Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<!-- ------------------------------------------------------------------- -->1<!-- -->2<!-- gp2ind.xml XMod documentation Chris Wensley -->3<!-- & Murat Alp -->4<!-- Copyright (C) 2001-2017, Chris Wensley et al, -->5<!-- School of Computer Science, Bangor University, U.K. -->6<!-- -->7<!-- ------------------------------------------------------------------- -->89<?xml version="1.0" encoding="UTF-8"?>1011<Chapter Label="chap-gp2ind">12<Heading>Induced constructions</Heading>1314Before describing general functions for computing induced structures,15we consider coproducts of crossed modules which provide induced16crossed modules in certain cases.171819<Section><Heading>Coproducts of crossed modules</Heading>2021Need to add here a reference (or two) for coproducts.2223<ManSection>24<Oper Name="CoproductXMod"25Arg="X1, X2" />26<Description>27This function calculates the coproduct crossed module of28crossed modules <M>{\mathcal X}_1 = (\partial_1 : S_1 \to R)</M>29and <M>{\mathcal X}_2 = (\partial_2 : S_2 \to R)</M>30which have a common range <M>R</M>.31The source <M>S_2</M> of <M>{\mathcal X}_2</M> acts on <M>S_1</M>32via <M>\partial_2</M> and the action of <M>{\mathcal X}_1</M>,33so we can form a precrossed module34<M>(\partial' : S_1 \ltimes S_2 \to R)</M>35where <M>\partial'(s_1,s_2) = (\partial_1 s_1)(\partial_2 s_2)</M>.36The action of this precrossed module is the diagonal action37<M>(s_1,s_2)^r = (s_1^r,s_2^r)</M>.38Factoring out by the Peiffer subgroup, we obtain the coproduct39crossed module <M>{\mathcal X}_1 \circ {\mathcal X}_2</M>.40<P/>41In the example the structure descriptions of the precrossed module,42the Peiffer subgroup, and the resulting coproduct are printed out43when <C>InfoLevel(InfoXMod}</C> is at least <M>1</M>.44The coproduct comes supplied with attribute <C>CoproductInfo</C>,45which includes the embedding morphisms of the two factors.46</Description>47</ManSection>48<P/>49<Example>50<![CDATA[51gap> q8 := Group( (1,2,3,4)(5,8,7,6), (1,5,3,7)(2,6,4,8) );;52gap> X8 := XModByAutomorphismGroup( q8 );;53gap> s4 := Range( X8 );;54gap> SetName( q8, "q8" ); SetName( s4, "s4" );55gap> k4 := NormalSubgroups( s4 )[3];; SetName( k4, "k4" );56gap> Z8 := XModByNormalSubgroup( s4, k4 );;57gap> SetName( X8, "X8" ); SetName( Z8, "Z8" );58gap> SetInfoLevel( InfoXMod, 1 );59gap> XZ8 := CoproductXMod( X8, Z8 );60#I prexmod is [ "C2 x C2 x Q8", "S4" ]61#I peiffer subgroup is C262#I the coproduct is [ "C2 x C2 x C2 x C2", "S4" ]63[Group( [ f1, f2, f3, f4 ] )->s4]64gap> SetName( XZ8, "XZ8" );65gap> info := CoproductInfo( XZ8 );66rec( embeddings := [ [X8 => XZ8], [Z8 => XZ8] ], xmods := [ X8, Z8 ] )67]]>68</Example>6970</Section>717273<Section><Heading>Induced crossed modules</Heading>74<Index>induced crossed module</Index>7576<ManSection>77<Func Name="InducedXMod"78Arg="args" />79<Func Name="InducedCat1"80Arg="args" />81<Prop Name="IsInducedXMod"82Arg="xmod" />83<Attr Name="MorphismOfInducedXMod"84Arg="xmod" />85<Description>86A morphism of crossed modules87<M>(\sigma, \rho) : {\mathcal X}_1 \to {\mathcal X}_2</M>88factors uniquely through an induced crossed module89<M>\rho_{\ast} {\mathcal X}_1 = (\delta : \rho_{\ast} S_1 \to R_2)</M>.90Similarly, a morphism of cat1-groups factors through an induced cat1-group.91Calculation of induced crossed modules of <M>{\mathcal X}</M> also92provides an algebraic means of determining the homotopy <M>2</M>-type93of homotopy pushouts of the classifying space of <M>{\mathcal X}</M>.94For more background from algebraic topology see references in95<Cite Key="BH1" />, <Cite Key="BW1" />, <Cite Key="BW2" />.96Induced crossed modules and induced cat1-groups also provide the97building blocks for constructing pushouts in the categories98<E>XMod</E> and <E>Cat1</E>.99<P/>100Data for the cases of algebraic interest is provided by a conjugation101crossed module <M>{\mathcal X} = (\partial : S \to R)</M>102and a homomorphism <M>\iota</M> from <M>R</M> to a third group <M>Q</M>.103(It is