Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346/****************************************************************************1**2*A pq_author.h ANUPQ source Eamonn O'Brien3**4*Y Copyright 1995-2001, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany5*Y Copyright 1995-2001, School of Mathematical Sciences, ANU, Australia6**7*/89#define PQ_VERSION "ANU p-Quotient Program Version 1.9"1011/*12###############################################################################13#14# Australian National University p-Quotient Program15#16# Version 1.917# January 201218#19# June 2001 (-v and -G options added and adapted to GAP 4)20#21###############################################################################2223This implementation was developed in C by2425Eamonn O'Brien26Department of Mathematics27University of Auckland28Private Bag 92019, Auckland, New Zealand2930E-mail: [email protected]3132WWW http://www.math.auckland.ac.nz/~obrien3334###############################################################################35#36# Program content37#38###############################################################################3940The program provides access to implementations of the following algorithms:41421. A p-quotient algorithm to compute a power-commutator presentation43for a p-group. The algorithm implemented here is based on that44described in Havas and Newman (1980) and papers referred to there.45Another description of the algorithm appears in Vaughan-Lee (1990b).46A FORTRAN implementation of this algorithm was programmed by47Alford & Havas. The basic data structures of that implementation48are retained.4950The current implementation incorporates the following features:5152a. collection from the left (see Vaughan-Lee, 1990b);53Vaughan-Lee's implementation of this collection54algorithm is used in the program;5556b. an improved consistency algorithm (see Vaughan-Lee, 1982);5758c. new exponent law enforcement and power routines;5960d. closing of relations under the action of automorphisms;6162e. some formula evaluation.6364For details of these latter improvements, see65Newman and O'Brien (1996).66672. A p-group generation algorithm to generate descriptions of p-groups.68The algorithm implemented here is based on the algorithms described in69Newman (1977) and O'Brien (1990). A FORTRAN implementation of this70algorithm was earlier developed by Newman & O'Brien.71723. A standard presentation algorithm used to compute a canonical73power-commutator presentation of a p-group. The algorithm74implemented here is described in O'Brien (1994).75764. An algorithm which can be used to compute the automorphism group of77a p-group. The algorithm implemented here is described in O'Brien (1995).787980###############################################################################81#82#Access via other programs83#84###############################################################################8586Access to parts of this program is provided via GAP, Magma,87and Quotpic.8889This program is supplied as a package within GAP.90The link from GAP 4 to pq is described in the ANUPQ share91package manual; all of the necessary code with documentation92can be found in the gap directory of this distribution.9394###############################################################################95#96#References97#98###############################################################################99100George Havas and M.F. Newman (1980), "Application of computers101to questions like those of Burnside", Burnside Groups (Bielefeld, 1977),102Lecture Notes in Math. 806, pp. 211-230. Springer-Verlag.103104M.F. Newman (1977), "Determination of groups of prime-power order",105Group Theory (Canberra, 1975). Lecture Notes in Math. 573, pp. 73-84.106Springer-Verlag.107108M.F. Newman and E.A. O'Brien (1996), "Application of computers to109questions like those of Burnside II", Internat. J. Algebra Comput.110111E.A. O'Brien (1990), "The p-group generation algorithm",112J. Symbolic Comput. 9, 677-698.113114E.A. O'Brien (1994), ``Isomorphism testing for p-groups",115J. Symbolic Comput. 17, 133-147.116117E.A. O'Brien (1995), ``Computing automorphism groups of p-groups",118Computational Algebra and Number Theory, (Sydney, 1992), pp. 83--90.119Kluwer Academic Publishers, Dordrecht.120121M.R. Vaughan-Lee (1982), "An Aspect of the Nilpotent Quotient Algorithm",122Computational Group Theory (Durham, 1982), pp. 76-83. Academic Press.123124Michael Vaughan-Lee (1990a), The Restricted Burnside Problem,125London Mathematical Society monographs (New Ser.) #5.126Clarendon Press, New York, Oxford.127128M.R. Vaughan-Lee (1990b), "Collection from the left",129J. Symbolic Comput. 9, 725-733.130131*/132133134