Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346gap> G := AlmostCrystallographicGroup( 4, 50, [ 1, -4, 1, 2 ] ); <matrix group of size infinity with 5 generators> gap> DimensionOfMatrixGroup( G ); 5 gap> FieldOfMatrixGroup( G ); Rationals gap> GeneratorsOfGroup( G ); [ [ [ 1, 0, -1/2, 0, 0 ], [ 0, 1, 0, 0, 1 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ], [ [ 1, 1/2, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ], [ [ 1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 1 ], [ 0, 0, 0, 0, 1 ] ], [ [ 1, 0, 0, 0, 1 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ], [ [ 1, -4, 1, 0, 1/2 ], [ 0, 0, -1, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 0, 1, 1/4 ], [ 0, 0, 0, 0, 1 ] ] ] gap> G.1; [ [ 1, 0, -1/2, 0, 0 ], [ 0, 1, 0, 0, 1 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ] gap> ACDim4Types[50]; "076" gap> ACDim4Param[50]; 4 gap> G := AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] ); Pcp-group with orders [ 4, 0, 0, 0, 0 ] gap> Cgs(G); [ g1, g2, g3, g4, g5 ] gap> F := FittingSubgroup( G ); Pcp-group with orders [ 0, 0, 0, 0 ] gap> Centre(F); Pcp-group with orders [ 0, 0 ] gap> LowerCentralSeries(F); [ Pcp-group with orders [ 0, 0, 0, 0 ], Pcp-group with orders [ 0 ], Pcp-group with orders [ ] ] gap> UpperCentralSeries(F); [ Pcp-group with orders [ 0, 0, 0, 0 ], Pcp-group with orders [ 0, 0 ], Pcp-group with orders [ ] ] gap> MinimalGeneratingSet(F); [ g2, g3, g4 ] gap> H := HolonomyGroup( G ); Pcp-group with orders [ 4 ] gap> hom := NaturalHomomorphismOnHolonomyGroup( G ); [ g1, g2, g3, g4, g5 ] -> [ g1, identity, identity, identity, identity ] gap> U := Subgroup( H, [Pcp(H)[1]^2] ); Pcp-group with orders [ 2 ] gap> PreImage( hom, U ); Pcp-group with orders [ 2, 0, 0, 0, 0 ] gap> G := AlmostCrystallographicGroup( 4, 70, false ); <matrix group of size infinity with 5 generators> gap> IsAlmostCrystallographic(G); true gap> AlmostCrystallographicInfo(G); rec( dim := 4, type := 70, param := [ 1, -4, 1, 2, -3 ] ) gap> G := AlmostCrystallographicPcpGroup( 4, 70, false ); Pcp-group with orders [ 6, 0, 0, 0, 0 ] gap> IsAlmostCrystallographic(G); true gap> AlmostCrystallographicInfo(G); rec( dim := 4, type := 70, param := [ -3, 2, 5, 1, 0 ] ) gap> ACDim3Funcs[15]; function( k1, k2, k3, k4 ) ... end gap> ACDim3Funcs[15](1,1,1,1); <matrix group with 5 generators> gap> ACPcpDim3Funcs[1](1); Pcp-group with orders [ 0, 0, 0 ] gap> G:=AlmostCrystallographicDim4("013",[8,0,1,0,1,0]); <matrix group with 6 generators> gap> G.5; [ [ 1, 4, 0, 0, 1/2 ], [ 0, -1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, -1, 1/2 ], [ 0, 0, 0, 0, 1 ] ] gap> G.6; [ [ 1, 8, 0, 0, 1/2 ], [ 0, -1, 0, 0, 0 ], [ 0, 0, -1, 0, 0 ], [ 0, 0, 0, -1, 0 ], [ 0, 0, 0, 0, 1 ] ]