GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
The Program Graph:
==================
This program calculates the "graph of inclusions" for a
geometric class. The following examples shall help you
to understand the output of this program.
Example 1:
==========
File G:
-------
#g2
3 % generator
1 0 0
1 -1 0
0 0 -1
3 % generator
-1 1 0
-1 0 0
0 0 1
2^1 * 3^1 = 6 % order of the group
Output of "Graph G":
--------------------
3 % graph for the arithmetic classes (1)
3 2 1
0 2 1 (2)
1 0 3
There are 3 Z-Classes with 2 1 2 Space Groups! (3)
1: 1 (2, 2^1) (4)
1: 1 (4, 2^2)
1: 1 (3, 3^1) 2 (6, 3^1) (5)
2: 2 (2, 2^1)
2: 2 (4, 2^2)
1: 3 (18, 3^1)
1: 4 (9, 3^1)
2: 5 (9, 3^1)
3: 3 (2, 2^1)
3: 3 (4, 2^2)
3: 4 (3, 3^1) 5 (6, 3^1)
4: 1 (1, 3^1)
5: 2 (1, 3^1)
4: 4 (2, 2^1)
4: 4 (4, 2^2)
4: 4 (3, 3^1) 5 (6, 3^1)
5: 5 (2, 2^1)
5: 5 (4, 2^2)
5 % inclusions for all spacegroups
3 1 1 1 0 (6)
0 2 0 0 1
0 0 2 1 1
1 0 0 3 1
0 1 0 0 2
(1) The number in this line is the number of Z-classes.
(2) This matrix yields information about the graph
of the arithmetic classes. There are 3 + 2 + 1 = 6
maximal sublattices of a representative of the first
Z-class which are invariant under this group. If you
conjugate this representative with the sublattices,
you get 3 groups in the first Z-class, 2 groups in
the second Z-class and 1 group in the third Z-class.
(3) This line gives you the numbers of the affine classes
in the various Z-classes.
The affine classes are numbered in ascending order
with respect to the Z-classes. So the first affine class
of the third Z-class gets the number 4.
The first affine class in each Z-class contains the
symmorphic space groups.
(4) The first space group has 2 maximal k-subgroups of index
2^1 which are conjugated under the affine normalizer
of the spacegroup. These subgroups are in the first
affine class.
(5) The first space group has 3 maximal k-subgroups of index
3^1 which are conjugated under the affine normalizer
of the spacegroup. These subgroups are in the first
affine class. There are 2 maximal k-subgroups of index
3^1 which are conjugated under the affine normalizer
of the spacegroup. The translation lattices for all
these subgroups are in one orbit under the stabilizer of
the cocycle of the spacegroup, so we print the orbits
in one line.
(6) This matrix gives you the numbers of orbits under the
affine normalizer of a spacegroup on the maximal
k-subgroups. There are 3 + 1 + 1 + 1 orbits for a
representative of the first affine class. The groups
in 3 of these orbits are in the first affine class.
The groups in one orbit are in the second affine
class, etc.
Example 2:
==========
File G:
-------
g2
3 % generator
-1 0 0
0 -1 0
0 0 -1
3 % generator
0 1 0
-1 -1 0
0 0 1
2^1 * 3^1 = 6 % order of the group
Output of "Graph G":
--------------------
2 % graph for the arithmetic classes
4 2
1 2
There are 2 Z-Classes with 1 1 Space Groups!
1: 1 (2, 2^1)
1: 1 (4, 2^2)
1: 1 (3, 3^1) (1)
1: 1 (3, 3^1) (2)
1: 2 (6, 3^1)
2: 1 (3, 3^1)
2: 2 (2, 2^1)
2: 2 (4, 2^2)
2 % inclusions for all spacegroups
4 1
1 2
In this example, there are two orbits each with 3 maximal
k-subgroups of a representative of the first affine class.
They are printed in separate lines ((1) and (2)) because
the translation lattices for these groups are NOT conjugated
under the stabilizer of the cocycle of a representative for
the first affine class.