CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
#############################################################################
##
#W  listops.gi             automgrp package                    Yevgen Muntyan
#W                                                             Dmytro Savchuk
##  automgrp v 1.3
##
#Y  Copyright (C) 2003 - 2016 Yevgen Muntyan, Dmytro Savchuk
##


###############################################################################
##
##  AG_IsCorrectAutomatonList( <list>, <invertible> )
##
InstallGlobalFunction(AG_IsCorrectAutomatonList,
function(list, invertible)
  local len, deg, i, j, sym, semi;

  if not IsDenseList(list) then
    return false;
  fi;

  len := Length(list);
  if len = 0 then
    return false;
  fi;

  for i in [1..len] do
    if not IsDenseList(list[i]) then
      return false;
    fi;
    if Length(list[i]) <> Length(list[1]) then
      return false;
    fi;
  od;

  deg := Length(list[1]) - 1;
  if deg < 1 then
    return false;
  fi;

  sym := SymmetricGroup(deg);
  semi := FullTransformationSemigroup(deg);

  for i in [1..len] do
    for j in [1..deg] do
      if not IsInt(list[i][j]) then
        return false;
      fi;
      if list[i][j] > len or list[i][j] < 1 then
        return false;
      fi;
    od;

    if not list[i][deg + 1] in sym then
      if not list[i][deg + 1] in semi then
        return false;
      fi;
      if invertible and list[i][deg + 1]^-1=fail then
        return false;
      fi;
    fi;
  od;

  return true;
end);


###############################################################################
##
##  AG_IsCorrectRecurList( <list>, <invertible> )
##
InstallGlobalFunction(AG_IsCorrectRecurList,
function(list, invertible)
  local len, deg, i, j, k, sym, semi, inv_states;

  if not IsDenseList(list) then
    return false;
  fi;

  len := Length(list);
  if len = 0 then
    return false;
  fi;

  for i in [1..len] do
    if not IsDenseList(list[i]) then
      return false;
    fi;
    if Length(list[i]) <> Length(list[1]) then
      return false;
    fi;
  od;

  deg := Length(list[1]) - 1;
  if deg < 2 then
    return false;
  fi;

  sym := SymmetricGroup(deg);
  semi := FullTransformationSemigroup(deg);

  for i in [1..len] do
    for j in [1..deg] do
      if IsInt(list[i][j]) then
        if list[i][j] > len or list[i][j] < -len or list[i][j] = 0 then
          return false;
        fi;
      elif IsList(list[i][j]) then
        if not IsDenseList(list[i][j]) then
          return false;
        fi;
        for k in list[i][j] do
          if (not IsInt(k)) or k > len or k < -len or k = 0 then
            return false;
          fi;
        od;
      else
        return false;
      fi;
    od;


    # Check that everything is correct here
    if (not IsPerm(list[i][deg + 1])) and (not IsTransformation(list[i][deg + 1])) then
      return false;
    elif LargestMovedPoint(list[i][deg + 1]) > deg then
      return false;
    elif IsTransformation(list[i][deg + 1]) and invertible and list[i][deg + 1]^-1=fail then
      return false;
    fi;
  od;


#  check if there is x^-1 in the list, while x is not invertible
  inv_states:=[];
  for i in [1..len] do
    if AG_IsInvertibleStateInList(i,list) then Add(inv_states,i); fi;
  od;

  for i in [1..len] do
    for j in [1..deg] do
      if IsInt(list[i][j]) then
        if list[i][j]<0 and not -list[i][j] in inv_states then
          return false;
        fi;
      else
        for k in list[i][j] do
          if k<0 and not -k in inv_states then
            return false;
          fi;
        od;
      fi;
    od;
  od;

  return true;
end);


###############################################################################
##
##  AG_ConnectedStatesInList(state, list)
##
##  Returns list of states which are reachable from given state,
##  it does not check correctness of arguments
##
InstallGlobalFunction(AG_ConnectedStatesInList,
function(state, list)
  local i, j, s, d, to_check, checked;

  d := Length(list[1]) - 1;

  to_check := [state];
  checked := [];

  while Length(to_check) <> 0 do
    for s in to_check do
      for i in [1..d] do
        if IsList(list[s][i]) then
          for j in AsSet(List(list[s][i],AbsInt)) do
            if (not j in checked) and (not j in to_check) then
              to_check := Union(to_check, [j]);
            fi;
          od;
        else
          if (not AbsInt(list[s][i]) in checked) and (not AbsInt(list[s][i]) in to_check) then
            to_check := Union(to_check, [AbsInt(list[s][i])]);
          fi;
        fi;
      od;
      checked := Union(checked, [s]);
      to_check := Difference(to_check, [s]);
    od;
  od;

  return checked;
end);


