CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
����;� TeX output 2016.01.20:1050����������p���d���u���N�e9V$
phvb7t�NGAP�
�P���ac��G�ka���g�\%e������|��!���~;COHOMOLO��g�����f�P�e9V

phvb7t�Pb��uy��h����~qDerek��&Holt������yMathematics��&Institute����if'Univer��sity��&of�W��z�arwic��uk,�Co�ventr�!Fy����,�CV4�7AL�����*�����p���Լ\����8P�NContents�����*p������H��������H�ߌ�

ptmb7t�H1���$Cohomology����93��������������;3{�

ptmr7t�1.1���$CHR�p����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.����4�������������1.2���$SchurMultiplier�e���.�����.�����.�����.�����.�����.�����.�����.����4�������������1.3���$Co�٠v�eringGroup�	�����.�����.�����.�����.�����.�����.�����.�����.����4�������������1.4���$FirstCohomologyDimension������.�����.�����.�����.����4�������������1.5���$SecondCohomologyDimension�p卑�.�����.�����.����4�������������1.6���$SplitExtensionCHR��}���.�����.�����.�����.�����.�����.�����.����5�������������1.7���$NonsplitExtension�	����.�����.�����.�����.�����.�����.�����.����5�������������1.8���$CalcPres�sY���.�����.�����.�����.�����.�����.�����.�����.�����.�����.����5�������������1.9���$PermRep�
�ɍ��.�����.�����.�����.�����.�����.�����.�����.�����.�����.����5�������������1.10���$Further��Information�Jt���.�����.�����.�����.�����.�����.�����.����6�������������m�����p���Լ\�������M�e9V`
phvb7t�M1�����[�NCohomology����;���This��chapter�describes��functions�which�may�be�used�to�perform�certain�cohomological�calculations�on�a�nite�group����LKj�

ptmri7t�LG�.���There���is�a�le��Lgap-dir�:����<x

cmtt10�/pkg/cohomolo/gap/cohomolo.tst��which�contains�simple�commands�that�can�be�used���to��
test�the�installation�of�the�package.�If��you�start��Q�l�

phvr7t�QGAP����in�the�directory��Lgap-dir�:��/pkg/cohomolo/gap�,�then�you�can���read��the�le��cohomolo.tst��into��QGAP��to�peform�the�test.��N8�This���P�٠ackage���has�been�updated�from�the�original��QGAP�3�package�with�minimal�changes,�so�the�user�should�nd�the���interf��gace��unchanged.�In�f�act�the�only�real�changes�are�that�the�function��InfoCohomology��has�been�replaced�by�the����Info�V��v��ariable�V��InfoCohomolo�,�and�the�function��SplitExtension��has�been�renamed��SplitExtensionCHR�,�to�a���v�oid���clashing��with�an�e�٠xisting��QGAP��function�name.�(Of�course,�it�does�more�or�less�the�same�thing�as�the��QGAP��function!)���The��follo��wing�properties�of��LG��can�be�computed:��N8��(i)����The��Lp�-part��LMul����TKj�
ptmri7t�Tp�����of�the�Schur�multiplier��LMul��!�of��LG�,�and���a�presentation�of�a�co�٠v�ering���e�xtension�of��LMul����Tp�����by��LG�,�for�a���specied��prime��Lp�;����(ii)����The�dimensions�of���the�rst�and�second�cohomology�groups�of��LG����acting�on�a�nite�dimensional��LKG����module��LM�f`�,���where���LK���is�a�eld�of�prime�order;�and����(iii)���Presentations�of�split�and�nonsplit�e�٠xtensions�of��LM��`�by��LG�.���p�All���of���these�functions�require��LG����to�be�dened�as�a�nite�permutation�group.�The�functions�which�compute�presentations���require,�
Nin�
Oaddition,�a�presentation�of��LG�.�Finally��Y�,�the�functions�which�operate�on�a�module��LM�p��require�the�module�to���be��Qdened�by�a�list�of�matrices�o�٠v�er��Q�LK����.�This�situation�is�handled�by�rst�dening�a��QGAP��8�record,�which�contains�the���required�8�information.�This�8�is�done�using�the�function��CHR�,�which�must�be�called�before�an�٠y�of�the�other�functions.�The���remaining��functions�operate�on�this�record.���If��]no��^presentation�of�the�permutation�group��LG���is�kno��wn,�and��LG���has�order�at�most�32767,�then�a�presentation�can���be���computed�using�the���package�function��CalcPres��(which�calls�a�standalone��C��v�program),�or�alternati��v�٠ely�by�the����QGAP���function��Image(IsomorphismFpGroup(�LG�))�.�On�the�other�hand,�if�you�start�with�a�nitely�presented�group,���then�ʝyou�can�create�a�ʜpermutation�representation�with�the�function��PermRep��(although�there�is�no�guarantee�that�the���representation��will�be�f��gaithful�in�general).���The���functions�all�compute���and�mak��ge�use�of�a�descending�sequence�of�subgroups�of��LG�,�starting�at��LG�Ȱ�and�ending�with���a��Sylo��w��Lp�-subgroup��of��LG�,�and�it�is�usually�most�ecient�to�ha���v�٠e�the�indices�of�the�subgroups�in�this�chain�as�small���as�utpossible.�usIf�you�get�a�w��garning�message,�and�one�of�the�function�f��gails�because�the�indices�in�the�chain�computed�are���too��ilar���ge,�then��jyou�can�try�to�remedy�matters�by�supplying�your�o��wn�chain.�See�Section�1.10�for�more�details,�and�an���e�٠xample.���If��(you��)set�the�Info�v��ariable��InfoCohomolo��to�1,�then�a�small�amount�of�information�will�be�printed,�indicating�what���is���happening.�If��Lc�٠hr����is���the�cohomology�record�you�are�w��gorking�with,�and�you�set�the�eld��Lc�٠hr�:��.verbose��to�the�v��alue����true�,��then�you�will�see�all�the�output�of�the�e�٠xternal�programs.�����������4�n���LChapter��1.�Cohomolo��ggy���p������P1.1��CHR�������3�S3{�
