GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
##############################################################################
##
#W gp2up.gi GAP4 package `XMod' Chris Wensley
#W & Murat Alp
##
## This file contains implementations of UpMappings, Derivations and Sections
##
#Y Copyright (C) 2001-2017, Chris Wensley et al,
#Y School of Computer Science, Bangor University, U.K.
##############################################################################
##
#M IsUp2DimensionalMapping (19/07/11) : no longer needed now a category
##
## InstallMethod( IsUp2DimensionalMapping,
## "generic method for derivations and sections", true, [IsGeneralMapping], 0,
##function( map )
## return ( HasObject2d( map ) and HasUpGeneratorImages( map ) );
##end );
##############################################################################
##
#M Source( <map> ) . . . . . . . . . . . . . . . . . . source for up-mapping
#M Range( <map> ) . . . . . . . . . . . . . . . . . . . range for up-mapping
##
InstallOtherMethod( Source, "generic method for an up-mapping",
[ IsUp2DimensionalMapping ], 0,
function ( map )
return Source( Object2d( map ) );
end );
InstallOtherMethod( Range, "generic method for an up-mapping",
[ IsUp2DimensionalMapping ], 0,
function ( map )
return Range( Object2d( map ) );
end );
##############################################################################
##
#M \=( <u1>, <u2> ) . . . . . . . test if two derivations|sections are equal
##
InstallMethod( \=,
"generic method for two upmappings",
IsIdenticalObj, [ IsUp2DimensionalMapping, IsUp2DimensionalMapping ], 0,
function ( u1, u2 )
return ( ( Object2d(u1) = Object2d(u2) )
and ( UpGeneratorImages(u1) = UpGeneratorImages(u2) ) );
end );
#############################################################################
##
#M IsDerivation
##
InstallMethod( IsDerivation, "generic method for derivation of pre-xmod",
true, [ IsUp2DimensionalMapping ], 0,
function( chi )
local im, inv, XM, bdy, R, stgR, invR, oneR, ord, S, oneS,
genrng, rho, imrho, ok, g, i, j, r, s, t, u, v, w, aut, act, pair,
iso, fp, pres, T, numrels, lenrels, rels, rel, len, triv;
XM := Object2d( chi );
im := UpGeneratorImages( chi );
S := Source( XM );
oneS := One( S );
R := Range( XM );
oneR := One( R );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
iso := IsomorphismFpGroupByGenerators( R, stgR );
fp := Range( iso );
Info( InfoXMod, 3, "iso to fp group : ", iso );
invR := List( stgR, r -> r^(-1) );
triv := List( stgR, r -> oneS );
if ( UpGeneratorImages( chi ) = triv ) then
return true;
fi;
genrng := [ 1..Length( stgR ) ];
bdy := Boundary( XM );
act := XModAction( XM );
# calculate chi(r^-1) for each generator r
inv := 0 * genrng;
for j in genrng do
r := stgR[j];
s := im[j];
aut := Image( act, r^(-1) );
inv[j] := Image( aut, s )^(-1);
od;
Info( InfoXMod, 3, " Images = ", im, ", inverses = ", inv );
pres := PresentationFpGroup( fp );
T := pres!.tietze;
numrels := T[TZ_NUMRELS];
rels := T[TZ_RELATORS];
lenrels := T[TZ_LENGTHS];
w := oneS;
v := oneR;
for i in [1..numrels] do
rel := rels[i];
len := lenrels[i];
for j in Reversed( [1..len] ) do
g := rel[j];
if ( g > 0 ) then
r := stgR[g];
s := im[g];
else
r := invR[-g];
s := inv[-g];
fi;
aut := Image( act, v );
u := Image( aut, s );
w := u * w;
v := r * v;
od;
if ( w <> oneS ) then
Info( InfoXMod, 3, "chi(rel) <> One(S) when rel = ", rel );
return false;
fi;
od;
SetIsDerivation( chi, true );
return true;
end );
