Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################## ## #W gp2act.gi GAP4 package `XMod' Chris Wensley #W & Murat Alp ## ## This file implements methods for actor crossed squares of crossed modules. ## #Y Copyright (C) 2001-2017, Chris Wensley et al, #Y School of Computer Science, Bangor University, U.K. ############################################################################# ## #M AutomorphismPermGroup( <XM> ) subgroup of Aut(Source(XM))xAut(Range(XM)) ## InstallMethod( AutomorphismPermGroup, "automorphism perm group of xmod", true, [ IsXMod ], 0, function( XM ) local S, genS, ngS, R, genR, ngR, bdy, act, ker, imbdy, AS, genAS, a2pS, PAS, genPAS, p2aS, AR, genAR, a2pR, PAR, genPAR, p2aR, D, genD, emS, emR, emgenPAS, emgenPAR, emAS, emAR, infoD, P, num, autogens, as, eas, ar, ear, mor, ispre, ismor, genP, p2, p2i, newS, oldS, newR, oldR, imsrc, imrng, projS, projR, ePAS, egenR, ePAR; S := Source( XM ); genS := GeneratorsOfGroup( S ); ngS := Length( genS ); R := Range( XM ); genR := GeneratorsOfGroup( R ); ngR := Length( genR ); bdy := Boundary( XM ); act := XModAction( XM ); ker := Kernel( bdy ); AS := AutomorphismGroup( S ); genAS := GeneratorsOfGroup( AS ); a2pS := IsomorphismPermGroup( AS ); ### check if smaller possible PAS := Image( a2pS ); genPAS := List( genAS, a -> Image( a2pS, a ) ); p2aS := GroupHomomorphismByImages( PAS, AS, genPAS, genAS ); SetAutoGroupIsomorphism( PAS, p2aS ); imbdy := Image( bdy ); AR := AutomorphismGroup( R ); genAR := GeneratorsOfGroup( AR ); a2pR := IsomorphismPermGroup( AR ); ### ditto PAR := Image( a2pR ); genPAR := List( genAR, a -> Image( a2pR, a ) ); p2aR := GroupHomomorphismByImages( PAR, AR, genPAR, genAR ); SetAutoGroupIsomorphism( PAR, p2aR ); D := DirectProduct( PAS, PAR ); genD := GeneratorsOfGroup( D ); if ( HasName( PAS ) and HasName( PAR ) ) then SetName( D, Concatenation( Name(PAS), "x", Name(PAR) ) ); fi; emS := Embedding( D, 1 ); emR := Embedding( D, 2 ); emgenPAS := List( genPAS, a -> Image( emS, a ) ); emgenPAR := List( genPAR, a -> Image( emR, a ) ); emAS := GroupHomomorphismByImages( AS, D, genAS, emgenPAS ); emAR := GroupHomomorphismByImages( AR, D, genAR, emgenPAR ); infoD := DirectProductInfo( D ); P := Subgroup( D, [ ] ); num := 0; autogens := [ ]; for as in AS do eas := Image( emAS, as ); for ar in AR do ear := Image( emAR, ar ); if not ( eas*ear in P ) then mor := Make2DimensionalGroupMorphism( [ XM, XM, as, ar ] ); ispre := ( not( mor = fail ) and IsPreXModMorphism( mor ) ); if ispre then ismor := IsXModMorphism( mor ); if ismor then num := num + 1; Add( autogens, mor ); P := ClosureGroup( P, eas*ear ); Info( InfoXMod, 2, "size of P now ", Size(P) ); fi; fi; fi; od; od; genP := GeneratorsOfGroup( P ); p2 := infoD.perms[2]; p2i := p2^(-1); newS := infoD.news[1]; oldS := infoD.olds[1]; newR := infoD.news[2]; oldR := infoD.olds[2]; imsrc := List( genP, g -> MappingPermListList( oldS, List( newS, x->(x^g) ) ) ); imrng := List( genP, g -> MappingPermListList( oldR, List( newR, x->(x^g)^p2i ) ) ); projS := GroupHomomorphismByImages( P, PAS, genP, imsrc ); projR := GroupHomomorphismByImages( P, PAR, genP, imrng ); ### 21/06/06 ### genPAS := GeneratorsOfGroup( PAS ); ePAS := GroupHomomorphismByImages( PAS, D, genPAS, genPAS ); ### 21/06/06 ### genPAR := GeneratorsOfGroup( PAR ); egenR := List( genPAR, p -> p^p2 ); ePAR := GroupHomomorphismByImages( PAR, D, genPAR, egenR ); SetGeneratingAutomorphisms( XM, autogens ); SetIsAutomorphismPermGroupOfXMod( P, true ); ### 22/06/06 ### ### these two functions would better be AS -> P SetEmbedSourceAutos( P, ePAS ); SetEmbedRangeAutos( P, ePAR ); SetSourceProjection( P, projS ); SetRangeProjection( P, projR ); SetAutomorphismDomain( P, XM ); return P; end ); ####### special version for XModByNormalSubgroup, 23/06/06 ####### InstallMethod( AutomorphismPermGroup, "automorphism perm group of xmod", true, [ IsXMod and IsNormalSubgroup2DimensionalGroup ], 0, function( XM ) local S, genS, R, genR, autR, autS, AR, genAR, ngAR, AS, genAS, ar, as, a2pR, PAR, genPAR, p2aR, a2pS, PAS, genPAS, p2aS, restrict, D, genD, emS, emR, emgenPAS, emgenPAR, emAS, emAR, infoD, P, genP, autogens, j, p2, p2i, newS, newR, oldS, oldR, imsrc, imrng, projS, projR, filtS, ePAS, egenR, ePAR; Info( InfoXMod, 1, "using special AutomorphismPermGroup method" ); S := Source( XM ); genS := GeneratorsOfGroup( S ); R := Range( XM ); genR := GeneratorsOfGroup( R ); autR := AutomorphismGroup( R ); autS := AutomorphismGroup( S ); genAR := [ ]; genAS := [ ]; AR := Subgroup( autR, [ IdentityMapping( R ) ] ); AS := Subgroup( autS, [ IdentityMapping( S ) ] ); for ar in autR do as := GeneralRestrictedMapping( ar, S, S ); if not ( fail in MappingGeneratorsImages(as)[2] ) then if not ( ar in AR ) then Add( genAR, ar ); Add( genAS, as ); AR := ClosureGroup( AR, ar ); AS := ClosureGroup( AS, as ); fi; fi; od; Info( InfoXMod, 2, " genAR = ", genAR ); Info( InfoXMod, 2, " genAS = ", genAS ); ngAR := Length( genAR ); a2pR := IsomorphismSmallPermGroup( AR ); PAR := Image( a2pR, AR ); genPAR := List( genAR, a -> Image( a2pR, a ) ); Info( InfoXMod, 2, "genPAR = ", genPAR ); p2aR := GroupHomomorphismByImages( PAR, AR, genPAR, genAR ); SetAutoGroupIsomorphism( PAR, p2aR ); a2pS := IsomorphismSmallPermGroup( AS ); PAS := Image( a2pS, AS ); genPAS := List( genAS, a -> Image( a2pS, a ) ); Info( InfoXMod, 2, "genPAS = ", genPAS ); p2aS := GroupHomomorphismByImages( PAS, AS, genPAS, genAS ); SetAutoGroupIsomorphism( PAS, p2aS ); restrict := GroupHomomorphismByImages( PAR, PAS, genPAR, genPAS ); D := DirectProduct( PAS, PAR ); genD := GeneratorsOfGroup( D ); if ( HasName( PAS ) and HasName( PAR ) ) then SetName( D, Concatenation( Name(PAS), "x", Name(PAR) ) ); fi; emS := Embedding( D, 1 ); emR := Embedding( D, 2 ); ## this looks odd, but ngAR=ngAS filtS := Filtered( [1..ngAR], i -> not IsOne( genPAS[i] ) ); Info( InfoXMod, 2, "filtS = ", filtS ); emgenPAS := List( genPAS, a -> Image( emS, a ) ); emgenPAR := List( genPAR, a -> Image( emR, a ) ); ## (05/03/07) allowed for the case that AS is trivial emAS := GroupHomomorphismByImages( AS,D,genAS{filtS},emgenPAS{filtS} ); emAR := GroupHomomorphismByImages( AR,D,genAR, emgenPAR ); infoD := DirectProductInfo( D ); genP := ListWithIdenticalEntries( ngAR, 0 ); autogens := ListWithIdenticalEntries( ngAR, 0 ); for j in [1..ngAR] do