ptmr7t�S1���̟��^�3�u�7msam7�I���CHR(�?��LG�,��Lp�,�[�LF�W�,��Lmats�]�)�Z!��F��N8��CHR�O9�constructs�Ooa�cohomology-record,�which�Onis�used�as�a�parameter�for�all�of�the�other�functions�in�this�chapter��s8.��LG����must�6Obe�6Pa�nite�permutation�group,�and��Lp��a�prime�number��s8.�If�present,��LF��(�must�either�be�zero�or�a�nitely�presented���group���with�the�same�number�of�generators�as��LG�,�of�which�the���relators�are�satised�by�the�generators�of��LG�.�In�f��gact,�to���obtain�o�meaningful�results,�o��LF����should�almost�certainly�be�isomorphic�to��LG�.�If�present,��Lmats��should�be�a�list�of�in���v�٠ertible���matrices���o�٠v�er���the�nite�eld��LK�Ww�=��LGF(p)�.�The�list�should�ha���v�٠e�the�same�length�as�the�number�of�generators�of��LG�,�and���the��matrices�should�correspond�to�these�generators,�and�dene�a��LGF(p)G�-module,�which�we�shall�denote�by��LM�f`�.��N8��P1.2��Sc�޹hurMultiplier�������3�S1���̟��^�I���SchurMultiplier(�?��Lc�٠hr�z��)�]G��F��N8��Lc�٠hr��&�must��Gbe�a�cohomology-record�that�w��gas�created�by�a�call�of��CHR(�LG�,�Lp�,[�LF�W�,�Lmats�])�.��SchurMultiplier��calculates���the�?\�Lp�-part�?]�LMul����Tp��?\�of�the�Schur�multiplier��LMul�A��of��LG�.�The�result�is�returned�as�a�list�of�inte�٠gers,�which�are�the�abelian���in���v��ariants��of��LMul����Tp���.�If�the�list�is�empty��Y�,�then��LMul����Tp����is�tri�vial.���J��P1.3��Co��uveringGr�oup�������3�S1���̟��^�I���CoveringGroup(�?��Lc�٠hr�z��)�g���F��N8��Lc�٠hr��=�must��^be�a�cohomology-record,�created�by��]a�call�of��CHR(�LG�,�Lp�,�LF�W�[,�Lmats�])�,�where��LF�U�is�a�nitely�presented�group.����CoveringGroup�6�calculates�a�6presentation�of�a�co�٠v�ering�6e�xtension�of�6�LMul����Tp��6�by��LG�,�where��LMul����Tp��6�is�the��Lp�-part�of�the�Schur���multiplier�j��LMul�m�of��LG�.�The�set�of�generators�of�the�nitely�presented�group�that�is�returned�is�a�union�of�tw��go�sets,�which���are��in�one-one�correspondence�with�the�generators�of��LF���and�of��LMul����Tp���,�respecti��v�٠ely��Y�.��N8�The��relators�f��gall�into�three�classes:����(a)���Those�that�specify�the�orders�of�the�generators�of��LMul����Tp���;����(b)���Those�that�say�that�the�generators�of��LMul����Tp����are�central;�and����(c)���Those�that�gi��v�٠e�the�v�alues�of�the�relators�of��LF���as�elements�of��LMul����Tp���.�� �J��P1.4��Fir��stCohomologyDimension�������3�S1���̟��^�I���FirstCohomologyDimension(�?��Lc�٠hr�z��)�.
�F����Lc�٠hr����must���be���a�cohomology-record,�created�by�a�call�of��CHR(�LG�,�Lp�,�LF�W�,�Lmats�)�.�(If�there�is�no�nitely�presented�group��LF����in���v���olv�٠ed,�F�then�F�the�third�parameter�of��CHR�F��should�be�gi��v�٠en�as�0.)��FirstCohomologyDimension��calculates�and�returns���the��+dimension��*o�٠v�er��LK���=��LGF(p)��*�of�the�rst�cohomology�group��LH��s0��^��?�޾V
zptmcm7t�1��s0�>�޾V