##############################################################################
##
#M IsSection tests the section axioms for a pre-cat1-group
##
InstallMethod( IsSection, "generic method for section of cat1-group",
true, [ IsUp2DimensionalMapping ], 0,
function( xi )
local hom, C, Crng, idrng, ok, reg;
hom := UpHomomorphism( xi );
if not IsGroupHomomorphism( hom ) then
return false;
fi;
C := Object2d( xi );
Crng := Range( C );
if not ( ( Source(hom) = Crng ) and ( Range(hom) = Source(C) ) ) then
Print( "<hom> not a homomorphism: Range( C ) -> Source( C )\n" );
return false;
fi;
idrng := InclusionMappingGroups( Crng, Crng );
ok := ( hom * TailMap(C) = idrng );
reg := IsInjective( hom * HeadMap(C) );
## SetIsRegularSection( xi, ok and reg );
SetIsSection( xi, true );
return ok;
end );
##############################################################################
##
#M SourceEndomorphism for an upmapping
##
InstallMethod( SourceEndomorphism, "method for an upmapping", true,
[ IsUp2DimensionalMapping ], 0,
function( u )
local XM, S, bdy, genS, ngenS, imsigma, i, s, r, s2, sigma;
if IsDerivation( u ) then
XM := Object2d( u );
S := Source( XM );
bdy := Boundary( XM );
genS := GeneratorsOfGroup( S );
ngenS := Length( genS );
imsigma := [ 1..ngenS ];
for i in [1..ngenS] do
s := genS[i];
r := Image( bdy, s );
s2 := DerivationImage( u, r );
imsigma[i] := s * s2;
od;
sigma := GroupHomomorphismByImages( S, S, genS, imsigma );
return sigma;
else
Error( "SourceEndomorphism for sections not yet implemented" );
fi;
end );
##############################################################################
##
#M RangeEndomorphism for an upmapping
##
InstallMethod( RangeEndomorphism, "method for an upmapping", true,
[ IsUp2DimensionalMapping ], 0,
function( u )
local XM, R, bdy, genR, ngenR, imrho, i, s, r, r2, rho;
if IsDerivation( u ) then
XM := Object2d( u );
R := Range( XM );
bdy := Boundary( XM );
genR := GeneratorsOfGroup( R );
ngenR := Length( genR );
imrho := [ 1..ngenR ];
for i in [1..ngenR] do
r := genR[i];
s := DerivationImage( u, r );
r2 := Image( bdy, s );
imrho[i] := r * r2;
od;
rho := GroupHomomorphismByImages( R, R, genR, imrho );
return rho;
else
Error( "RangeEndomorphism for sections not yet implemented" );
fi;
end );
#############################################################################
##
#M Object2dEndomorphism for an upmapping
##
InstallMethod( Object2dEndomorphism, "method for an upmapping", true,
[ IsUp2DimensionalMapping ], 0,
function( u )
local obj, sigma, rho, mor;
if IsDerivation( u ) then
obj := Object2d( u );
sigma := SourceEndomorphism( u );
rho := RangeEndomorphism( u );
mor := XModMorphismByHoms( obj, obj, sigma, rho );
return mor;
else
Error( "Object2dEndomorphism for sections not yet implemented" );
fi;
end );
##############################################################################
## Derivations ##
##############################################################################
##############################################################################
##
#M DerivationByImages sets up the mapping
##
InstallMethod( DerivationByImages, "method for a crossed module", true,
[ IsXMod, IsHomogeneousList ], 0,
function( XM, ims )
local nargs, usage, isder, chi, R, S, stgR, ngR, ok;
S := Source( XM );
R := Range( XM );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
ngR := Length( stgR );
if not ( IsList( ims ) and ( Length( ims ) = ngR )
and ForAll( ims, x -> ( x in S ) ) ) then
Error( "<ims> must be a list of |stgR| elements in S" );