genP[j] := Image( emAS, genAS[j] ) * Image( emAR, genAR[j] ); autogens[j] := XModMorphism( XM, XM, genAS[j], genAR[j] ); od; P := Subgroup( D, genP ); p2 := infoD.perms[2]; p2i := p2^(-1); newS := infoD.news[1]; oldS := infoD.olds[1]; newR := infoD.news[2]; oldR := infoD.olds[2]; imsrc := List( genP, g -> MappingPermListList( oldS, List( newS, x->(x^g) ) ) ); imrng := List( genP, g -> MappingPermListList( oldR, List( newR, x->(x^g)^p2i ) ) ); projS := GroupHomomorphismByImages( P, PAS, genP, imsrc ); projR := GroupHomomorphismByImages( P, PAR, genP, imrng ); ePAS := GroupHomomorphismByImages( PAS,D,genPAS{filtS},genPAS{filtS} ); egenR := List( genPAR, p -> p^p2 ); ePAR := GroupHomomorphismByImages( PAR,D,genPAR, egenR ); SetGeneratingAutomorphisms( XM, autogens ); SetIsAutomorphismPermGroupOfXMod( P, true ); SetEmbedSourceAutos( P, ePAS ); SetEmbedRangeAutos( P, ePAR ); SetSourceProjection( P, projS ); SetRangeProjection( P, projR ); SetAutomorphismDomain( P, XM ); return P; end ); ############################################################################# ## #M PermAutomorphismAsXModMorphism( <xmod>, <permaut> ) ## InstallMethod( PermAutomorphismAsXModMorphism, "xmod morphism coresponding to an element of the AutomorphismPermGroup", true, [ IsXMod, IsPerm ], 0, function( XM, a ) local APXM, sp, rp, sa, ra, si, ri, smor, rmor, mor; APXM := AutomorphismPermGroup( XM ); sp := SourceProjection( APXM ); sa := Image( sp, a ); si := AutoGroupIsomorphism( Range( sp ) ); smor := Image( si, sa ); rp := RangeProjection( APXM ); ra := Image( rp, a ); ri := AutoGroupIsomorphism( Range( rp ) ); rmor := Image( ri, ra ); mor := XModMorphism( XM, XM, smor, rmor ); return mor; end ); ############################################################################# ## #M ImageAutomorphismDerivation( <mor>, <chi> ) ## InstallMethod( ImageAutomorphismDerivation, "image of derivation under action", true, [ IsXModMorphism, IsDerivation ], 0, function( mor, chi ) local XM, R, stgR, imj, rho, imrho, sigma, invrho, rngR, k, r, rr, crr, chj; XM := Source( mor ); sigma := SourceHom( mor ); rho := RangeHom( mor ); R := Range( XM ); stgR := StrongGeneratorsStabChain( StabChain( R ) ); rngR := [ 1..Length( stgR ) ]; imrho := List( stgR, r -> Image( rho, r ) ); invrho := GroupHomomorphismByImages( R, R, imrho, stgR ); imj := 0 * rngR; for k in rngR do r := stgR[k]; rr := Image( invrho, r ); crr := DerivationImage( chi, rr ); imj[k] := Image( sigma, crr ); od; chj := DerivationByImages( XM, imj ); return chj; end ); ############################################################################# ## #M WhiteheadXMod( <XM> ) (InnerSourceHom : Range(XM) -> Whitehead Group) ## InstallMethod( WhiteheadXMod, "Whitehead crossed module", true, [ IsXMod ], 0, function( XM ) local S, genS, reg, imreg, W, WT, posW, nposW, genW, imiota, s, chi, poschi, iota, autS, genchi, j, sigma, ima, a, imact, act, WX, name; S := Source( XM ); genS := GeneratorsOfGroup( S ); reg := RegularDerivations( XM ); imreg := ImagesList( reg ); W := WhiteheadPermGroup( XM ); WT := WhiteheadGroupTable( XM ); posW := WhiteheadGroupGeneratorPositions( XM ); nposW := Length( posW ); genW := GeneratorsOfGroup( W ); # determine the boundary map iota = PrincipalSourceHom imiota := [ ]; for s in genS do chi := PrincipalDerivation( XM, s ); poschi := Position( imreg, UpGeneratorImages( chi ) ); Add( imiota, PermList( WT[poschi] ) ); od; iota := GroupHomomorphismByImages( S, W, genS, imiota ); ## ????? should this be a general mapping ???????????????????? if not IsGroupHomomorphism( iota ) then Error( "Whitehead boundary fails to be a homomorphism" ); fi; # now calculate the action homomorphism autS := AutomorphismGroup( S ); genchi := WhiteheadGroupGeneratingDerivations( XM ); ## (05/03/07) allow for the case that W is trivial if ( genchi = [ ] ) then imact := [ One( autS ) ]; else imact := [ 1..nposW ]; for j in [1..nposW] do chi := genchi[j]; sigma := SourceEndomorphism( chi ); ima := List( genS, s -> Image( sigma, s ) ); a := GroupHomomorphismByImages( S, S, genS, ima ); imact[j] := a; od; fi; act := GroupHomomorphismByImages( W, autS, genW, imact ); WX := XMod( iota, act ); name := Name( XM ); SetName( WX, Concatenation( "Whitehead", name ) ); ## SetIsWhiteheadXMod( WX, true ); return WX; end ); ############################################################################# ## #M NorrieXMod( <XM> ) ## InstallMethod( NorrieXMod, "Norrie crossed module", true, [ IsXMod ], 0, function( XM ) local S, R, genR, P, DX, genP, Prng, AS, AR, a2pS, PAS, p2aS, a2pR, PAR, p2aR, im, r, autr, psrc, emsrc, conjr, prng, emrng, bdy, ok, imact, p, projp, proja, ima, a, act, i, f, NX, name; Info( InfoXMod, 2, "now in NorrieXMod" ); S := Source( XM ); R := Range( XM ); genR := GeneratorsOfGroup( R ); P := AutomorphismPermGroup( XM ); DX := Parent( P ); genP := GeneratorsOfGroup( P ); Prng := [ 1..Length( genP ) ]; ########## 23/06/06 revision ######## PAR := Image( RangeProjection( P ) ); if HasAutoGroupIsomorphism( PAR ) then p2aR := AutoGroupIsomorphism( PAR ); elif ( HasParent( PAR ) and HasAutoGroupIsomorphism( Parent(PAR) ) ) then p2aR := AutoGroupIsomorphism( Parent( PAR ) ); else Error( "AutoGroupIsomorphism unavailable for PAR" ); fi; AR := Image( p2aR ); a2pR := InverseGeneralMapping( p2aR ); PAS := Image( SourceProjection( P ) ); if HasAutoGroupIsomorphism( PAS ) then p2aS := AutoGroupIsomorphism( PAS ); elif ( HasParent( PAS ) and HasAutoGroupIsomorphism( Parent(PAS) ) ) then p2aS := AutoGroupIsomorphism( Parent( PAS ) ); else Error( "AutoGroupIsomorphism unavailable for PAS" ); fi; AS := Image( p2aS ); a2pS := InverseGeneralMapping( p2aS ); ###################################### # determine the boundary map im := [ ]; for r in genR do autr := Image( XModAction( XM ), r ); psrc := Image( a2pS, autr ); emsrc := Image( EmbedSourceAutos( P ), psrc ); conjr := InnerAutomorphism( R, r ); prng := Image( a2pR, conjr ); emrng := Image( EmbedRangeAutos( P ), prng ); Add( im, emrng * emsrc ); ### assumes direct product ### od; bdy := GroupHomomorphismByImages( R, P, genR, im ); # determine the action imact := 0 * Prng; for i in Prng do p := genP[i]; projp := Image( RangeProjection( P ), p ); proja := Image( p2aR, projp ); ima := List( genR, r -> Image( proja, r ) ); a := GroupHomomorphismByImages( R, R, genR, ima ); imact[i] := a; od; act := GroupHomomorphismByImages( P, AR, genP, imact ); for f in MappingGeneratorsImages( act )[2] do if ( f = IdentityMapping( R ) ) then f := InclusionMappingGroups( R, R ); fi; od; ## create the crossed module NX := XMod( bdy, act ); name := Name( XM ); SetName( NX, Concatenation( "Norrie", name ) ); return NX; end ); ############################################################################# ## #M LueXMod( <XM> ) ## InstallMethod( LueXMod, "Lue crossed module", true, [ IsXMod ], 0, function( XM ) local NX, Nbdy, Xbdy, Lbdy, P, genP, Prng, S, genS, AS, a2pS, PAS, p2aS, imact, i, p, projp, proja, ima, a, act, f, LX, name; NX := NorrieXMod( XM ); Nbdy := Boundary( NX ); Xbdy := Boundary( XM ); Lbdy := Xbdy * Nbdy; P := AutomorphismPermGroup( XM ); genP := GeneratorsOfGroup( P ); Prng := [ 1..Length( genP ) ]; S := Source( XM ); genS := GeneratorsOfGroup( S ); ########## 23/06/06 revision ########## PAS := Image( SourceProjection( P ) ); if HasAutoGroupIsomorphism( PAS ) then p2aS := AutoGroupIsomorphism( PAS ); elif ( HasParent( PAS ) and HasAutoGroupIsomorphism( Parent(PAS) ) ) then p2aS := AutoGroupIsomorphism( Parent( PAS ) ); else Error( "AutoGroupIsomorphism unavailable for PAS" ); fi; AS := Image( p2aS ); a2pS := InverseGeneralMapping( p2aS ); ###################################### imact := 0 * Prng; for i in Prng do p := genP[i]; projp := Image( SourceProjection( P ), p ); proja := Image( p2aS, projp ); ima := List( genS, s -> Image( proja, s ) ); a := GroupHomomorphismByImages( S, S, genS, ima ); imact[i] := a; od; act := GroupHomomorphismByImages( P, AS, genP, imact ); for f in MappingGeneratorsImages( act )[2] do if ( f = IdentityMapping( S ) ) then f := InclusionMappingGroups( S, S ); fi; od; LX := XMod( Lbdy, act ); name := Name( XM ); SetName( LX, Concatenation( "Lue", name ) ); return LX; end ); ############################################################################# ## #M ActorXMod( <XM> ) ## InstallMethod( ActorXMod, "actor crossed module", true, [ IsXMod ], 0, function( XM ) local D, L, W, eW, P, genP, genpos, ngW, genW, invW, imdelta, S, R, AS, AR, PAS, p2aS, a2pS, PAR, p2aR, a2pR, emsrc, emrng, i, j, k, mor, imsrc, imrng, delta, GA, nGA, imact, rho, invrho, impos, chi, chj, imgen, phi, id, aut, act, ActX, name; if not IsPermXMod( XM ) then Error( "ActorXMod only implemented for permutation xmods" ); fi; D := RegularDerivations( XM ); L := ImagesList( D ); W := WhiteheadPermGroup( XM ); eW := Elements( W ); P := AutomorphismPermGroup( XM ); genP := GeneratorsOfGroup( P ); genpos := WhiteheadGroupGeneratorPositions( XM ); ngW := Length( genpos ); # determine the boundary map genW := List( genpos, i -> eW[i] ); invW := List( genW, g -> g^-1 ); imdelta := ListWithIdenticalEntries( ngW, 0 ); S := Source( XM ); R := Range( XM ); ########## 23/06/06 revision ########## PAR := Image( RangeProjection( P ) ); if HasAutoGroupIsomorphism( PAR ) then p2aR := AutoGroupIsomorphism( PAR ); elif ( HasParent( PAR ) and HasAutoGroupIsomorphism( Parent(PAR) ) ) then p2aR := AutoGroupIsomorphism( Parent( PAR ) ); else Error( "AutoGroupIsomorphism unavailable for PAR" ); fi; AR := Image( p2aR ); a2pR := InverseGeneralMapping( p2aR ); PAS := Image( SourceProjection( P ) ); if HasAutoGroupIsomorphism( PAS ) then p2aS := AutoGroupIsomorphism( PAS ); elif ( HasParent( PAS ) and HasAutoGroupIsomorphism( Parent(PAS) ) ) then p2aS := AutoGroupIsomorphism( Parent( PAS ) ); else Error( "AutoGroupIsomorphism unavailable for PAS" ); fi; AS := Image( p2aS ); a2pS := InverseGeneralMapping( p2aS ); ###################################### emsrc := EmbedSourceAutos( P ); emrng := EmbedRangeAutos( P ); for i in [1..ngW] do j := genpos[i]; chj := DerivationByImages( XM, L[j] ); mor := Object2dEndomorphism( chj ); imsrc := Image( emsrc, Image( a2pS, SourceHom( mor ) ) ); imrng := Image( emrng, Image( a2pR, RangeHom( mor ) ) ); imdelta[i] := imsrc * imrng; od; delta := GroupHomomorphismByImages( W, P, genW, imdelta ); Info( InfoXMod, 3, "delta: ", MappingGeneratorsImages( delta ) ); # determine the action GA := GeneratingAutomorphisms( XM ); nGA := Length( GA ); imact := ListWithIdenticalEntries( nGA, 0 ); for k in [1..nGA] do mor := GA[k]; rho := RangeHom( mor ); invrho := rho^(-1); impos := ListWithIdenticalEntries( ngW, 0); for i in [1..ngW] do j := genpos[i]; chi := DerivationByImages( XM, L[j] ); chj := ImageAutomorphismDerivation( mor, chi ); impos[i] := Position( L, UpGeneratorImages( chj ) ); od; imgen := List( impos, i -> eW[i] ); phi := GroupHomomorphismByImages( W, W, genW, imgen ); imact[k] := phi; od; id := InclusionMappingGroups( W, W ); aut := Group( imact, id ); SetName( aut, "Aut(W)" ); act := GroupHomomorphismByImages( P, aut, genP, imact ); ActX := XMod( delta, act ); name := Name( XM ); SetName( ActX, Concatenation( "Actor", name ) ); return ActX; end ); ############################################################################# ## #M ActorCat1Group( <C> ) ## InstallMethod( ActorCat1Group, "actor cat1-group", true, [ IsCat1Group ], 0, function( C ) return 0; end ); ############################################################################# ## #M InnerMorphism( <XM> ) ## InstallMethod( InnerMorphism, "inner morphism of xmod", true, [ IsPermXMod ], 0, function( XM ) local WX, NX, ActX, mor; WX := WhiteheadXMod( XM ); NX := NorrieXMod( XM ); ActX := ActorXMod( XM ); mor := XModMorphismByHoms( XM, ActX, Boundary(WX), Boundary(NX) ); return mor; end ); ############################################################################# ## #M XModCentre( <XM> ) ## #? InstallOtherMethod( Centre, "centre of an xmod", true, [ IsPermXMod ], 0, ## InstallMethod( XModCentre, "centre of an xmod", true, [ IsXMod ], 0, function( XM ) return Kernel( InnerMorphism( XM ) ); end ); ############################################################################# ## #M InnerActorXMod( <XM> ) ## InstallMethod( InnerActorXMod, "inner actor crossed module", true, [ IsPermXMod ], 0, function( XM ) local InnX, mor, name, ActX; ActX := ActorXMod( XM ); mor := InnerMorphism( XM ); InnX := ImagesSource( mor ); if ( InnX = ActX ) then InnX := ActX; else name := Name( XM ); SetName( InnX, Concatenation( "InnerActor", name ) ); fi; return InnX; end ); ############################################################################# ## #E gp2act.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here