8.2.4}{X7AB6B5C77DFB740B} \makelabel{toricvarieties:IsAmple}{8.2.5}{X7F5062AA844AEC55} \makelabel{toricvarieties:IsVeryAmple}{8.2.6}{X80A58559802BB02E} \makelabel{toricvarieties:CartierData}{8.3.1}{X7F546017860701EA} \makelabel{toricvarieties:CharacterOfPrincipalDivisor}{8.3.2}{X796415858436B32D} \makelabel{toricvarieties:ToricVarietyOfDivisor}{8.3.3}{X80FA3ADA81640191} \makelabel{toricvarieties:ClassOfDivisor}{8.3.4}{X7C3691B4816CF3E9} \makelabel{toricvarieties:PolytopeOfDivisor}{8.3.5}{X85ED82DC79E2F1CE} \makelabel{toricvarieties:BasisOfGlobalSections}{8.3.6}{X7A7853288166B329} \makelabel{toricvarieties:IntegerForWhichIsSureVeryAmple}{8.3.7}{X87DA4EEA824F4175} \makelabel{toricvarieties:AmbientToricVariety (for toric divisors)}{8.3.8}{X809666867CB2FC87} \makelabel{toricvarieties:UnderlyingGroupElement}{8.3.9}{X7D42C40B7B4B06E0} \makelabel{toricvarieties:UnderlyingToricVariety (for prime divisors)}{8.3.10}{X81DF09097AEA7A0D} \makelabel{toricvarieties:DegreeOfDivisor}{8.3.11}{X7A346588871296FB} \makelabel{toricvarieties:MonomsOfCoxRingOfDegree}{8.3.12}{X838F54D8817F6066} \makelabel{toricvarieties:CoxRingOfTargetOfDivisorMorphism}{8.3.13}{X831C20A585952B08} \makelabel{toricvarieties:RingMorphismOfDivisor}{8.3.14}{X786F05507F8026D5} \makelabel{toricvarieties:VeryAmpleMultiple}{8.4.1}{X79410AC7794A3EE7} \makelabel{toricvarieties:CharactersForClosedEmbedding}{8.4.2}{X853616578245BF1A} \makelabel{toricvarieties:MonomsOfCoxRingOfDegree (for an homalg element)}{8.4.3}{X7D890CF4845178FE} \makelabel{toricvarieties:DivisorOfGivenClass}{8.4.4}{X7E66CB878743D6DF} \makelabel{toricvarieties:AddDivisorToItsAmbientVariety}{8.4.5}{X7A19D0127ECE5EE1} \makelabel{toricvarieties:Polytope (for toric divisors)}{8.4.6}{X7BA1C5A27CC75C38} \makelabel{toricvarieties:-}{8.4.8}{X81B1391281B13912} \makelabel{toricvarieties:DivisorOfCharacter}{8.5.1}{X7A1062647B359F8A} \makelabel{toricvarieties:DivisorOfCharacter (for a list of integers)}{8.5.2}{X7C2AF9FC7AEA18BE} \makelabel{toricvarieties:CreateDivisor (for a homalg element)}{8.5.3}{X7F24DB367B7BAAB4} \makelabel{toricvarieties:CreateDivisor (for a list of integers)}{8.5.4}{X87477D82832DDE3A}