fi;
chi := rec();
ObjectifyWithAttributes( chi, Up2DimensionalMappingType,
Object2d, XM,
UpGeneratorImages, ims,
IsUp2DimensionalMapping, true );
ok := IsDerivation( chi );
if not ok then
return fail;
else
return chi;
fi;
end );
#############################################################################
##
#M String, ViewString, PrintString, ViewObj, PrintObj . . . for a derivation
##
InstallMethod( String, "for a derivation", true, [ IsDerivation ], 0,
function( chi )
local obj;
obj := Object2d( chi );
return( STRINGIFY( "derivation by images: ", String( Range(obj) ),
" -> ", String( Source(obj) ) ) );
end );
InstallMethod( ViewString, "for a derivation", true, [ IsDerivation ],
0, String );
InstallMethod( PrintString, "for a derivation", true, [ IsDerivation ],
0, String );
InstallMethod( PrintObj, "method for a derivation", true, [ IsDerivation ], 0,
function( chi )
local obj, iso, R, stgR;
obj := Object2d( chi );
R := Range( obj );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
iso := IsomorphismFpGroupByGenerators( R, stgR );
Print( "DerivationByImages( ", R, ", ", Source(obj), ", ",
stgR, ", ", UpGeneratorImages(chi), " )" );
end );
InstallMethod( ViewObj, "method for a derivation", true, [ IsDerivation ],
0, PrintObj );
##############################################################################
##
#M DerivationImage image of r \in R by the derivation chi
##
InstallMethod( DerivationImage, "method for a derivation and a group element",
true, [ IsDerivation, IsObject ], 0,
function( chi, r )
local XM, S, R, stgR, imchi, elR, elS, ngR, genrng, j, g, s, u, v,
rpos, spos, ord, P, a, act;
XM := Object2d( chi );
S := Source( XM );
R := Range( XM );
if not ( r in R ) then
Error( "second parameter must be an element of chi.source" );
fi;
if ( r = One( R ) ) then
return One( S );
fi;
elR := Elements( R );
elS := Elements( S );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
imchi := UpGeneratorImages( chi );
rpos := Position( elR, r );
if HasUpImagePositions( chi ) then
spos := UpImagePositions( chi )[ rpos ];
return elS[ spos ];
fi;
ord := GenerationOrder( R );
P := GenerationPairs( R );
j := P[rpos][1];
g := P[rpos][2];
if ( j = 1 ) then # r is a generator
return imchi[g];
fi;
act := XModAction( XM );
u := imchi[g];
v := stgR[g];
while ( j > 1 ) do
g := P[j][2];
j := P[j][1];
s := imchi[g];
a := Image( act, v );
u := Image( a, s ) * u;
v := stgR[g] * v;
od;
return u;
end );
##############################################################################
##
#M UpImagePositions returns list of positions of chi(r) in S
##
InstallMethod( UpImagePositions, "method for a derivation", true,
[ IsDerivation ], 0,
function( chi )
local XM, R, S, elR, stgR, ngR, ord, P, oR, elS, oneS,
i, j, k, x, y, L, ok, imchi, act, agen, a;
XM := Object2d( chi );
R := Range( XM );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
ngR := Length( stgR );
imchi := UpGeneratorImages( chi );
act := XModAction( XM );
agen := List( stgR, r -> Image( act, r ) );
S := Source( XM );
elR := Elements( R );
elS := Elements( S );
oneS := One( S );
ord := GenerationOrder( R );
P := GenerationPairs( R );
if ( InfoLevel( InfoXMod ) > 2 ) then
ok := CheckGenerationPairs( R );
Print( "checking generation pairs: ", ok, "\n" );
fi;
oR := Size( R );
L := 0 * [1..oR];
L[1] := Position( elS, oneS );
for k in [2..oR] do
i := ord[k];
j := P[i][2];
x := elS[ L[ P[i][1] ] ];
a := agen[j];
y := Image( a, x ) * imchi[j];
L[i] := Position( elS, y );