###############################################################################
##
##  AG_IsTrivialStateInList( <state>, <list>)
##
##  Checks whether given state is trivial.
##  Does not check correctness of arguments.
##
InstallGlobalFunction(AG_IsTrivialStateInList,
function(state, list)
  local deg;
  deg := Length(list[1]) - 1;
  # IsOne works for Transformation's
  return ForAll(AG_ConnectedStatesInList(state, list),
                s -> IsOne(list[s][deg+1]));
end);


###############################################################################
##
##  AG_IsObviouslyTrivialStateInList( <state>, <list>)
##
##  Checks whether given state is obviously trivial.
##  Works for lists generating self-similar groups.
##  Returns `true' if <state>=(*,...,*)(), where
##  * could be either +-<state> or [+-<state>], or [].
##
InstallGlobalFunction(AG_IsObviouslyTrivialStateInList,
function(state, list)
  local deg, check;

  check := function(s)
    if IsInt(s) then return state=AbsInt(s);
                else return s=[] or (Length(s)=1 and state=AbsInt(s[1]));
    fi;
  end;


  deg := Length(list[1]) - 1;
  if not IsOne(list[state][deg+1]) then return false; fi;
  # IsOne works for Transformation's
  return ForAll(list[state]{[1..deg]}, check);
end);



###############################################################################
##
##  AG_IsInvertibleStateInList( <state>, <list> )
##
##  Checks whether given state is invertible.
##  Does not check correctness of arguments.
##
InstallGlobalFunction(AG_IsInvertibleStateInList,
function(state, list)
  local deg;
  deg := Length(list[1]) - 1;
  return ForAll(AG_ConnectedStatesInList(state, list),
                s -> (list[s][deg+1]^-1<>fail));
end);


###############################################################################
##
##  AG_AreEquivalentStatesInList( <state1>, <state2>, <list> )
##
##  Checks whether two given states are equivalent.
##  Does not check correctness of arguments.
##
InstallGlobalFunction(AG_AreEquivalentStatesInList,
function(state1, state2, list)
  local d, checked_pairs, pos, s1, s2, np, i;

  d := Length(list[1]) - 1;
  checked_pairs := [[state1, state2]];
  pos := 0;

  while Length(checked_pairs) <> pos do
    pos := pos + 1;
    s1 := checked_pairs[pos][1];
    s2 := checked_pairs[pos][2];

    if list[s1][d+1] <> list[s2][d+1] then
      return false;
    fi;

    for i in [1..d] do
      np := [list[s1][i], list[s2][i]];
      if not np in checked_pairs then
        checked_pairs := Concatenation(checked_pairs, [np]);
      fi;
    od;
  od;

  return true;
end);


###############################################################################
##
##  AG_AreEquivalentStatesInLists( <state1>, <state2>, <list1>, <list2>)
##
##  Checks whether two given states in different lists are equivalent.
##  Does not check correctness of arguments.
##
InstallGlobalFunction(AG_AreEquivalentStatesInLists,
function(state1, state2, list1, list2)
  local d, checked_pairs, pos, s1, s2, np, i;

  d := Length(list1[1]) - 1;
  checked_pairs := [[state1, state2]];
  pos := 0;

  while Length(checked_pairs) <> pos do
    pos := pos + 1;
    s1 := checked_pairs[pos][1];
    s2 := checked_pairs[pos][2];

    if list1[s1][d+1] <> list2[s2][d+1] then
      return false;
    fi;

    for i in [1..d] do
      np := [list1[s1][i], list2[s2][i]];
      if not np in checked_pairs then
        checked_pairs := Concatenation(checked_pairs, [np]);
      fi;
    od;
  od;

  return true;
end);


###############################################################################
##
##  AG_ReducedAutomatonInList( <list> )
##
##  Returns [new_list, list_of_states, old_states] where new_list is a new list
##  which represents reduced form of given automaton, i-th elmt of list_of_states
##  is the number of i-th state of new automaton in the old one.
##  old_states[i] is the number of state which corresponds to the i-th state
##  of the original automaton.
##
##  First state of returned list is always first state of given one.
##  It does not remove trivial state, so it's not really "reduced automaton",
##  it just removes equivalent states.
##  TODO: write such function which removes trivial state
##
##  Does not check correctness of list.
##
##  WARNING: do *NOT* change it.
##
InstallGlobalFunction(AG_ReducedAutomatonInList,
function(list)
  local   i, n, triv_states, equiv_classes, checked_states, s, s1, s2,
          eq_cl, eq_cl_1, eq_cl_2, are_equiv, eq_cl_reprs,
          new_states, new_list, deg,
          reduced_automaton, state, states_reprs;

