GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
1[1X7 [33X[0;0YExamples[133X[101X23[33X[0;0YThis chapter discusses a number of examples of rcwa mappings and -groups in4detail. All of them show different aspects of the package, and the order in5which they appear is entirely arbitrary. In particular they are not ordered6by degree of difficulty or interest.[133X78[33X[0;0YThe rcwa mappings, rcwa groups and other objects defined in this chapter can9be found in the file [11Xpkg/rcwa/examples/examples.g[111X. This file can be read10into the current [5XGAP[105X session by the function [2XLoadRCWAExamples[102X ([14X6.1-1[114X) which11takes no arguments and returns the name of a variable which the record12containing the examples got assigned to. The global variable assignments13made in a section of this chapter can be made by applying the function14[10XAssignGlobals[110X to the respective component of the examples record. The15component names are given at the end of the corresponding sections.[133X1617[33X[0;0YThe discussions of the examples are typically far from being exhaustive. It18is quite likely that in many instances by just a few little modifications or19additional easy commands you can find out interesting things yourself --20have fun![133X212223[1X7.1 [33X[0;0YThompson's group V[133X[101X2425[33X[0;0YThompson's group V, also known as Higman-Thompson group, is a finitely26presented infinite simple group. This group has been found by Graham Higman,27cf. [Hig74]. We show that the group[133X2829[4X[32X Example [32X[104X30[4X[28X[128X[104X31[4X[25Xgap>[125X [27XG := Group(List([[0,2,1,4],[0,4,1,4],[1,4,2,4],[2,4,3,4]],[127X[104X32[4X[25X>[125X [27X ClassTransposition));[127X[104X33[4X[28X<(0(2),1(4)),(0(4),1(4)),(1(4),2(4)),(2(4),3(4))>[128X[104X34[4X[28X[128X[104X35[4X[32X[104X3637[33X[0;0Yis isomorphic to Thompson's group V. This isomorphism has been pointed out38by John P. McDermott. We take a slightly different set of generators:[133X3940[4X[32X Example [32X[104X41[4X[28X[128X[104X42[4X[25Xgap>[125X [27Xk := ClassTransposition(0,2,1,2);;[127X[104X43[4X[25Xgap>[125X [27Xl := ClassTransposition(1,2,2,4);;[127X[104X44[4X[25Xgap>[125X [27Xm := ClassTransposition(0,2,1,4);;[127X[104X45[4X[25Xgap>[125X [27Xn := ClassTransposition(1,4,2,4);;[127X[104X46[4X[25Xgap>[125X [27XH := Group(k,l,m,n);[127X[104X47[4X[28X<(0(2),1(2)),(1(2),2(4)),(0(2),1(4)),(1(4),2(4))>[128X[104X48[4X[25Xgap>[125X [27XG = H; # k, l, m and n generate G as well[127X[104X49[4X[28Xtrue[128X[104X50[4X[28X[128X[104X51[4X[32X[104X5253[33X[0;0YNow we verify that our four generators satisfy the relations given on54page 50 in [Hig74], when we read [10Xk[110X as [22Xκ[122X, [10Xl[110X as [22Xλ[122X, [10Xm[110X as [22Xμ[122X and [10Xn[110X as [22Xν[122X:[133X5556[4X[32X Example [32X[104X57[4X[28X[128X[104X58[4X[25Xgap>[125X [27XHigmanThompsonRels :=[127X[104X59[4X[25X>[125X [27X[ k^2, l^2, m^2, n^2, # (1) in Higman's book[127X[104X60[4X[25X>[125X [27X l*k*m*k*l*n*k*n*m*k*l*k*m, # (2) "[127X[104X61[4X[25X>[125X [27X k*n*l*k*m*n*k*l*n*m*n*l*n*m, # (3) "[127X[104X62[4X[25X>[125X [27X (l*k*m*k*l*n)^3, (m*k*l*k*m*n)^3, # (4) "[127X[104X63[4X[25X>[125X [27X (l*n*m)^2*k*(m*n*l)^2*k, # (5) "[127X[104X64[4X[25X>[125X [27X (l*n*m*n)^5, # (6) "[127X[104X65[4X[25X>[125X [27X (l*k*n*k*l*n)^3*k*n*k*(m*k*n*k*m*n)^3*k*n*k*n,# (7) "[127X[104X66[4X[25X>[125X [27X ((l*k*m*n)^2*(m*k*l*n)^2)^3, # (8) "[127X[104X67[4X[25X>[125X [27X (l*n*l*k*m*k*m*n*l*n*m*k*m*k)^4, # (9) "[127X[104X68[4X[25X>[125X [27X (m*n*m*k*l*k*l*n*m*n*l*k*l*k)^4, #(10) "[127X[104X69[4X[25X>[125X [27X (l*m*k*l*k*m*l*k*n*k)^2, #(11) "[127X[104X70[4X[25X>[125X [27X (m*l*k*m*k*l*m*k*n*k)^2 ]; #(12) "[127X[104X71[4X[28X[ IdentityMapping( Integers ), IdentityMapping( Integers ), [128X[104X72[4X[28X IdentityMapping( Integers ), IdentityMapping( Integers ), [128X[104X73[4X[28X IdentityMapping( Integers ), IdentityMapping( Integers ), [128X[104X74[4X[28X IdentityMapping( Integers ), IdentityMapping( Integers ), [128X[104X75[4X[28X IdentityMapping( Integers ), IdentityMapping( Integers ), [128X[104X76[4X[28X IdentityMapping( Integers ), IdentityMapping( Integers ), [128X[104X77[4X[28X IdentityMapping( Integers ), IdentityMapping( Integers ), [128X[104X78[4X[28X IdentityMapping( Integers ), IdentityMapping( Integers ) ][128X[104X79[4X[28X[128X[104X80[4X[32X[104X8182[33X[0;0YWe conclude that our group is an homomorphic image of Thompson's group V.83But since Thompson's group V is simple and our group is not trivial, this84means indeed that the two groups are isomorphic.