CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
/****************************************************************************
2
**
3
*A pq_author.h ANUPQ source Eamonn O'Brien
4
**
5
*Y Copyright 1995-2001, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
6
*Y Copyright 1995-2001, School of Mathematical Sciences, ANU, Australia
7
**
8
*/
9
10
#define PQ_VERSION "ANU p-Quotient Program Version 1.9"
11
12
/*
13
###############################################################################
14
#
15
# Australian National University p-Quotient Program
16
#
17
# Version 1.9
18
# January 2012
19
#
20
# June 2001 (-v and -G options added and adapted to GAP 4)
21
#
22
###############################################################################
23
24
This implementation was developed in C by
25
26
Eamonn O'Brien
27
Department of Mathematics
28
University of Auckland
29
Private Bag 92019, Auckland, New Zealand
30
31
E-mail: [email protected]
32
33
WWW http://www.math.auckland.ac.nz/~obrien
34
35
###############################################################################
36
#
37
# Program content
38
#
39
###############################################################################
40
41
The program provides access to implementations of the following algorithms:
42
43
1. A p-quotient algorithm to compute a power-commutator presentation
44
for a p-group. The algorithm implemented here is based on that
45
described in Havas and Newman (1980) and papers referred to there.
46
Another description of the algorithm appears in Vaughan-Lee (1990b).
47
A FORTRAN implementation of this algorithm was programmed by
48
Alford & Havas. The basic data structures of that implementation
49
are retained.
50
51
The current implementation incorporates the following features:
52
53
a. collection from the left (see Vaughan-Lee, 1990b);
54
Vaughan-Lee's implementation of this collection
55
algorithm is used in the program;
56
57
b. an improved consistency algorithm (see Vaughan-Lee, 1982);
58
59
c. new exponent law enforcement and power routines;
60
61
d. closing of relations under the action of automorphisms;
62
63
e. some formula evaluation.
64
65
For details of these latter improvements, see
66
Newman and O'Brien (1996).
67
68
2. A p-group generation algorithm to generate descriptions of p-groups.
69
The algorithm implemented here is based on the algorithms described in
70
Newman (1977) and O'Brien (1990). A FORTRAN implementation of this
71
algorithm was earlier developed by Newman & O'Brien.
72
73
3. A standard presentation algorithm used to compute a canonical
74
power-commutator presentation of a p-group. The algorithm
75
implemented here is described in O'Brien (1994).
76
77
4. An algorithm which can be used to compute the automorphism group of
78
a p-group. The algorithm implemented here is described in O'Brien (1995).
79
80
81
###############################################################################
82
#
83
#Access via other programs
84
#
85
###############################################################################
86
87
Access to parts of this program is provided via GAP, Magma,
88
and Quotpic.
89
90
This program is supplied as a package within GAP.
91
The link from GAP 4 to pq is described in the ANUPQ share
92
package manual; all of the necessary code with documentation
93
can be found in the gap directory of this distribution.
94
95
###############################################################################
96
#
97
#References
98
#
99
###############################################################################
100
101
George Havas and M.F. Newman (1980), "Application of computers
102
to questions like those of Burnside", Burnside Groups (Bielefeld, 1977),
103
Lecture Notes in Math. 806, pp. 211-230. Springer-Verlag.
104
105
M.F. Newman (1977), "Determination of groups of prime-power order",
106
Group Theory (Canberra, 1975). Lecture Notes in Math. 573, pp. 73-84.
107
Springer-Verlag.
108
109
M.F. Newman and E.A. O'Brien (1996), "Application of computers to
110
questions like those of Burnside II", Internat. J. Algebra Comput.
111
112
E.A. O'Brien (1990), "The p-group generation algorithm",
113
J. Symbolic Comput. 9, 677-698.
114
115
E.A. O'Brien (1994), ``Isomorphism testing for p-groups",
116
J. Symbolic Comput. 17, 133-147.
117
118
E.A. O'Brien (1995), ``Computing automorphism groups of p-groups",
119
Computational Algebra and Number Theory, (Sydney, 1992), pp. 83--90.
120
Kluwer Academic Publishers, Dordrecht.
121
122
M.R. Vaughan-Lee (1982), "An Aspect of the Nilpotent Quotient Algorithm",
123
Computational Group Theory (Durham, 1982), pp. 76-83. Academic Press.
124
125
Michael Vaughan-Lee (1990a), The Restricted Burnside Problem,
126
London Mathematical Society monographs (New Ser.) #5.
127
Clarendon Press, New York, Oxford.
128
129
M.R. Vaughan-Lee (1990b), "Collection from the left",
130
J. Symbolic Comput. 9, 725-733.
131
132
*/
133
134