  n := Length(list);
  triv_states := [];
  equiv_classes := [];
  checked_states := [];
  deg := Length(list[1]) - 1;

  for s in [1..n] do
      if AG_IsTrivialStateInList(s, list) then
          triv_states := Union(triv_states, [s]);
      fi;
  od;

  equiv_classes:=[triv_states];
  for s1 in Difference([1..n], triv_states) do
  for s2 in Difference([s1+1..n], triv_states) do
    are_equiv := AG_AreEquivalentStatesInList(s1, s2, list);

    if s1 in checked_states then
      for eq_cl in equiv_classes do
        if s1 in eq_cl then
          eq_cl_1 := StructuralCopy(eq_cl);
          break; fi; od;
    else
      equiv_classes := Union(equiv_classes, [[s1]]);
      eq_cl_1 := [s1];
      checked_states := Union(checked_states, [s1]);
    fi;
    if s2 in checked_states then
      for eq_cl in equiv_classes do
        if s2 in eq_cl then
          eq_cl_2 := StructuralCopy(eq_cl);
          break; fi; od;
    else
      equiv_classes := Union(equiv_classes, [[s2]]);
      eq_cl_2 := [s2];
      checked_states := Union(checked_states, [s2]);
    fi;

    if are_equiv then
      equiv_classes := Difference(equiv_classes, [eq_cl_1, eq_cl_2]);
      equiv_classes := Union(equiv_classes, [Union(eq_cl_1, eq_cl_2)]);
    fi;
  od;
  od;
  states_reprs := [1..n];
  for eq_cl in equiv_classes do
    for s in eq_cl do
      states_reprs[s] := Minimum(eq_cl);
    od;
  od;


  new_states := Set(states_reprs);
  new_list := [];

  for s in new_states do
    state := [];
    state[deg+1] := list[s][deg+1];
    for i in [1..deg] do
      state[i] := Position(new_states, states_reprs[list[s][i]]);
    od;
    new_list := Concatenation(new_list, [state]);
  od;

  return [new_list, new_states, List([1..n], i -> Position(new_states, states_reprs[i]))];
end);


###############################################################################
##
##  AG_MinimalSubAutomatonInlist(<states>, <list>)
##
##  Returns list representation of automaton given by <list> which is minimal
##  subatomaton of automaton containing states <states>.
##
##  Does not check correctness of list.
##
InstallGlobalFunction(AG_MinimalSubAutomatonInlist,
function(states, list)
  local s, new_states, state, new_list, i, deg;

  new_states := [];
  for s in states do
    new_states := Union(new_states, AG_ConnectedStatesInList(s, list));
  od;

  new_list := [];
  deg := Length(list[1]) - 1;

  for s in new_states do
    state := [];
    for i in [1..deg] do
      state[i] := Position(new_states, list[s][i]);
    od;
    state[deg+1] := list[s][deg+1];
    new_list := Concatenation(new_list, [state]);
  od;

  return [new_list, new_states];
end);


###############################################################################
##
##  AG_PermuteStatesInList(<list>, <perm>)
##
##  Does not check correctness of arguments.
##
InstallGlobalFunction(AG_PermuteStatesInList,
function(list, perm)
  local new_list, i, j, deg;

  deg := Length(list[1]) - 1;
  new_list := [];
  for i in [1..Length(list)] do
    new_list[i^perm] := [];
    for j in [1..deg] do
      new_list[i^perm][j] := list[i][j]^perm;
    od;
    new_list[i^perm][deg+1] := list[i][deg+1];
  od;

  return new_list;
end);


###############################################################################
##
##  AG_WordStateInList(<w>, <s>, <list>, <reduce>, <trivstate>)
##
##  It's ProjectWord from selfs.g
##  Does not check correctness of arguments.
##
InstallGlobalFunction(AG_WordStateInList,
function(w, s, list, reduce, trivstate)
  local i, perm, d, proj, red, reduce_word;

  reduce_word := function(v)
    local len, red, x;
    len := 0;
    red := [];
    for x in v do
      if x <> trivstate then
        if len <> 0 and x = -red[len] then
          Remove(red, len);
          len := len - 1;
        else
          Add(red, x);
          len := len + 1;
        fi;
      fi;
    od;
    return red;
  end;

  d := Length(list[1])-1;
  proj := [];
  perm := ();
  for i in [1..Length(w)] do
    Add(proj, list[w[i]][s^perm]);
    perm := perm * list[w[i]][d+1];
  od;
  if reduce then
    return reduce_word(proj);
  else
    return proj;
  fi;
end);