[133X8586[33X[0;0YIn fact it is straightforward to show that [10XG[110X is the group [10XCT([2],Integers)[110X87which is generated by the set of all class transpositions which interchange88residue classes modulo powers of 2. First we check that [10XG[110X contains all 1189class transpositions which interchange residue classes modulo 2 or 4:[133X9091[4X[32X Example [32X[104X92[4X[28X[128X[104X93[4X[25Xgap>[125X [27XS := Filtered(List(ClassPairs(4),ClassTransposition),[127X[104X94[4X[25X>[125X [27X ct->Mod(ct) in [2,4]);[127X[104X95[4X[28X[ ( 0(2), 1(2) ), ( 0(2), 1(4) ), ( 0(2), 3(4) ), ( 0(4), 1(4) ), [128X[104X96[4X[28X ( 0(4), 2(4) ), ( 0(4), 3(4) ), ( 1(2), 0(4) ), ( 1(2), 2(4) ), [128X[104X97[4X[28X ( 1(4), 2(4) ), ( 1(4), 3(4) ), ( 2(4), 3(4) ) ][128X[104X98[4X[25Xgap>[125X [27XIsSubset(G,S);[127X[104X99[4X[28Xtrue[128X[104X100[4X[28X[128X[104X101[4X[32X[104X102103[33X[0;0YThen we give a function which takes a class transposition [22Xτ ∈ CT_∅(ℤ)[122X, and104which returns a factorization of an element [22Xγ[122X satisfying [22Xτ^γ ∈ S[122X into [22Xg_1 :=105τ_0(2),1(4) ∈ S[122X, [22Xg_2 := τ_0(2),3(4) ∈ S[122X, [22Xg_3 := τ_1(2),0(4) ∈ S[122X, [22Xg_4 :=106τ_1(2),2(4) ∈ S[122X, [22Xh_1 := τ_0(4),1(4) ∈ S[122X and [22Xh_2 := τ_1(4),2(4) ∈ S[122X:[133X107108[4X[32X GAP code [32X[104X109[4X[104X110[4XReducingConjugator := function ( tau )[104X111[4X[104X112[4X local w, F, g1, g2, g3, g4, h1, h2, h, cls, cl, r;[104X113[4X[104X114[4X g1 := ClassTransposition(0,2,1,4); h1 := ClassTransposition(0,4,1,4);[104X115[4X g2 := ClassTransposition(0,2,3,4); h2 := ClassTransposition(1,4,2,4);[104X116[4X g3 := ClassTransposition(1,2,0,4);[104X117[4X g4 := ClassTransposition(1,2,2,4);[104X118[4X[104X119[4X F := FreeGroup("g1","g2","g3","g4","h1","h2");[104X120[4X[104X121[4X w := One(F); if Mod(tau) <= 4 then return w; fi;[104X122[4X[104X123[4X # Before we can reduce the moduli of the interchanged residue classes,[104X124[4X # we must make sure that both of them have at least modulus 4.[104X125[4X cls := TransposedClasses(tau);[104X126[4X if Mod(cls[1]) = 2 then[104X127[4X if Residue(cls[1]) = 0 then[104X128[4X if Residue(cls[2]) mod 4 = 1 then tau := tau^g2; w := w * F.2;[104X129[4X else tau := tau^g1; w := w * F.1; fi;[104X130[4X else[104X131[4X if Residue(cls[2]) mod 4 = 0 then tau := tau^g4; w := w * F.4;[104X132[4X else tau := tau^g3; w := w * F.3; fi;[104X133[4X fi;[104X134[4X fi;[104X135[4X[104X136[4X while Mod(tau) > 4 do # Now we can successively reduce the moduli.[104X137[4X if not ForAny(AllResidueClassesModulo(2),[104X138[4X cl -> IsEmpty(Intersection(cl,Support(tau))))[104X139[4X then[104X140[4X cls := TransposedClasses(tau);[104X141[4X h := Filtered([h1,h2],[104X142[4X hi->Length(Filtered(cls,cl->IsSubset(Support(hi),cl)))=1);[104X143[4X h := h[1]; tau := tau^h;[104X144[4X if h = h1 then w := w * F.5; else w := w * F.6; fi;[104X145[4X fi;[104X146[4X cl := TransposedClasses(tau)[2]; # class with larger modulus[104X147[4X r := Residue(cl);[104X148[4X if r mod 4 = 1 then tau := tau^g1; w := w * F.1;[104X149[4X elif r mod 4 = 3 then tau := tau^g2; w := w * F.2;[104X150[4X elif r mod 4 = 0 then tau := tau^g3; w := w * F.3;[104X151[4X elif r mod 4 = 2 then tau := tau^g4; w := w * F.4; fi;[104X152[4X od;[104X153[4X[104X154[4X return w;[104X155[4Xend;[104X156[4X[104X157[4X[32X[104X158159[33X[0;0YAfter assigning [10Xg1[110X, [10Xg2[110X, [10Xg3[110X, [10Xg4[110X, [10Xh1[110X and [10Xh2[110X appropriately, we obtain for160example:[133X161162[4X[32X Example [32X[104X163[4X[28X[128X[104X164[4X[25Xgap>[125X [27XReducingConjugator(ClassTransposition(3,16,34,256));[127X[104X165[4X[28Xh2*g1*h1*g1*h1*g1*h1*g1*h2*g2*h2*g4*h2*g4*h2*g3[128X[104X166[4X[25Xgap>[125X [27Xgamma := h2*g1*h1*g1*h1*g1*h1*g1*h2*g2*h2*g4*h2*g4*h2*g3;[127X[104X167[4X[28X<rcwa permutation of Z with modulus 256>[128X[104X168[4X[25Xgap>[125X [27Xct := ClassTransposition(3,16,34,256)^gamma;;[127X[104X169[4X[25Xgap>[125X [27XIsClassTransposition(ct);;[127X[104X170[4X[25Xgap>[125X [27Xct;[127X[104X171[4X[28XClassTransposition(1,4,2,4)[128X[104X172[4X[28X[128X[104X173[4X[32X[104X174175[33X[0;0YThompson's group V can also be embedded in a natural way into CT(GF(2)[x]):[133X176177[4X[32X Example [32X[104X178[4X[28X[128X[104X179[4X[25Xgap>[125X [27Xx := Indeterminate(GF(2));; SetName(x,"x");[127X[104X180[4X[25Xgap>[125X [27XR := PolynomialRing(GF(2),1);;[127X[104X181[4X[25Xgap>[125X [27Xk := ClassTransposition(0,x,1,x);;[127X[104X182[4X[25Xgap>[125X [27Xl := ClassTransposition(1,x,x,x^2);;[127X[104X183[4X[25Xgap>[125X [27Xm := ClassTransposition(0,x,1,x^2);;[127X[104X184[4X[25Xgap>[125X [27Xn := ClassTransposition(1,x^2,x,x^2);;[127X[104X185[4X[25Xgap>[125X [27XG := Group(k,l,m,n);[127X[104X186[4X[28X<rcwa group over GF(2)[x] with 4 generators>[128X[104X187[4X[28X[128X[104X188[4X[32X[104X189190[33X[0;0YThe correctness of this representation can likewise be verified by simply191checking the defining relations given above.[133X192193[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().HigmanThompson);[110X in order to assign194the global variables defined in this section.[133X195196197[1X7.2 [33X[0;0YFactoring Collatz' permutation of the integers[133X[101X198199[33X[0;0YIn 1932, Lothar Collatz mentioned in his notebook the following permutation200of the integers:[133X201202[4X[32X Example [32X[104X203[4X[28X[128X[104X204[4X[25Xgap>[125X [27XCollatz := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);;[127X[104X205[4X[25Xgap>[125X [27XDisplay(Collatz);[127X[104X206[4X[28X[128X[104X207[4X[28XRcwa mapping of Z with modulus 3[128X[104X208[4X[28X[128X[104X209[4X[28X /[128X[104X210[4X[28X | 2n/3 if n in 0(3)[128X[104X211[4X[28X n |-> < (4n-1)/3 if n in 1(3)[128X[104X212[4X[28X | (4n+1)/3 if n in 2(3)[128X[104X213[4X[28X \[128X[104X214[4X[28X[128X[104X215[4X[25Xgap>[125X [27XShortCycles(Collatz,[-50..50],50); # There are some finite cycles:[127X[104X216[4X[28X[ [ 0 ], [ -1 ], [ 1 ], [ 2, 3 ], [ -2, -3 ], [ 4, 5, 7, 9, 6 ], [128X[104X217[4X[28X [ -4, -5, -7, -9, -6 ], [128X[104X218[4X[28X [ 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66 ], [128X[104X219[4X[28X [ -44, -59, -79, -105, -70, -93, -62, -83, -111, -74, -99, -66 ] ][128X[104X220[4X[28X[128X[104X221[4X[32X[104X222223[33X[0;0YThe cycle structure of Collatz' permutation has not been completely224determined yet. In particular it is not known whether the cycle containing 8225is finite or infinite. Nevertheless, the factorization routine included in226this package can determine a factorization of this permutation into class227transpositions, i.e. involutions interchanging two disjoint residue classes:[133X228229[4X[32X Example [32X[104X230[4X[28X[128X[104X231[4X[25Xgap>[125X [27XCollatz in CT(Integers); # `Collatz' lies in the simple group CT(Z).[127X[104X232[4X[28Xtrue[128X[104X233[4X[25Xgap>[125X [27XLength(Factorization(Collatz));[127X[104X234[4X[28X212[128X[104X235[4X[28X[128X[104X236[4X[32X[104X237238[33X[0;0YSetting the Info level of [10XInfoRCWA[110X equal to 2 (simply issue [10XRCWAInfo(2);[110X)239causes the factorization routine to display detailed information on the240progress of the factoring process. For reasons of saving space, this is not241done in this manual.[133X242243[33X[0;0YWe would like to get a factorization into fewer factors. Firstly, we try to244factor the inverse -- just like the various options interpreted by the245factorization routine, this has influence on decisions taken during the246factoring process:[133X247248[4X[32X Example [32X[104X249[4X[28X[128X[104X250[4X[25Xgap>[125X [27XLength(Factorization(Collatz^-1));[127X[104X251[4X[28X129[128X[104X252[4X[28X[128X[104X253[4X[32X[104X254255[33X[0;0YThis is already a shorter product, but can still be improved. We remember256the [10XmKnot[110X's, of which the permutation [10XmKnot(3)[110X looks very similar to257Collatz' permutation. Therefore it is straightforward to try to factor both258[10XmKnot(3)[110X and [10XCollatz/mKnot(3)[110X, and to look whether the sum of the numbers of259factors is less than 129:[133X260261[4X[32X Example [32X[104X262[4X[28X[128X[104X263[4X[25Xgap>[125X [27XKnotFacts := Factorization(mKnot(3));;[127X[104X264[4X[25Xgap>[125X [27XQuotFacts := Factorization(Collatz/mKnot(3));;[127X[104X265[4X[25Xgap>[125X [27XList([KnotFacts,QuotFacts],Length);[127X[104X266[4X[28X[ 59, 9 ][128X[104X267[4X[25Xgap>[125X [27XCollatzFacts := Concatenation(QuotFacts,KnotFacts);[127X[104X268[4X[28X[ ( 0(6), 4(6) ), ( 0(6), 5(6) ), ( 0(6), 3(6) ), ( 0(6), 1(6) ), [128X[104X269[4X[28X ( 0(6), 2(6) ), ( 2(3), 4(6) ), ( 0(3), 4(6) ), ( 2(3), 1(6) ), [128X[104X270[4X[28X ( 0(3), 1(6) ), ( 0(36), 35(36) ), ( 0(36), 22(36) ), [128X[104X271[4X[28X ( 0(36), 18(36) ), ( 0(36), 17(36) ), ( 0(36), 14(36) ), [128X[104X272[4X[28X ( 0(36), 20(36) ), ( 0(36), 4(36) ), ( 2(36), 8(36) ), [128X[104X273[4X[28X ( 2(36), 16(36) ), ( 2(36), 13(36) ), ( 2(36), 9(36) ), [128X[104X274[4X[28X ( 2(36), 7(36) ), ( 2(36), 6(36) ), ( 2(36), 3(36) ), [128X[104X275[4X[28X ( 2(36), 10(36) ), ( 2(36), 15(36) ), ( 2(36), 12(36) ), [128X[104X276[4X[28X ( 2(36), 5(36) ), ( 21(36), 28(36) ), ( 21(36), 33(36) ), [128X[104X277[4X[28X ( 21(36), 30(36) ), ( 21(36), 23(36) ), ( 21(36), 34(36) ), [128X[104X278[4X[28X ( 21(36), 31(36) ), ( 21(36), 27(36) ), ( 21(36), 25(36) ), [128X[104X279[4X[28X ( 21(36), 24(36) ), ( 26(36), 32(36) ), ( 26(36), 29(36) ), [128X[104X280[4X[28X ( 10(18), 35(36) ), ( 5(18), 35(36) ), ( 10(18), 17(36) ), [128X[104X281[4X[28X ( 5(18), 17(36) ), ( 8(12), 14(24) ), ( 6(9), 17(18) ), [128X[104X282[4X[28X ( 3(9), 17(18) ), ( 0(9), 17(18) ), ( 6(9), 16(18) ), ( 3(9), 16(18) ),[128X[104X283[4X[28X ( 0(9), 16(18) ), ( 6(9), 11(18) ), ( 3(9), 11(18) ), ( 0(9), 11(18) ),[128X[104X284[4X[28X ( 6(9), 4(18) ), ( 3(9), 4(18) ), ( 0(9), 4(18) ), ( 0(6), 14(24) ), [128X[104X285[4X[28X ( 0(6), 2(24) ), ( 8(12), 17(18) ), ( 7(12), 17(18) ), [128X[104X286[4X[28X ( 8(12), 11(18) ), ( 7(12), 11(18) ), PrimeSwitch(3)^-1, [128X[104X287[4X[28X ( 7(12), 17(18) ), ( 2(6), 17(18) ), ( 0(3), 17(18) ), [128X[104X288[4X[28X PrimeSwitch(3)^-1, PrimeSwitch(3)^-1, PrimeSwitch(3)^-1 ][128X[104X289[4X[25Xgap>[125X [27XProduct(CollatzFacts) = Collatz; # Check.[127X[104X290[4X[28Xtrue[128X[104X291[4X[28X[128X[104X292[4X[32X[104X293294[33X[0;0YThe factors [10XPrimeSwitch(3)[110X are products of 6 class transpositions295(cf. [2XPrimeSwitch[102X ([14X2.5-2[114X)).[133X296297[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().CollatzlikePerms);[110X in order to assign298the global variables defined in this section.[133X299300301[1X7.3 [33X[0;0YThe [22X3n+1[122X[101X[1X group[133X[101X302303[33X[0;0YThe following group acts transitively on the set of positive integers for304which the [22X3n+1[122X conjecture holds and which are not divisible by 6:[133X305306[4X[32X Example [32X[104X307[4X[28X[128X[104X308[4X[25Xgap>[125X [27Xa := ClassTransposition(1,2,4,6);;[127X[104X309[4X[25Xgap>[125X [27Xb := ClassTransposition(1,3,2,6);;[127X[104X310[4X[25Xgap>[125X [27Xc := ClassTransposition(2,3,4,6);;[127X[104X311[4X[25Xgap>[125X [27XG := Group(a,b,c);[127X[104X312[4X[28X<(1(2),4(6)),(1(3),2(6)),(2(3),4(6))>[128X[104X313[4X[25Xgap>[125X [27XLoadDatabaseOfGroupsGeneratedBy3ClassTranspositions();[127X[104X314[4X[28X"3CTsGroups6"[128X[104X315[4X[25Xgap>[125X [27X3CTsGroups6.Id3CTsGroup(G,3CTsGroups6.grps); # 'catalogue number' of G[127X[104X316[4X[28X44132[128X[104X317[4X[28X[128X[104X318[4X[32X[104X319320[33X[0;0YTo see this, consider the action of [22XG[122X on the [21X[22X3n+1[122X tree[121X. The vertices of this321tree are the positive integers for which the [22X3n+1[122X conjecture holds, and for322every vertex [22Xn[122X there is an edge from [22Xn[122X to [22XT(n)[122X, where [22XT[122X denotes the Collatz323mapping[133X324325/326| n/2 if n even,327T: Z -> Z, n |-> <328| (3n+1)/2 if n odd329\330331[33X[0;0Y(cf. Chapter [14X1[114X). It is easy to check that for every vertex [22Xn[122X, either [22Xa[122X, [22Xb[122X or332[22Xc[122X maps [22Xn[122X to [22XT(n)[122X, and that the other two generators either fix [22Xn[122X or map it333to one of its preimages under [22XT[122X. So the [22X3n+1[122X conjecture is equivalent to the334assertion that the group [22XG[122X acts transitively on [22XN ∖ 0(6)[122X. First let's have a335look at balls of small radius about 1 under the action of [22XG[122X -- these consist336of those numbers whose trajectory under [22XT[122X reaches 1 quickly:[133X337338[4X[32X Example [32X[104X339[4X[28X[128X[104X340[4X[25Xgap>[125X [27XBall(G,1,5,OnPoints);[127X[104X341[4X[28X[ 1, 2, 4, 5, 8, 10, 16, 32, 64 ][128X[104X342[4X[25Xgap>[125X [27XBall(G,1,10,OnPoints);[127X[104X343[4X[28X[ 1, 2, 3, 4, 5, 8, 10, 13, 16, 20, 21, 26, 32, 40, 52, 53, 64, 80, 85, [128X[104X344[4X[28X 128, 160, 170, 256, 320, 340, 341, 512, 1024, 2048 ][128X[104X345[4X[25Xgap>[125X [27XBall(G,1,15,OnPoints);[127X[104X346[4X[28X[ 1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 16, 17, 20, 21, 22, 23, 26, 32, 34, [128X[104X347[4X[28X 35, 40, 44, 45, 46, 52, 53, 64, 68, 69, 70, 75, 80, 85, 104, 106, 113, [128X[104X348[4X[28X 128, 136, 140, 141, 151, 160, 170, 208, 212, 213, 226, 227, 256, 272, [128X[104X349[4X[28X 277, 280, 301, 302, 320, 340, 341, 416, 424, 452, 453, 454, 512, 640, [128X[104X350[4X[28X 680, 682, 832, 848, 853, 904, 908, 909, 1024, 1280, 1360, 1364, 1365, [128X[104X351[4X[28X 1664, 1696, 1706, 1808, 1813, 1816, 2048, 2560, 2720, 2728, 4096, [128X[104X352[4X[28X 5120, 5440, 5456, 5461, 8192, 10240, 10880, 10912, 10922, 16384, [128X[104X353[4X[28X 32768, 65536 ][128X[104X354[4X[25Xgap>[125X [27XBall(G,1,15,OnPoints:Spheres);[127X[104X355[4X[28X[ [ 1 ], [ 2, 4 ], [ 8 ], [ 16 ], [ 5, 32 ], [ 10, 64 ], [128X[104X356[4X[28X [ 3, 20, 21, 128 ], [ 40, 256 ], [ 13, 80, 85, 512 ], [128X[104X357[4X[28X [ 26, 160, 170, 1024 ], [ 52, 53, 320, 340, 341, 2048 ], [128X[104X358[4X[28X [ 17, 104, 106, 113, 640, 680, 682, 4096 ], [128X[104X359[4X[28X [ 34, 35, 208, 212, 213, 226, 227, 1280, 1360, 1364, 1365, 8192 ], [128X[104X360[4X[28X [ 11, 68, 69, 70, 75, 416, 424, 452, 453, 454, 2560, 2720, 2728, 16384 [128X[104X361[4X[28X ], [128X[104X362[4X[28X [ 22, 23, 136, 140, 141, 151, 832, 848, 853, 904, 908, 909, 5120, [128X[104X363[4X[28X 5440, 5456, 5461, 32768 ], [128X[104X364[4X[28X [ 7, 44, 45, 46, 272, 277, 280, 301, 302, 1664, 1696, 1706, 1808, [128X[104X365[4X[28X 1813, 1816, 10240, 10880, 10912, 10922, 65536 ] ][128X[104X366[4X[25Xgap>[125X [27XList(Ball(G,1,50,OnPoints:Spheres),Length);[127X[104X367[4X[28X[ 1, 2, 1, 1, 2, 2, 4, 2, 4, 4, 6, 8, 12, 14, 17, 20, 26, 32, 43, 52, [128X[104X368[4X[28X 66, 81, 104, 133, 170, 211, 271, 335, 424, 542, 686, 873, 1096, 1376, [128X[104X369[4X[28X 1730, 2205, 2794, 3522, 4429, 5611, 7100, 8978, 11343, 14296, 18058, [128X[104X370[4X[28X 22828, 28924, 36532, 46146, 58399, 73713 ][128X[104X371[4X[25Xgap>[125X [27XFloatQuotientsList(last);[127X[104X372[4X[28X[ 2., 0.5, 1., 2., 1., 2., 0.5, 2., 1., 1.5, 1.33333, 1.5, 1.16667, [128X[104X373[4X[28X 1.21429, 1.17647, 1.3, 1.23077, 1.34375, 1.2093, 1.26923, 1.22727, [128X[104X374[4X[28X 1.28395, 1.27885, 1.2782, 1.24118, 1.28436, 1.23616, 1.26567, 1.2783, [128X[104X375[4X[28X 1.26568, 1.27259, 1.25544, 1.25547, 1.25727, 1.27457, 1.26712, [128X[104X376[4X[28X 1.26056, 1.25752, 1.26688, 1.26537, 1.26451, 1.26342, 1.26034, [128X[104X377[4X[28X 1.26315, 1.26415, 1.26704, 1.26303, 1.26317, 1.26553, 1.26223 ][128X[104X378[4X[25Xgap>[125X [27XDifference(Filtered([1..100],n->n mod 6 <> 0),Ball(G,1,40,OnPoints));[127X[104X379[4X[28X[ 27, 31, 41, 47, 55, 62, 63, 71, 73, 82, 83, 91, 94, 95, 97 ][128X[104X380[4X[25Xgap>[125X [27XT := RcwaMapping([[1,0,2],[3,1,2]]);;[127X[104X381[4X[25Xgap>[125X [27XList(last2,n->Length(Trajectory(T,n,[1])));[127X[104X382[4X[28X[ 71, 68, 70, 67, 72, 69, 69, 66, 74, 71, 71, 60, 68, 68, 76 ][128X[104X383[4X[28X[128X[104X384[4X[32X[104X385386[33X[0;0YIt is convenient to define an epimorphism from the free group of rank 3 to387[22XG[122X:[133X388389[4X[32X Example [32X[104X390[4X[28X[128X[104X391[4X[25Xgap>[125X [27XF := FreeGroup("a","b","c");[127X[104X392[4X[28X<free group on the generators [ a, b, c ]>[128X[104X393[4X[25Xgap>[125X [27Xphi := EpimorphismByGenerators(F,G);[127X[104X394[4X[28X[ a, b, c ] -> [ ( 1(2), 4(6) ), ( 1(3), 2(6) ), ( 2(3), 4(6) ) ][128X[104X395[4X[28X[128X[104X396[4X[32X[104X397398[33X[0;0YWe can compute balls about 1 in [22XG[122X:[133X399400[4X[32X Example [32X[104X401[4X[28X[128X[104X402[4X[25Xgap>[125X [27XB := Ball(G,One(G),7:Spheres);;[127X[104X403[4X[25Xgap>[125X [27XList(B,Length);[127X[104X404[4X[28X[ 1, 