hoped to implement more general cases in due course.)104The output from the calculation is a crossed module105<M>\iota_{\ast}{\mathcal X} = (\delta : \iota_{\ast}S \to Q)</M>106together with a morphism of crossed modules107<M>{\mathcal X} \to \iota_{\ast}{\mathcal X}</M>.108When <M>\iota</M> is a surjection with kernel <M>K</M> then109<M>\iota_{\ast}S = [S,K]</M> (see <Cite Key="BH1" />).110When <M>\iota</M> is an inclusion the induced crossed module may be111calculated using a copower construction <Cite Key="BW1" /> or,112in the case when <M>R</M> is normal in <M>Q</M>,113as a coproduct of crossed modules114(<Cite Key="BW2" />, but not yet implemented).115When <M>\iota</M> is neither a surjection nor an inclusion, <M>\iota</M>116is factored as the composite of the surjection onto the image117and the inclusion of the image in <M>Q</M>, and then the composite induced118crossed module is constructed.119These constructions use Tietze transformation routines in120the library file <C>tietze.gi</C>.121<P/>122As a first, surjective example, we take for <M>{\mathcal X}</M>123the normal inclusion crossed module of <C>a4</C> in <C>s4</C>,124and for <M>\iota</M> the surjection from <C>s4</C> to <C>s3</C>125with kernel <C>k4</C>.126The induced crossed module is isomorphic to <C>X3</C>.127</Description>128</ManSection>129<P/>130<Example>131<![CDATA[132gap> s4gens := GeneratorsOfGroup( s4 );133[ (1,2), (2,3), (3,4) ]134gap> a4gens := GeneratorsOfGroup( a4 );135[ (1,2,3), (2,3,4) ]136gap> s3b := Group( (5,6),(6,7) );; SetName( s3b, "s3b" );137gap> epi := GroupHomomorphismByImages( s4, s3b, s4gens, [(5,6),(6,7),(5,6)] );;138gap> X4 := XModByNormalSubgroup( s4, a4 );;139gap> indX4 := SurjectiveInducedXMod( X4, epi );140[a4/ker->s3b]141gap> Display( indX4 );142143Crossed module [a4/ker->s3b] :-144: Source group a4/ker has generators:145[ (1,3,2), (1,2,3) ]146: Range group s3b has generators:147[ (5,6), (6,7) ]148: Boundary homomorphism maps source generators to:149[ (5,6,7), (5,7,6) ]150: Action homomorphism maps range generators to automorphisms:151(5,6) --> { source gens --> [ (1,2,3), (1,3,2) ] }152(6,7) --> { source gens --> [ (1,2,3), (1,3,2) ] }153These 2 automorphisms generate the group of automorphisms.154155gap> morX4 := MorphismOfInducedXMod( indX4 );156[[a4->s4] => [a4/ker->s3b]]157]]>158</Example>159160For a second, injective example we take for <M>{\mathcal X}</M>161a conjugation crossed module.162<P/>163<Example>164<![CDATA[165gap> d8 := Subgroup( d16, [ b1^2, b2 ] ); SetName( d8, "d8" );166Group([ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ])167gap> c4 := Subgroup( d8, [ b1^2 ] ); SetName( c4, "c4" );168Group([ (11,13,15,17)(12,14,16,18) ])169gap> Y16 := XModByNormalSubgroup( d16, d8 );170[d8->d16]171gap> Y8 := SubXMod( Y16, c4, d8 );172[c4->d8]173gap> inc8 := InclusionMorphism2DimensionalDomains( Y16, Y8 );174[[c4->d8] => [d8->d16]]175gap> incd8 := RangeHom( inc8 );;176gap> indY8 := InducedXMod( Y8, incd8 );177#I induced group has Size: 16178#I factor 2 is abelian with invariants: [ 4, 4 ]179i*([c4->d8])180gap> morY8 := MorphismOfInducedXMod( indY8 );181[[c4->d8] => i*([c4->d8])]182]]>183</Example>184185For a third example we take the identity mapping on <C>s3c</C> as boundary,186and the inclusion of <C>s3c</C> in <C>s4</C> as <M>\iota</M>.187The induced group is a general linear group <C>GL(2,3)</C>.188<P/>189<Example>190<![CDATA[191gap> s3c := Subgroup( s4, [ (2,3), (3,4) ] );;192gap> SetName( s3c, "s3c" );193gap> indXs3c := InducedXMod( s4, s3c, s3c );194#I induced group has Size: 48195i*([s3c->s3c])196gap> StructureDescription( indXs3c );197[ "GL(2,3)", "S4" ]198]]>199</Example>200201<ManSection>202<Oper Name="AllInducedXMods"203Arg="Q" />204<Description>205This function calculates all the induced crossed modules206<C>InducedXMod( Q, P, M )</C>,207where <C>P</C> runs over all conjugacy classes of subgroups of <C>Q</C>208and <C>M</C> runs over all non-trivial subgroups of <C>P</C>.209</Description>210</ManSection>211212</Section>213214</Chapter>215216217