###############################################################################
##
##  AG_WordStateAndPermInList(<w>, <s>, <list>)
##
##  Does not check correctness of arguments.
##
InstallGlobalFunction(AG_WordStateAndPermInList,
function(w, s, list)
  local i, perm, perm_res, new_state, d, proj;
  d := Length(list[1])-1;
  proj := [];
  perm := ();
  perm_res := ();
  for i in [1..Length(w)] do
    new_state := list[w[i]][s^perm];
    Add(proj, new_state);
    perm := perm * list[w[i]][d+1];
    perm_res := perm_res * list[new_state][d+1];
  od;
  return [proj, perm_res];
end);


###############################################################################
##
##  AG_ImageOfVertexInList(<list>, <init>, <vertex>)
##
##  Does not check correctness of arguments.
##
InstallGlobalFunction(AG_ImageOfVertexInList,
function(list, s, seq)
  local deg, img, x;

  deg := Length(list[1]) - 1;
  img := [];
  for x in seq do
      Add(img, x^list[s][deg+1]);
      s := list[s][x];
  od;

  return img;
end);


###############################################################################
##
##  AG_DiagonalPowerInList(<list>, <n>)
##
InstallGlobalFunction(AG_DiagonalPowerInList,
function(list, n, names)
  local d, nlist, nd, nalph, nstates, nperm,
        i, j, k, letter, n_letter, n_state, state,
        nnames;

  d := Length(list[1]) - 1;
  nd := d ^ n;
  nalph := Tuples([1..d], n);
  nstates := Tuples([1..Length(list)], n);
  nlist := List([1..Length(nstates)], i -> []);
  nnames := List(nstates, s->List(s, i->names[i]));

  for i in [1..Length(nlist)] do
    nperm := [];
    state := nstates[i];
    for j in [1..nd] do
      letter := nalph[j];
      n_letter := [];
      n_state := [];
      for k in [1..n] do
        n_letter[k] := letter[k]^list[state[k]][d+1];
        n_state[k] := list[state[k]][letter[k]];
      od;
      nperm[j] := n_letter;
      nlist[i][j] := Position(nstates, n_state);
    od;
    nlist[i][nd+1] := PermListList(nalph, nperm);
  od;

  nnames := List(nnames, l->Concatenation(l));
  return [nlist, nnames];
end);


###############################################################################
##
##  AG_MultAlphabetInList(<list>, <n>)
##
InstallGlobalFunction(AG_MultAlphabetInList,
function(list, n)
  local d, nlist, nd, nalph, nperm,
        i, j, k, letter, n_letter, st;

  d := Length(list[1]) - 1;
  nd := d ^ n;
  nalph := Tuples([1..d], n);
  nlist := List(list, i -> []);

  for i in [1..Length(nlist)] do
    nperm := [];
    for j in [1..Length(nalph)] do
      letter := nalph[j];
      n_letter := [];
      st := i;
      for k in [1..n] do
        Add(n_letter, letter[k]^list[st][d+1]);
        st := list[st][letter[k]];
      od;
      nlist[i][j] := st;
      nperm[j] := n_letter;
    od;
    nlist[i][nd+1] := PermListList(nalph, nperm);
  od;

  return nlist;
end);


###############################################################################
##
##  AG_HasDualInList(<list>)
##
InstallGlobalFunction(AG_HasDualInList,
function(list)
  local i, j, p, d, n;
  d := Length(list[1]) - 1;
  n := Length(list);
  for i in [1..d] do
    p := [];
    for j in [1..n] do
      p[j] := list[j][i];
    od;
    if PermListList([1..n], p) = fail then
      return false;
    fi;
  od;
  return true;
end);


###############################################################################
##
##  AG_DualAutomatonList(<list>)
##
InstallGlobalFunction(AG_DualAutomatonList,
function(list)
  local dual, d, n;
  d := Length(list[1]) - 1;
  n := Length(list);
  return List([1..d], i -> Concatenation(List([1..n], j -> i^list[j][d+1]),
    [PermList(List([1..n], j -> list[j][i]))]));
end);


###############################################################################
##
##  AG_HasDualOfInverseInList(<list>)
##
InstallGlobalFunction(AG_HasDualOfInverseInList,
function(list)
  return AG_HasDualInList(AG_InverseAutomatonList(list));
end);


###############################################################################
##
##  AG_InverseAutomatonList(<list>)
##
InstallGlobalFunction(AG_InverseAutomatonList,
function(list)
  local inv, d, i;
  d := Length(list[1]) - 1;
  inv := List(list, l -> Permuted(l, l[d+1]));
  for i in [1..Length(list)] do inv[i][d+1] := inv[i][d+1]^-1; od;
  return inv;
end);


#E