3, 6, 12, 24, 48, 96, 192 ][128X[104X405[4X[25Xgap>[125X [27XList(B[3],Order);[127X[104X406[4X[28X[ 12, infinity, infinity, infinity, infinity, 12 ][128X[104X407[4X[25Xgap>[125X [27XList(B[3],g->PreImagesRepresentative(phi,g));[127X[104X408[4X[28X[ b*a, c*b, c*a, b*c, a*c, a*b ][128X[104X409[4X[25Xgap>[125X [27Xg := a*b;; Order(g);;[127X[104X410[4X[25Xgap>[125X [27XDisplay(g);[127X[104X411[4X[28X[128X[104X412[4X[28XRcwa permutation of Z with modulus 18, of order 12[128X[104X413[4X[28X[128X[104X414[4X[28X( 1(6), 8(36), 4(18), 2(12) ) ( 3(6), 20(36), 10(18) )[128X[104X415[4X[28X( 5(6), 32(36), 16(18) )[128X[104X416[4X[28X[128X[104X417[4X[28X[128X[104X418[4X[32X[104X419420[33X[0;0YSpending some more time to compute [10XB := Ball(G,One(G),12:Spheres);;[110X, one can421check that [22X(ab)^12[122X is the shortest word in the generators of [22XG[122X which does422not represent the identity in the free product of 3 cyclic groups of order4232, but which represents the identity in [22XG[122X. However, the group [22XG[122X has elements424of other finite orders as well -- for example:[133X425426[4X[32X Example [32X[104X427[4X[28X[128X[104X428[4X[25Xgap>[125X [27Xg := (b*a)^3*b*c;; Order(g);;[127X[104X429[4X[25Xgap>[125X [27XDisplay(g);[127X[104X430[4X[28X[128X[104X431[4X[28XRcwa permutation of Z with modulus 36, of order 105[128X[104X432[4X[28X[128X[104X433[4X[28X( 8(9), 16(18), 64(72), 256(288), 85(96), 128(144), 32(36) )[128X[104X434[4X[28X( 7(12), 11(18), 22(36) ) ( 5(18), 10(36), 40(144), 13(48), [128X[104X435[4X[28X 20(72) ) ( 1(24), 2(36), 4(72) ) ( 14(36), 28(72), 112(288), [128X[104X436[4X[28X 37(96), 56(144) )[128X[104X437[4X[28X[128X[104X438[4X[25Xgap>[125X [27XOrder(a*c*b*a*b*c*a*c);[127X[104X439[4X[28X60[128X[104X440[4X[28X[128X[104X441[4X[32X[104X442443[33X[0;0YWith some more efforts, one finds that e.g. [22X(abc)^2c^b[122X has order 616, that444[22X(abc)^2b[122X has order 2310, that [22X(ab)^2a^ca^bc[122X has order 27720, and that445[22Xa(c(ab)^2)^2[122X has order 65520. Of course [22XG[122X has many elements of infinite446order as well. Some of them have infinite cycles, like e.g.[133X447448[4X[32X Example [32X[104X449[4X[28X[128X[104X450[4X[25Xgap>[125X [27Xg := b*c;;[127X[104X451[4X[25Xgap>[125X [27XDisplay(g);[127X[104X452[4X[28X[128X[104X453[4X[28XRcwa permutation of Z with modulus 12[128X[104X454[4X[28X[128X[104X455[4X[28X /[128X[104X456[4X[28X | 4n if n in 1(3)[128X[104X457[4X[28X | 2n if n in 5(6)[128X[104X458[4X[28X n |-> < n/2 if n in 2(12)[128X[104X459[4X[28X | n/4 if n in 8(12)[128X[104X460[4X[28X | n if n in 0(3)[128X[104X461[4X[28X \[128X[104X462[4X[28X[128X[104X463[4X[25Xgap>[125X [27XSinks(g);[127X[104X464[4X[28X[ 4(12) ][128X[104X465[4X[25Xgap>[125X [27XTrajectory(g,last[1],10);[127X[104X466[4X[28X[ 4(12), 16(48), 64(192), 256(768), 1024(3072), 4096(12288), [128X[104X467[4X[28X 16384(49152), 65536(196608), 262144(786432), 1048576(3145728) ][128X[104X468[4X[25Xgap>[125X [27XTrajectory(g,4,20);[127X[104X469[4X[28X[ 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, [128X[104X470[4X[28X 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, [128X[104X471[4X[28X 68719476736, 274877906944, 1099511627776 ][128X[104X472[4X[28X[128X[104X473[4X[32X[104X474475[33X[0;0YOthers seem to have only finite cycles. Some of these appear to have [21Xon476average[121X comparatively [21Xshort[121X cycles, like e.g.[133X477478[4X[32X Example [32X[104X479[4X[28X[128X[104X480[4X[25Xgap>[125X [27Xg := a*b*a*c*b*c;[127X[104X481[4X[28X<rcwa permutation of Z with modulus 144>[128X[104X482[4X[25Xgap>[125X [27Xcycs := ShortCycles(g,[0..10000],100,10^20);;[127X[104X483[4X[25Xgap>[125X [27XDifference([0..10000],Union(cycs));[127X[104X484[4X[28X[ ][128X[104X485[4X[25Xgap>[125X [27XCollected(List(cycs,Length));[127X[104X486[4X[28X[ [ 1, 2222 ], [ 3, 1945 ], [ 4, 1111 ], [ 5, 93 ], [ 6, 926 ], [128X[104X487[4X[28X [ 7, 31 ], [ 8, 864 ], [ 9, 10 ], [ 10, 289 ], [ 11, 4 ], [ 12, 95 ], [128X[104X488[4X[28X [ 13, 1 ], [ 14, 31 ], [ 16, 12 ], [ 18, 4 ], [ 20, 1 ] ][128X[104X489[4X[28X[128X[104X490[4X[32X[104X491492[33X[0;0YIf the cycle of [22Xg[122X containing some [22Xn ∈ ℤ[122X is finite and has a certain length493[22Xl[122X, then there is some [22Xm ∈ ℤ[122X such