CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
10 Utility functions
3
4
By a utility function we mean a GAP function which is
5
6
 needed by other functions in this package,
7
8
 not (as far as we know) provided by the standard GAP library,
9
10
 more suitable for inclusion in the main library than in this package.
11
12
Sections on Printing Lists and Distinct and Common Representatives were
13
moved to the Utils package with version 2.56.
14
15
16
10.1 Inclusion and Restriction Mappings
17
18
These functions have been moved to the gpd package, but are still documented
19
here.
20
21
10.1-1 InclusionMappingGroups
22
23
InclusionMappingGroups( G, H )  operation
24
MappingToOne( G, H )  operation
25
26
This set of utilities concerns mappings. The map incd8 is the inclusion of
27
d8 in d16 used in Section 3.4. MappingToOne(G,H) maps the whole of G to the
28
identity element in H.
29
30
 Example 
31

32
gap> Print( incd8, "\n" );
33
[ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ] ->
34
[ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ]
35
gap> imd8 := Image( incd8 );;
36
gap> MappingToOne( c4, imd8 );
37
[ (11,13,15,17)(12,14,16,18) ] -> [ () ]
38

39

40
41
10.1-2 InnerAutomorphismsByNormalSubgroup
42
43
InnerAutomorphismsByNormalSubgroup( G, N )  operation
44
IsGroupOfAutomorphisms( A )  property
45
46
Inner automorphisms of a group G by the elements of a normal subgroup N are
47
calculated with the first of these functions, usually with G = N.
48
49
 Example 
50

51
gap> autd8 := AutomorphismGroup( d8 );;
52
gap> innd8 := InnerAutomorphismsByNormalSubgroup( d8, d8 );;
53
gap> GeneratorsOfGroup( innd8 );
54
[ ^(1,2,3,4), ^(1,3) ]
55
gap> IsGroupOfAutomorphisms( innd8 );
56
true
57

58

59
60
61
10.2 Abelian Modules
62
63
10.2-1 AbelianModuleObject
64
65
AbelianModuleObject( grp, act )  operation
66
IsAbelianModule( obj )  property
67
AbelianModuleGroup( obj )  attribute
68
AbelianModuleAction( obj )  attribute
69
70
An abelian module is an abelian group together with a group action. These
71
are used by the crossed module constructor XModByAbelianModule.
72
73
The resulting Xabmod is isomorphic to the output from
74
XModByAutomorphismGroup( k4 );.
75
76
 Example 
77

78
gap> x := (6,7)(8,9);; y := (6,8)(7,9);; z := (6,9)(7,8);;
79
gap> k4a := Group( x, y );; SetName( k4a, "k4a" );
80
gap> gens3a := [ (1,2), (2,3) ];;
81
gap> s3a := Group( gens3a );; SetName( s3a, "s3a" );
82
gap> alpha := GroupHomomorphismByImages( k4a, k4a, [x,y], [y,x] );;
83
gap> beta := GroupHomomorphismByImages( k4a, k4a, [x,y], [x,z] );;
84
gap> auta := Group( alpha, beta );;
85
gap> acta := GroupHomomorphismByImages( s3a, auta, gens3a, [alpha,beta] );;
86
gap> abmod := AbelianModuleObject( k4a, acta );;
87
gap> Xabmod := XModByAbelianModule( abmod );
88
[k4a->s3a]
89
gap> Display( Xabmod );
90

91
Crossed module [k4a->s3a] :- 
92
: Source group k4a has generators:
93
 [ (6,7)(8,9), (6,8)(7,9) ]
94
: Range group s3a has generators:
95
 [ (1,2), (2,3) ]
96
: Boundary homomorphism maps source generators to:
97
 [ (), () ]
98
: Action homomorphism maps range generators to automorphisms:
99
 (1,2) --> { source gens --> [ (6,8)(7,9), (6,7)(8,9) ] }
100
 (2,3) --> { source gens --> [ (6,7)(8,9), (6,9)(7,8) ] }
101
 These 2 automorphisms generate the group of automorphisms.
102

103

104

105
106
107