od;
return L;
end );
##############################################################################
##
#M PrincipalDerivation derivation determined by a choice of s in S
##
InstallMethod( PrincipalDerivation, "method for xmod and source element",
true, [ IsXMod, IsObject ], 0,
function( XM, s )
local act, S, R, stgR, q, r, iota, imiota, ngen, a, j;
S := Source( XM );
R := Range( XM );
act := XModAction( XM );
if not ( s in S ) then
Error( "Second parameter must be an element of the source of X" );
fi;
stgR := StrongGeneratorsStabChain( StabChain( R ) );
ngen := Length( stgR );
imiota := 0 * [1..ngen];
for j in [1..ngen] do
r := stgR[j];
a := Image( act, r );
q := Image( a, s^(-1) );
imiota[j] := q * s;
## Print( "[r,a,q,q*s] = ", [r,a,q,q*s], "\n" );
## now using r -> (s^-1)^r * s, rather than s^r * s^-1 ##
od;
iota := DerivationByImages( XM, imiota );
return iota;
end );
##############################################################################
##
#M PrincipalDerivations list of principal derivations without duplicates
##
InstallMethod( PrincipalDerivations, "method for xmod", true, [ IsXMod ], 0,
function( XM )
local S, s, elS, size, i, L, iota, pos;
S := Source( XM );
elS := Elements( S );
size := Length( elS );
L := [ ];
for i in [1..size] do
iota := PrincipalDerivation( XM, elS[i] );
pos := Position( L, iota );
if ( pos = fail ) then
Add( L, iota );
fi;
od;
return L;
end );
##############################################################################
##
#M CompositeDerivation Whitehead composite of two derivations
##
InstallMethod( CompositeDerivation, "method for two derivations", true,
[ IsDerivation, IsDerivation ], 0,
function( chi, chj )
local XM, imi, imj, R, stgR, numrng, rng, r, k,
s, si, sj, bdy, bsj, imcomp, comp;
XM := Object2d( chi );
R := Range( XM );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
if not ( Object2d( chj ) = XM ) then
Error( "<chi>,<chj> must be derivations of the SAME crossed module" );
fi;
numrng := Length( stgR );
rng := [ 1..numrng ];
imi := UpGeneratorImages( chi );
imj := UpGeneratorImages( chj );
bdy := Boundary( XM );
imcomp := 0 * rng;
for k in rng do
r := stgR[k];
sj := imj[k];
si := imi[k];
bsj := Image( bdy, sj );
s := DerivationImage( chi, bsj );
imcomp[k] := si * sj * s;
od;
comp := DerivationByImages( XM, imcomp );
return comp;
end );
##############################################################################
##
#M \*( <chi1>, <chi2> ) . . . . . . . . . . . . . . . . . . for 2 derivations
##
InstallOtherMethod( \*, "for two derivations of crossed modules",
IsIdenticalObj, [ IsDerivation, IsDerivation ], 0,
function( chi1, chi2 )
return CompositeDerivation( chi2, chi1 );
end );
##############################################################################
##
#M IsRegularDerivation test whether a derivation has an inverse
##
InstallMethod( IsRegularDerivation, "method for derivations", true,
[ IsDerivation ], 0,
function( chi )
local XM, S, bdy, R, stgR, genrng, im, imrho, rho, ok;
XM := Object2d( chi );
S := Source( XM );
bdy := Boundary( XM );
R := Range( XM );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
im := UpGeneratorImages( chi );
genrng := [ 1..Length( stgR ) ];
imrho := List( genrng, i -> stgR[i] * Image( bdy, im[i] ) );
rho := GroupHomomorphismByImages( R, R , stgR, imrho);
ok := ( ( rho <> fail ) and IsBijective( rho ) );
return ok;
end );
#############################################################################