that for every [22Xk ∈ ℤ[122X the cycle of [22Xg[122X494containing [22Xn + km[122X has length [22Xl[122X as well. Thus, in other words, every finite495cycle of [22Xg[122X [21Xbelongs to[121X a cycle of residue classes. (This is a special496property of [22Xg[122X which is not shared by every rcwa permutation -- cf. e.g.497Collatz' permutation from Section [14X7.2[114X.) We can find some of these infinitely498many [21Xresidue class cycles[121X:[133X499500[4X[32X Example [32X[104X501[4X[28X[128X[104X502[4X[25Xgap>[125X [27Xcycsrc := ShortResidueClassCycles(g,Mod(g),20);[127X[104X503[4X[28X[ [ 0(6) ], [ 3(6), 160(288), 20(36) ], [128X[104X504[4X[28X [ 7(18), 352(864), 44(108), 28(72) ], [128X[104X505[4X[28X [ 11(18), 544(864), 2896(4608), 362(576), 68(108), 88(144) ], [128X[104X506[4X[28X [ 13(18), 640(864), 80(108), 52(72) ], [ 10(36) ], [ 34(36) ], [128X[104X507[4X[28X [ 1(54), 64(2592), 8(324), 4(216), 16(1152), 2(144) ], [128X[104X508[4X[28X [ 5(54), 256(2592), 1360(13824), 170(1728), 32(324), 40(432), [128X[104X509[4X[28X 208(2304), 26(288) ], [128X[104X510[4X[28X [ 17(54), 832(2592), 4432(13824), 23632(73728), 2954(9216), 554(1728), [128X[104X511[4X[28X 104(324), 136(432) ], [128X[104X512[4X[28X [ 37(54), 1792(2592), 224(324), 148(216), 784(1152), 98(144) ], [128X[104X513[4X[28X [ 41(54), 1984(2592), 10576(13824), 1322(1728), 248(324), 328(432), [128X[104X514[4X[28X 1744(2304), 218(288) ], [128X[104X515[4X[28X [ 53(54), 2560(2592), 13648(13824), 72784(73728), 9098(9216), [128X[104X516[4X[28X 1706(1728), 320(324), 424(432) ], [ 38(72), 58(108), 304(576) ], [128X[104X517[4X[28X [ 62(72), 94(108), 496(576) ] ][128X[104X518[4X[25Xgap>[125X [27XList(cycsrc,Length);[127X[104X519[4X[28X[ 1, 3, 4, 6, 4, 1, 1, 6, 8, 8, 6, 8, 8, 3, 3 ][128X[104X520[4X[25Xgap>[125X [27XSum(List(Flat(cycsrc),cl->1/Mod(cl)));[127X[104X521[4X[28X97459/110592[128X[104X522[4X[25Xgap>[125X [27XFloat(last); # about 88% 'coverage'[127X[104X523[4X[28X0.881248[128X[104X524[4X[25Xgap>[125X [27Xcycsrc := ShortResidueClassCycles(g,3*Mod(g),20);[127X[104X525[4X[28X[ [ 0(6) ], [ 3(6), 160(288), 20(36) ], [128X[104X526[4X[28X [ 7(18), 352(864), 44(108), 28(72) ], [128X[104X527[4X[28X [ 11(18), 544(864), 2896(4608), 362(576), 68(108), 88(144) ], [128X[104X528[4X[28X [ 13(18), 640(864), 80(108), 52(72) ], [ 10(36) ], [ 34(36) ], [128X[104X529[4X[28X [ 1(54), 64(2592), 8(324), 4(216), 16(1152), 2(144) ], [128X[104X530[4X[28X [ 5(54), 256(2592), 1360(13824), 170(1728), 32(324), 40(432), [128X[104X531[4X[28X 208(2304), 26(288) ], [128X[104X532[4X[28X [ 17(54), 832(2592), 4432(13824), 23632(73728), 2954(9216), 554(1728), [128X[104X533[4X[28X 104(324), 136(432) ], [128X[104X534[4X[28X [ 37(54), 1792(2592), 224(324), 148(216), 784(1152), 98(144) ], [128X[104X535[4X[28X [ 41(54), 1984(2592), 10576(13824), 1322(1728), 248(324), 328(432), [128X[104X536[4X[28X 1744(2304), 218(288) ], [128X[104X537[4X[28X [ 53(54), 2560(2592), 13648(13824), 72784(73728), 9098(9216), [128X[104X538[4X[28X 1706(1728), 320(324), 424(432) ], [ 38(72), 58(108), 304(576) ], [128X[104X539[4X[28X [ 62(72), 94(108), 496(576) ], [128X[104X540[4X[28X [ 23(162), 1120(7776), 5968(41472), 746(5184), 140(972), 184(1296), [128X[104X541[4X[28X 976(6912), 5200(36864), 650(4608), 122(864) ], [128X[104X542[4X[28X [ 35(162), 1696(7776), 9040(41472), 48208(221184), 257104(1179648), [128X[104X543[4X[28X 32138(147456), 6026(27648), 1130(5184), 212(972), 280(1296) ], [128X[104X544[4X[28X [ 73(162), 3520(7776), 440(972), 292(648), 1552(3456), 8272(18432), [128X[104X545[4X[28X 1034(2304), 194(432) ], [128X[104X546[4X[28X [ 77(162), 3712(7776), 19792(41472), 2474(5184), 464(972), 616(1296), [128X[104X547[4X[28X 3280(6912), 17488(36864), 2186(4608), 410(864) ], [128X[104X548[4X[28X [ 89(162), 4288(7776), 22864(41472), 121936(221184), 650320(1179648), [128X[104X549[4X[28X 81290(147456), 15242(27648), 2858(5184), 536(972), 712(1296) ], [128X[104X550[4X[28X [ 127(162), 6112(7776), 764(972), 508(648), 2704(3456), 14416(18432), [128X[104X551[4X[28X 1802(2304), 338(432) ], [128X[104X552[4X[28X [ 14(216), 22(324), 112(1728), 592(9216), 74(1152) ], [128X[104X553[4X[28X [ 86(216), 130(324), 688(1728), 3664(9216), 458(1152) ] ][128X[104X554[4X[25Xgap>[125X [27XList(cycsrc,Length);[127X[104X555[4X[28X[ 1, 3, 4, 6, 4, 1, 1, 6, 8, 8, 6, 8, 8, 3, 3, 10, 10, 8, 10, 10, 8, 5, [128X[104X556[4X[28X 5 ][128X[104X557[4X[25Xgap>[125X [27XSum(List(Flat(cycsrc),Density));[127X[104X558[4X[28X5097073/5308416[128X[104X559[4X[25Xgap>[125X [27XFloat(last); # already about 96% 'coverage'[127X[104X560[4X[28X0.960187[128X[104X561[4X[28X[128X[104X562[4X[32X[104X563564[33X[0;0YThere are also some elements of infinite order whose cycles seem to be all565finite, but [21Xon average[121X pretty [21Xlong[121X -- e.g.