zptmcm7t�(�LG�A���?

zptmcm7m�A;����LM�f`�)��of�the�group��LG��'�in�its�action�on�the�module��LM����dened��by�the�matrices��Lmats�.��N8��P1.5��SecondCohomologyDimension�������3�S1���̟��^�I���SecondCohomologyDimension(�?��Lc�٠hr�z��)�(��F����Lc�٠hr�x��must�=�be�=�a�cohomology-record,�created�by�a�call�of��CHR(�LG�,�Lp�,�LF�W�,�Lmats�)�.�(If�there�is�no�nitely�presented�group����LF����in���v���olv�٠ed,�X�then�X�the�third�parameter�of��CHR�X��should�be�gi��v�٠en�as�0.)��SecondCohomologyDimension��calculates�and���returns��4the�dimension�o�٠v�er��4�LK�%��=��LGF(p)��of�the�second�cohomology��5group��LH��s0��^��2��s0�(�LG�A;����LM�f`�)��of�the�group��LG��.�in�its�action�on�the���module���LM��`�dened�by�the�matrices��Lmats�.�����X�����LSection��9.�P��37ermRep�����5���p������P1.6��SplitExtensionCHR�������3�S1���̟��^�I���SplitExtensionCHR(�?��Lc�٠hr�z��)�R���F��N8��Lc�٠hr��]�must�^~be�a�cohomology-record,�created�by�^a�call�of��CHR(�LG�,�Lp�,�LF�W�,�Lmats�)�,�where��LF��M�is�a�nitely�presented�group.����SplitExtensionCHR�Ҭ�returns���a���presentation�of�the�split�e�٠xtension�of�the�module��LM�9�dened�by�the�matrices��Lmats��by���the�<8group�<9�LG�.�This�is�a�straightforw��gard�calculation,�and�in���v���olv�٠es�no�call�of�the�e�٠xternal�cohomology�programs.�It�is���pro�٠vided��here�for�con���v�enience.��N8��P1.7��NonsplitExtension�������3�S1���̟��^�I���NonsplitExtension(�?��Lc�٠hr�:��[,��Lvec�]�)�0v$�F��N8��Lc�٠hr�
��must���be���a�cohomology-record,�created�by�a�call�of��CHR(�LG�,�Lp�,�LF�W�,�Lmats�)�,�where��LF�&��is�a�nitely�presented�group.�If���present,�8#�Lvec��must�8"be�a�list�of�inte�٠gers�of�length�equal�to�the�dimension�o�٠v�er�8#�LK�Ļ�=��LGF(p)��of�the�second�cohomology���group�
��LH��s0��^��2��s0�(�LG�A;����LM�f`�)��of�the�group�
��LG�
�in�its�action�on�the�module��LM�s��dened�by�the�matrices��Lmats�.��NonsplitExtension����calculates�=�and�returns�a�=�presentation�of�a�nonsplit�e�٠xtension�of��LM����by��LG�.�Since�there�may�be�man�٠y�such�e�xtensions,�and���the��equi��v�alence��classes�of�these�e�٠xtensions�are�in�one-one�correspondence�with�the�nonzero�elements�of��LH��s0��^��2��s0�(�LG�A;����LM�f`�)�,���the�	Roptional�second�	Qparameter�can�be�used�to�specify�an�element�of��LH��s0��^��2��s0�(�LG�A;����LM�f`�)��as�a�v�٠ector��s8.�The�def��gault�v��alue�of�this���v�٠ector��is��[1,0,...,0]�.�The�set�of�generators�of�the�nitely�presented��group�that�is�returned�is�a�union�of�tw��go�sets,���which��are�in�one-one�correspondence�with�the�generators�of��LF���and�of��LM��`�(as�an�abelian�group),�respecti��v�٠ely��Y�.��N8�The��relators�f��gall�into�three�classes:����(a)���Those�that�say�that��LM��`�is�an�abelian�group�of�e�٠xponent��Lp�;����(b)���Those�that�dene�the�action�of�the�generators�of��LF���on�those�of��LM�f`�;�and����(c)���Those�that�gi��v�٠e�the�v�alues�of�the�relators�of��LF���as�elements�of��LM�f`�.���p�(�LNote�:��hIt�is�not�particularly�ecient�to�call��SecondCohomologyDimension��rst�to�calculate�the�dimension�of��LH��s0��^��2��s0�(�LG�A;����LM�f`�)�,���
����which���must���of�course�be�kno��wn�if�the�second�parameter�is�to�be�gi��v�٠en;�it�is�preferable�to�call��NonsplitExtension����immediately�2without�2the�second�parameter�(which�will�return�one�nonsplit�e�٠xtension),�and�then�to�call�'SecondCo-���homologyDimension',�K�which�K�will�at�that�stage�return�the�required�dimension�immediately�-�all�subsequent�calls�of����NonsplitExtension���on��Lc�٠hr����will�also�yield�immediate�results.)��N8��P1.8��CalcPres�������3�S1���̟��^�I���CalcPres(�?��Lc�٠hr�z��)����F����CalcPres��h�computes�a�presentation�of�the�permutation�group��Lc�٠hr�:��.permgp��on�the�same�set�of�generators�as��Lc�hr�:��.permgp�,�8�	/���and��mstores��nit�as��Lc�٠hr�:��.fpgp�.�It�currently�only�w��gorks�for�groups�of�order�up�to�32767,�although�that�could�easily�be�in-���creased��sif��rrequired.�Note�that�a�presentation�of�a�nite�group��LG��b�can�also�be�computed�by�the�standard��QGAP��b�function���call���Image(IsomorphismFpGroup(�LG�))�.��N8��P1.9��P��.ermRep�������3�S1���̟��^�I���PermRep(�?��LG�,��LK����)�{�7�F����PermRep���calculates�the�permutation�representation�of�the��nitely�presented�group��LF�[��on�the�right�cosets�of�the�subgroup����LK����,�
-and�returns�it�
.as�a�permutation�group�of�which�the�generators�correspond�to�those�of��LF�W�.�It�simply�calls�the��QGAP����T��37odd-Cox�٠eter��function.�Of�course,�there�is�no�guarantee�in�general�that�this�representation�will�be�f��gaithful.�����$������6�n���LChapter��1.�Cohomolo��ggy���p������P1.10��Fur�B�ther��&Inf��uormation��N8��Suppose,�4�as�4�usual,�that�the�cohomology�record��Lc�٠hr�o��w��gas�constructed�with�the�call��CHR(�LG�,�Lp�,[�LF�W�],[�Lmats�]�?�)�.�All�of���the���functions�mak��ge�use�of���a�strictly�decreasing�chain�of�subgroups�of�the�permutation�group��LG���starting�with��LG���itself���and�v�ending�with�a�Sylo��w��Lp�-subgroup��LP�vA�of��LG�.�In�general,�the�programs�run�most�eciently�if�the�indices�between���successi��v�٠e�Mdterms�in�this�sequence�are�as�small�as�possible.�By�def��gault,��QGAP�MW�will�attempt�to�nd�a�suitable�chain,�when���you��call��the�rst�cohomology�function�on��Lc�٠hr�:��.�Ho��we�v�٠er���,��you�may�be�able�to�construct�a�better�chain�yourself.�If�so,���then�Uxyou�can�Uwdo�this�by�assigning�the�record�eld��Lc�٠hr�:��.chain��to�the�list��LL�\��of�subgroups�that�you�wish�to�use.�Y���gou���should�mJdo�mKthat�before�calling�an�٠y�of�the�cohomology�functions.�Remeber�that�the�rst�term�in�the�list�must�be��LG�mF�itself,���the��sequence��of�subgroups�must�be�strictly�decreasing,�and�the�last�term�must�be�equal�to�the�Sylo��w�subgroup�stored���as��e�Lc�٠hr�:��.sylow�.�(Y���gou��fcan�change��Lc�hr�:��.sylow��to��fa�dierent�Sylo��w��Lp�-subgroup�if�you�lik��ge.)�Here�is�a�slightly�contri��v�٠ed���e�٠xample��of�this�process.����9��gap>�?�G:=AlternatingGroup(16);;����9�gap>�?�chr:=CHR(G,2);;����9�gap>�?�SetInfoLevel(InfoCohomolo,1);;����9�gap>�?�SchurMultiplier(chr);����9�#Indices�?�in�the�subgroup�chain�are:�
�2027025�315����9�#WARNING:�?�An�index�in�the�subgroup�chain�found�is�larger�than�50000.����9�#This�?�calculation�may�fail.�See�manual�for�possible�remedies.����9�#I���Cohomolo�?�package:�Calling�external�program.����9�Out�?�of�tree�space.�Increase�TRSP.����9�#I���External�?�program�complete.����9�Error�?�'Cohomolo'�failed�for�some�reason.����y�at����9�Error(�?�"'Cohomolo'�failed�for�some�reason.\n"�);����9�Cohomology(�?�chr,�true,�false,�false,�TmpName(�
�)�);�called�from����9�<function>(�?�<arguments>�)�called�from�read-eval-loop����9�Entering�?�break�read-eval-print�loop,�you�can�'quit;'�to�quit�to�outer�loop,����9�or�?�you�can�return�to�continue����9�brk>�?�quit;����9�#The�?�first�index�in�the�chain�found�by�GAP�was�hopelessly�large.����9�#Let's�?�try�and�do�better.����9�gap>�?�P:=chr.sylow;;����9�gap>�?�H1:=Subgroup(G,�[(1,2)(9,10),�(2,3,4,5,6,7,8),����9�>�n?�(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]);;����9�gap>�?�Index(G,H1);����9�6435����9�gap>�?�H2:=Subgroup(H1,�[(1,2)(5,6),(1,2)(9,10),�(2,3,4),����9�>���(1,5)(2,6)(3,7)(4,8),�
�(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)]);;����9�gap>�?�Index(H1,H2);����9�1225����9�gap>�?�IsSubgroup(H2,P);����9�true����9�#If�?�that�had�been�false,�we�could�have�replaced�chr.sylow�by����9�#a�?�Sylow�2-subgroup�of�H2.����9�gap>�?�Index(H2,P);����9�81����9�gap>�?�chr.chain�:=�[G,H1,H2,P];;����9�gap>�?�SchurMultiplier(chr);�����4%�����LSection��10.�Further�Information�N���7���p������9��#Calling�?�external�program.����9�#External�?�program�complete.����9�#Removing�?�temporary�files.����9�[�?�2�]���gap>�?�quit;�����@U�����p���AU���;���
�TKj�
ptmri7t�S3{�
ptmr7t�Q�l�

phvr7t�P�e9V

phvb7t�N�e9V$
phvb7t�M�e9V`
phvb7t�LKj�

ptmri7t�H�ߌ�

ptmb7t�A���?

zptmcm7m�?�޾V
zptmcm7t�>�޾V

zptmcm7t�;3{�

ptmr7t�3�u�7msam7���<x

cmtt10�A�����