##
#M InverseDerivations Finds all semigroup inverses XJ for derivation Xi
## i.e. XiXjXi=Xi & XjXiXj=Xj
InstallMethod( InverseDerivations, "method for a derivation", true,
[ IsDerivation ], 0,
function( chi )
local XM, x, D, L, size, j, chj, chk, chl, chh, chg, inv;
XM := Object2d( chi );
D := AllDerivations( XM );
L := ImagesList( D );
size := Length( L );
inv := [ ];
for j in [1..size] do
chj := DerivationByImages( XM, L[j] );
chk := CompositeDerivation( chi, chj );
chl := CompositeDerivation( chk, chi );
chh := CompositeDerivation( chj, chi );
chg := CompositeDerivation( chh, chj );
if ( ( UpGeneratorImages( chi ) = UpGeneratorImages( chl ) )
and ( UpGeneratorImages( chg ) = UpGeneratorImages( chj ) ) ) then
Add( inv, Position( L, UpGeneratorImages( chj ) ) );
fi;
od;
return inv;
end );
##############################################################################
##
#M ListInverseDerivations List all inverses for each derivation
##
InstallMethod( ListInverseDerivations, "method for a crossed module", true,
[ IsXMod ], 0,
function( XM )
local L, i, M, size, D, chi, inv;
D := AllDerivations( XM );
L := ImagesList( D );
size := Length( L );
M := 0 * [1..size];
if IsBound( D.inverses ) then
return D.inverses;
fi;
for i in [1..size] do
chi := DerivationByImages( XM, L[i] );
inv := InverseDerivations( chi );
M[i] := inv;
od;
return M;
end );
##############################################################################
## Sections ##
##############################################################################
##############################################################################
##
#M SectionByImages sets up GroupHomByImages
##
InstallMethod( SectionByImages, "method for a cat1-group", true,
[ IsCat1Group, IsGroupHomomorphism ], 0,
function( C, hom )
local R, G, stgR, ngR, ok, xi;
G := Source( C );
R := Range( C );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
ngR := Length( stgR );
if not ( ( Source( hom ) = R ) and ( Range( hom ) = G ) ) then
Error( "require hom : Range(C) -> Source(C)" );
fi;
xi := rec();
ObjectifyWithAttributes( xi, Up2DimensionalMappingType,
Object2d, C,
UpHomomorphism, hom,
IsUp2DimensionalMapping, true,
UpGeneratorImages, List( stgR, r -> Image( hom, r ) ) );
ok := IsSection( xi );
if not ok then
return fail;
else
return xi;
fi;
end );
#############################################################################
##
#M String, ViewString, PrintString, ViewObj, PrintObj . . . . for a section
##
InstallMethod( String, "for a section", true, [ IsSection ], 0,
function( g2d )
return( STRINGIFY( "[", String( Source(g2d) ), " -> ",
String( Range(g2d) ), "]" ) );
end );
InstallMethod( ViewString, "for a section", true, [ IsSection ], 0, String );
InstallMethod( PrintString, "for a section", true, [ IsSection ], 0, String );
InstallMethod( PrintObj, "method for a section", true, [ IsSection ], 0,
function( xi )
local obj;
obj := Object2d( xi );
Print( "SectionByImages( ", Range( obj ), ", ", Source( obj ), ", ",
GeneratorsOfGroup( Range( obj ) ), ", ", UpGeneratorImages( xi ),
" )" );
end );
InstallMethod( ViewObj, "method for a section", true, [ IsSection ],
0, PrintObj );
##############################################################################
##
#M SectionByDerivation . . the cat1-group section determined by a derivation
##
InstallMethod( SectionByDerivation, "method for a derivation", true,
[ IsDerivation ], 0,
function( chi )
local XM, R, stgR, ngR, hom, xi, imchi, imhom, i, r,
er, eR, eK, eKchi, g, C;
