Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W farey.gd The Congruence package Ann Dooms #W Eric Jespers #W Alexander Konovalov ## ## ############################################################################# ############################################################################# ## ## IsFareySymbol( <fs> ) ## DeclareCategory( "IsFareySymbol", IsObject ); ############################################################################# ## ## FareySymbolByData( <gfs>, <labels> ) ## ## This constructor creates Farey symbol with the given generalized Farey ## sequence and list of labels. It also checks conditions from the definition ## of Farey symbol and returns an error if they are not satisfied ## DeclareOperation( "FareySymbolByData", [ IsList, IsList ] ); ############################################################################# ## ## GeneralizedFareySequence( <fs> ) ## LabelsOfFareySymbol( <fs> ) ## ## The data used to create the Farey symbol are stored as its attributes ## DeclareAttribute( "GeneralizedFareySequence", IsFareySymbol ); DeclareAttribute( "LabelsOfFareySymbol", IsFareySymbol ); ############################################################################# ## ## FareySymbol( <G> ) ## ## For a subgroup of a finite index G, this attribute stores the ## corresponding Farey symbol. The algorithm for its computation must work ## with any matrix group for which the membership test is available ## DeclareAttribute( "FareySymbol", IsMatrixGroup ); ############################################################################# # # GeneratorsByFareySymbol( fs ) # DeclareGlobalFunction( "GeneratorsByFareySymbol" ); ############################################################################# # # IndexInPSL2ZByFareySymbol( fs ) # # By the proposition 7.2 [Kulkarni], for the Farey symbol with underlying # generalized Farey sequence { infinity, x0, x1, ..., xn, infinity }, the # index in PSL_2(Z) is given by the formula d = 3*n + e3, where e3 is the # number of odd intervals. # DeclareGlobalFunction( "IndexInPSL2ZByFareySymbol" ); ############################################################################# ## #E ##