Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W testorder.g automgrp package Dmytro Savchuk #W Yevgen Muntyan ## automgrp v 1.3 ## #Y Copyright (C) 2003 - 2016 Dmytro Savchuk, Yevgen Muntyan ## UnitTest("Order", function() local fam, group, lists, l, i; group := AutomatonGroup([[1,1,()]], false); AssertEqual(Order(group.1), 1); group := AutomatonGroup("a=(1,2)(3,4)(5,6), b=(1,c,a,c,a,c), c=(a,d,1,d,a,d), d=(a,b,a,b,1,b)", false); for i in [1..2] do if i = 2 then IsContracting(group); fi; AssertEqual(Order(group.1), 2); AssertEqual(Order(group.2), 2); AssertEqual(Order(group.3), 2); AssertEqual(Order(group.4), 2); AssertEqual(Order(group.1 * group.2), infinity); AssertEqual(Order(group.1 * group.3), infinity); AssertEqual(Order(group.1 * group.4), infinity); od; group := AutomatonGroup("a=(1,1)(1,2), b=(a,c), c=(a,d), d=(1,b)", false); for i in [1..2] do if i = 2 then IsContracting(group); fi; AssertEqual(Order(group.1 * group.2), 16); AssertEqual(Order(group.1 * group.3), 8); AssertEqual(Order(group.1 * group.4), 4); AssertNotEqual(Order(group.1 * group.2 * group.1), infinity); AssertNotEqual(Order(group.1 * group.3 * group.1), infinity); AssertNotEqual(Order(group.1 * group.4 * group.1), infinity); od; group := AutomatonGroup("a=(1,b)(1,2), b=(1,a)", false); for i in [1..2] do if i = 2 then IsContracting(group); fi; AssertEqual(Order(group.1), infinity); AssertEqual(Order(group.2), infinity); AssertEqual(Order(group.1 * group.2), infinity); od; group := AutomatonGroup([[1,1,1,1,()],[1,1,1,1,(1,3)(2,4)],[1,2,4,4,()],[1,1,3,3,()]], ["e", "a", "b", "c"], false); AssertEqual(Order(group.1 * group.2 * group.3), infinity); group := AutomatonGroup([[1,1,1,1,()],[1,1,1,1,(1,3)(2,4)],[1,2,4,4,()],[2,1,3,3,()]], ["e", "a", "b", "c"], false); AssertEqual(Order(group.1 * group.2), infinity); group := SelfSimilarGroup("a=(c*b^-1,b)(1,2), b=(a*c,b), c=(b,a*b^-2)"); AssertEqual(Order(group.1), infinity); AssertEqual(Order(group.2), infinity); AssertEqual(Order(group.3), infinity); group := AutomatonGroup("a=(c,a)(1,2), b=(b,c), c=(b,a)"); AssertEqual(Order(group.1), infinity); AssertEqual(Order(group.2), infinity); AssertEqual(Order(group.3), infinity); AssertEqual(Order(group.1 * group.1 * group.3), infinity); end);