XM := Object2d( chi );
R := Range( XM );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
ngR := Length( stgR );
C := Cat1GroupOfXMod( XM );
eR := RangeEmbedding( C );
eK := KernelEmbedding( C );
imchi := UpGeneratorImages( chi );
eKchi := List( imchi, s -> Image( eK, s ) );
imhom := 0 * [ 1..ngR ];
for i in [ 1..Length( stgR ) ] do
r := stgR[i];
er := Image( eR, r );
g := er * eKchi[i];
imhom[i] := g;
od;
## xi := SectionByImages( C, imhom ); use NC
hom := GroupHomomorphismByImages( R, Source(C), stgR, imhom );
xi := SectionByImages( C, hom );
return xi;
end );
##############################################################################
##
#M DerivationBySection construct XMod derivation from cat1-group section
##
InstallMethod( DerivationBySection, "method for a section", true,
[ IsSection ], 0,
function( xi )
local C, imxi, eR, eK, R, stgR, ngR, S, XM, imchi, r, er, s, i, chi;
if not IsSection( xi ) then
Error( "Parameter must be a section of a cat1-group" );
fi;
C := xi.cat1;
imxi := UpGeneratorImages( xi );
XM := XModOfCat1Group( C );
S := C.kernel;
R := Range( C );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
ngR := Length( stgR );
eR := C.embedRange;
eK := C.embedKernel;
imchi := 0 * [ 1..ngR ];
for i in [ 1..Length( stgR ) ] do
r := stgR[i];
er := Image( eR, r );
s := er^(-1) * imxi[i];
imchi[i] := PreImagesRepresentative( eK, s );
Info( InfoXMod, 2, "In xi->chi :- ", [ i, r, er, s] );
od;
chi := DerivationByImages( XM, imchi );
chi.isDerivation := IsDerivation( chi );
return chi;
end );
##############################################################################
##
#M CompositeSection Whitehead composite of two sections
##
InstallMethod( CompositeSection, "method for two sections", true,
[ IsSection, IsSection ], 0,
function( xi, xj )
local C, R, stgR, h, e, hxj, ehxj, xihxj, r, im1, im2, im3,
numrng, k, imcomp, comp;
C := Object2d( xi );
if not ( C = Object2d( xj ) ) then
Error( "<xi>,<xj> must be sections of the SAME cat1-group" );
fi;
R := Range( C );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
h := HeadMap( C );
e := RangeEmbedding( C );
hxj := xj * h;
ehxj := hxj * e;
xihxj := hxj * xi;
numrng := Length( stgR );
imcomp := 0 * [1..numrng];
for k in [1..numrng] do
r := stgR[k];
im1 := Image( xj, r );
im2 := Image( ehxj, r )^(-1);
im3 := Image( xihxj, r );
imcomp[k] := im1 * im2 * im3;
od;
comp := SectionByImages( C, imcomp );
return comp;
end );
###############################################################################
## Monoids of Derivations and Sections ##
###############################################################################
###############################################################################
##
#M MonoidOfUp2DimensionalMappingsObj( <obj>, <ims>, <str> )
##
InstallMethod( MonoidOfUp2DimensionalMappingsObj, "for a 2DimensionalDomain",
true, [ Is2DimensionalDomain, IsHomogeneousList, IsString ], 0,
function( obj, images, str )
local mon;
mon := rec();
ObjectifyWithAttributes( mon, MonoidOfUp2DimensionalMappingsType,
IsMonoidOfUp2DimensionalMappings, true,
Object2d, obj,
ImagesList, images,
AllOrRegular, str );
if IsXMod( obj ) then
SetIsMonoidOfDerivations( mon, true );
elif IsCat1Group( obj ) then
SetIsMonoidOfSections( mon, true );
else
Error( "<obj> not an xmod nor a cat1" );
fi;
return mon;
end );
##############################################################################
##
#? added 28/04/08, but does not seem to be 'applicable' ??
