CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346

gap> G := AlmostCrystallographicGroup( 4, 50, [ 1, -4, 1, 2 ] );
<matrix group of size infinity with 5 generators>
gap> DimensionOfMatrixGroup( G );
5
gap> FieldOfMatrixGroup( G );
Rationals
gap> GeneratorsOfGroup( G );
[ [ [ 1, 0, -1/2, 0, 0 ], [ 0, 1, 0, 0, 1 ], [ 0, 0, 1, 0, 0 ],
      [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ],
  [ [ 1, 1/2, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 1 ],
      [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ],
  [ [ 1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ],
      [ 0, 0, 0, 1, 1 ], [ 0, 0, 0, 0, 1 ] ],
  [ [ 1, 0, 0, 0, 1 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ],
      [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ],
  [ [ 1, -4, 1, 0, 1/2 ], [ 0, 0, -1, 0, 0 ], [ 0, 1, 0, 0, 0 ],
      [ 0, 0, 0, 1, 1/4 ], [ 0, 0, 0, 0, 1 ] ] ]
gap> G.1;
[ [ 1, 0, -1/2, 0, 0 ], [ 0, 1, 0, 0, 1 ], [ 0, 0, 1, 0, 0 ],
  [ 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 1 ] ]
gap> ACDim4Types[50];
"076"
gap> ACDim4Param[50];
4


gap> G := AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] );
Pcp-group with orders [ 4, 0, 0, 0, 0 ]
gap> Cgs(G);
[ g1, g2, g3, g4, g5 ]

gap> F := FittingSubgroup( G );
Pcp-group with orders [ 0, 0, 0, 0 ]
gap> Centre(F);
Pcp-group with orders [ 0, 0 ]
gap> LowerCentralSeries(F);
[ Pcp-group with orders [ 0, 0, 0, 0 ], Pcp-group with orders [ 0 ],
  Pcp-group with orders [  ] ]
gap> UpperCentralSeries(F);
[ Pcp-group with orders [ 0, 0, 0, 0 ], Pcp-group with orders [ 0, 0 ],
  Pcp-group with orders [  ] ]
gap> MinimalGeneratingSet(F);
[ g2, g3, g4 ]

gap> H := HolonomyGroup( G );
Pcp-group with orders [ 4 ]
gap> hom := NaturalHomomorphismOnHolonomyGroup( G );
[ g1, g2, g3, g4, g5 ] -> [ g1, identity, identity, identity, identity ]
gap> U := Subgroup( H, [Pcp(H)[1]^2] );
Pcp-group with orders [ 2 ]
gap> PreImage( hom, U );
Pcp-group with orders [ 2, 0, 0, 0, 0 ]


gap> G := AlmostCrystallographicGroup( 4, 70, false );
<matrix group of size infinity with 5 generators>
gap> IsAlmostCrystallographic(G);
true
gap> AlmostCrystallographicInfo(G);
rec( dim := 4, type := 70, param := [ 1, -4, 1, 2, -3 ] )


gap> G := AlmostCrystallographicPcpGroup( 4, 70, false );
Pcp-group with orders [ 6, 0, 0, 0, 0 ]
gap> IsAlmostCrystallographic(G);
true
gap> AlmostCrystallographicInfo(G);
rec( dim := 4, type := 70, param := [ -3, 2, 5, 1, 0 ] )


gap> ACDim3Funcs[15];
function( k1, k2, k3, k4 ) ... end
gap> ACDim3Funcs[15](1,1,1,1);
<matrix group with 5 generators>
gap> ACPcpDim3Funcs[1](1);
Pcp-group with orders [ 0, 0, 0 ]


gap> G:=AlmostCrystallographicDim4("013",[8,0,1,0,1,0]);
<matrix group with 6 generators>
gap> G.5;
[ [ 1, 4, 0, 0, 1/2 ], [ 0, -1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ],
  [ 0, 0, 0, -1, 1/2 ], [ 0, 0, 0, 0, 1 ] ]
gap> G.6;
[ [ 1, 8, 0, 0, 1/2 ], [ 0, -1, 0, 0, 0 ], [ 0, 0, -1, 0, 0 ],
  [ 0, 0, 0, -1, 0 ], [ 0, 0, 0, 0, 1 ] ]