##
#M PrintObj( <mon> ) prints regular/all derivations/sections
#M ViewObj( <mon> ) views regular/all derivations/sections
##
InstallMethod( PrintObj, "for IsMonoidOfUp2DimensionalMappings", true,
[ IsMonoidOfUp2DimensionalMappings ], 0,
function( mon )
if IsMonoidOfDerivations( mon ) then
Print( "monoid of derivations with images list:\n" );
elif IsMonoidOfSections( mon ) then
Print( "monoid of sections with images list:\n" );
else
Error( "neither derivations nor sections" );
fi;
PrintListOneItemPerLine( ImagesList( mon ) );
end );
InstallMethod( ViewObj, "for IsMonoidOfUp2DimensionalMappings", true,
[ IsMonoidOfUp2DimensionalMappings ], 0, PrintObj );
##############################################################################
##
#M ImagesTable returns list of lists of DerivationImages
##
InstallMethod( ImagesTable, "method for crossed module derivations", true,
[ IsMonoidOfDerivations ], 0,
function( D )
local str, T, i, chi, L, XM, size;
XM := Object2d( D );
L := ImagesList( D );
size := Length( L );
T := 0 * [1..size];
for i in [1..size] do
chi := DerivationByImages( XM, L[i] );
T[i] := UpImagePositions( chi );
od;
return T;
end );
##############################################################################
##
#M BacktrackDerivationsJ recursive function for BacktrackDerivations
##
InstallMethod( BacktrackDerivationsJ, "method for a crossed module", true,
[ IsXMod, IsHomogeneousList, IsHomogeneousList, IsHomogeneousList,
IsInt, IsString ], 0,
function( XM, subs, imrho, imchi, j, str )
local Xsrc, onesrc, Xrng, isorng, stgrng, derivgen, s, ok, rho, bdy,
k, J, genJ, ord, r, aut, w, t, i, chi;
Xsrc := Source( XM );
Xrng := Range( XM );
onesrc := One( Xsrc );
stgrng := StrongGeneratorsStabChain( StabChain( Xrng ) );
k := Length( stgrng );
bdy := Boundary( XM );
if ( k < j ) then
# complete list of images found: if a derivation, add to genimagesList
imchi := ShallowCopy( imchi );
derivgen := [ imchi ];
chi := DerivationByImages( XM, imchi );
ok := ( ( chi <> fail ) and IsDerivation( chi ) );
if ( ok and IsXMod( XM ) ) then
SetIsDerivation( chi, true );
if ( ok and ( str = "reg" ) ) then
ok := IsRegularDerivation( chi );
fi;
fi;
if not ok then
derivgen := [ ];
fi;
else
J := subs[j];
genJ := GeneratorsOfGroup( J );
derivgen := [ ];
for s in Xsrc do
imchi[ j ] := s;
imrho[ j ] := genJ[j] * Image( bdy, s );
rho := GroupHomomorphismByImages( J, Xrng, genJ, imrho );
ok := IsGroupHomomorphism( rho );
if ok then
r := genJ[j];
ord := Order( r );
w := s;
t := s;
aut := Image( XModAction( XM ), r );
for i in [1..ord-1] do
t := Image( aut, t );
w := t * w;
od;
if ( w <> onesrc ) then
ok := false;
Info( InfoXMod, 3, "test fails at j,r,s,w = ", [j,r,s,w] );
fi;
fi;
if ok then
Append( derivgen,
BacktrackDerivationsJ( XM, subs, imrho, imchi, j+1, str ) );
fi;
imrho := imrho{[1..j]};
od;
fi;
return derivgen;
end );
##############################################################################
##
#M BacktrackDerivations recursive construction for all derivations
##
InstallMethod( BacktrackDerivations, "method for a crossed module", true,
[ IsXMod, IsString ], 0,
function( XM, str )
local R, len, stgR, subs, images, sorted, derivrec;
if not ( str in [ "reg", "all" ] ) then
Error( "Invalid reg|all string" );
fi;
R := Range( XM );
stgR := StrongGeneratorsStabChain( StabChain( R ) );
len := Length( stgR );
subs := List( [1..len], i -> Subgroup( R, stgR{[1..i]} ) );
images := BacktrackDerivationsJ( XM, subs, [], [], 1, str );
derivrec := MonoidOfUp2DimensionalMappingsObj( XM, images, str );
return derivrec;
end );
##############################################################################
##
#M RegularDerivations find all invertible derivations for a crossed module
##
InstallMethod( RegularDerivations, "method for a crossed module", true,
[ IsXMod ], 0,
function( XM )
local how, ok;
ok := true;
return BacktrackDerivations( XM, "reg" );
end );
##############################################################################
##
#M AllDerivations find all derivations for a crossed module
##
InstallMethod( AllDerivations, "method for a crossed module", true,
[ IsXMod ], 0,
function( XM )
local how, ok;
ok := true;
return BacktrackDerivations( XM, "all" );
end );
##############################################################################
##
#M WhiteheadMonoidTable( XM ) table of products of derivations
##
InstallMethod( WhiteheadMonoidTable, "method for a crossed module", true,
[ IsXMod ], 0,
function( XM )
local C, D, L, i, j, chi, images, J, M, size;
D := AllDerivations( XM );
L := ImagesList( D );
size := Length( L );
M := 0 * [1..size];
C := 0 * [1..size];
for i in [1..size] do
C[i] := DerivationByImages( XM, L[i] );
od;
for i in [1..size] do
J := 0 * [1..size];
for j in [1..size] do
chi := CompositeDerivation( C[i], C[j] );
J[j] := Position( L, UpGeneratorImages( chi ) );
od;
M[i] := J;
od;
return M;
end );
###############################################################################
##
#M WhiteheadGroupTable( XM ) table of products of regular derivations
##
InstallMethod( WhiteheadGroupTable, "method for a crossed module", true,
[ IsXMod ], 0,
function( XM )
local C, D, L, i, j, chi, images, J, M, reg, len;
D := RegularDerivations( XM );
reg := AllOrRegular( D );
L := ImagesList( D );
len := Length( L );
M := 0 * [1..len];
C := 0 * [1..len];
for i in [1..len] do
C[i] := DerivationByImages( XM, L[i] );
od;
for i in [1..len] do
J := 0 * [1..len];
for j in [1..len] do
chi := CompositeDerivation( C[i], C[j] );
J[j] := Position( L, UpGeneratorImages( chi ) );
od;
M[i] := J;
od;
return M;
end );
##############################################################################
##
#M WhiteheadPermGroup( XM ) perm rep for the Whitehead group
##
## (08/01/04) wish to use SmallerDegreePermutationRepresentation
##
InstallMethod( WhiteheadPermGroup, "method for a crossed module", true,
[ IsXMod ], 0,
function( XM )
local tab, reg, im, grp, gens, strgens, pos, genchi, grp1;
reg := RegularDerivations( XM );
tab := WhiteheadGroupTable( XM );
im := ImagesList( reg );
gens := List( tab, row -> PermList( row ) );
grp := Group( gens );
strgens := StrongGeneratorsStabChain( StabChain( grp ) );
pos := List( strgens, g -> Position( gens, g ) );
SetWhiteheadGroupGeneratorPositions( XM, pos );
genchi := List( pos, p -> DerivationByImages( XM, im[p] ) );
SetWhiteheadGroupGeneratingDerivations( XM, genchi );
if ( pos = [ ] ) then
grp1 := Group( () );
else
grp1 := Group( strgens );
fi;
return grp1;
end );
###############################################################################
##
#M WhiteheadTransMonoid( XM ) trans rep for the Whitehead monoid
##
#? this needs some more work
##
InstallMethod( WhiteheadTransMonoid, "method for a crossed module", true,
[ IsXMod ], 0,
function( XM )
local tab, j, t, mon, gens, it;
tab := WhiteheadMonoidTable( XM );
it := Transformation( [ ] );
gens := [ ];
mon := Monoid( [ it ] );
for j in [1..Length(tab)] do
t := Transformation( tab[j] );
if not ( t in mon ) then
Add( gens, t );
mon := Monoid( gens );
fi;
od;
return mon;
end );
#############################################################################
##
#E gp2up.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here