[133X566567[4X[32X Example [32X[104X568[4X[28X[128X[104X569[4X[25Xgap>[125X [27Xg := (b*a*c)^2*a;;[127X[104X570[4X[25Xgap>[125X [27XDisplay(g);[127X[104X571[4X[28X[128X[104X572[4X[28XRcwa permutation of Z with modulus 288[128X[104X573[4X[28X[128X[104X574[4X[28X /[128X[104X575[4X[28X | (16n-1)/3 if n in 1(3)[128X[104X576[4X[28X | (9n+5)/4 if n in 3(24) U 11(24)[128X[104X577[4X[28X | (27n+19)/4 if n in 15(24) U 23(24)[128X[104X578[4X[28X | (3n+1)/4 if n in 5(24)[128X[104X579[4X[28X | (n-3)/6 if n in 21(24)[128X[104X580[4X[28X | (27n+29)/8 if n in 9(48) U 41(48)[128X[104X581[4X[28X | (9n+7)/8 if n in 17(48) U 33(48)[128X[104X582[4X[28X | (2n-7)/9 if n in 8(36)[128X[104X583[4X[28X n |-> < (4n-11)/9 if n in 32(36)[128X[104X584[4X[28X | (27n+38)/8 if n in 14(48)[128X[104X585[4X[28X | (3n+2)/8 if n in 26(48)[128X[104X586[4X[28X | (9n+10)/8 if n in 38(48)[128X[104X587[4X[28X | (3n+4)/4 if n in 20(72)[128X[104X588[4X[28X | n/4 if n in 56(72)[128X[104X589[4X[28X | (9n+14)/16 if n in 2(96)[128X[104X590[4X[28X | (27n+58)/16 if n in 50(96)[128X[104X591[4X[28X | n if n in 0(6)[128X[104X592[4X[28X \[128X[104X593[4X[28X[128X[104X594[4X[25Xgap>[125X [27XList([1..100],n->Length(Cycle(g,n)));[127X[104X595[4X[28X[ 6, 1, 6, 6, 6, 1, 194, 6, 216, 26, 26, 1, 26, 194, 65, 26, 26, 1, 216, [128X[104X596[4X[28X 26, 6, 216, 46, 1, 640, 26, 70, 194, 216, 1, 70, 26, 216, 216, 26, 1, [128X[104X597[4X[28X 194, 216, 73, 26, 110, 1, 194, 216, 194, 111, 39, 1, 194, 640, 640, [128X[104X598[4X[28X 194, 26, 1, 171, 194, 204, 640, 216, 1, 111, 70, 91, 26, 194, 1, 216, [128X[104X599[4X[28X 216, 26, 111, 65, 1, 50, 194, 26, 216, 640, 1, 502, 26, 111, 40, 110, [128X[104X600[4X[28X 1, 26, 194, 385, 640, 88, 1, 100, 111, 65, 110, 416, 1, 171, 194, 194, [128X[104X601[4X[28X 640 ][128X[104X602[4X[25Xgap>[125X [27XLength(Cycle(g,25));[127X[104X603[4X[28X640[128X[104X604[4X[25Xgap>[125X [27XMaximum(Cycle(g,25));[127X[104X605[4X[28X323270249684063829[128X[104X606[4X[25Xgap>[125X [27XLength(Cycle(g,25855));[127X[104X607[4X[28X4751[128X[104X608[4X[25Xgap>[125X [27XMaximum(Cycle(g,25855));[127X[104X609[4X[28X507359605810239426786254778159924369135184044618585904603866210104085[128X[104X610[4X[25Xgap>[125X [27Xcycs := ShortCycles(g,[0..50000],10000,10^100);;[127X[104X611[4X[25Xgap>[125X [27XS := [0..50000];;[127X[104X612[4X[25Xgap>[125X [27Xfor cyc in cycs do S := Difference(S,cyc); od;[127X[104X613[4X[25Xgap>[125X [27XS; # no cycle containing some n in [0..50000] has length > 10000 [127X[104X614[4X[28X[ ][128X[104X615[4X[28X[128X[104X616[4X[32X[104X617618[33X[0;0YTaking a look at the lengths of the trajectories of the Collatz mapping [22XT[122X619starting at the points in a cycle, we can see how a cycle of [22Xg[122X goes [21Xup and620down[121X in the [22X3n+1[122X tree:[133X621622[4X[32X Example [32X[104X623[4X[28X[128X[104X624[4X[25Xgap>[125X [27XList(Cycle(g,25),n->Length(Trajectory(T,n,[1])));[127X[104X625[4X[28X[ 17, 21, 25, 29, 33, 31, 35, 34, 32, 33, 37, 41, 45, 44, 42, 39, 43, [128X[104X626[4X[28X 41, 45, 44, 42, 43, 40, 38, 35, 39, 37, 41, 40, 44, 48, 46, 50, 49, [128X[104X627[4X[28X 47, 48, 45, 42, 46, 44, 48, 47, 45, 46, 50, 49, 47, 43, 41, 38, 39, [128X[104X628[4X[28X 36, 34, 30, 27, 31, 29, 33, 32, 30, 31, 35, 33, 37, 36, 40, 39, 43, [128X[104X629[4X[28X 41, 45, 44, 42, 43, 47, 51, 55, 53, 57, 56, 54, 55, 59, 58, 62, 66, [128X[104X630[4X[28X 64, 68, 67, 65, 66, 63, 60, 64, 62, 66, 65, 63, 64, 68, 67, 65, 61, [128X[104X631[4X[28X 59, 56, 52, 49, 53, 51, 55, 54, 52, 53, 57, 55, 59, 58, 56, 57, 54, [128X[104X632[4X[28X 50, 48, 45, 49, 47, 51, 50, 54, 52, 56, 55, 53, 54, 58, 62, 66, 70, [128X[104X633[4X[28X 74, 72, 76, 75, 79, 83, 87, 91, 90, 94, 93, 97, 95, 99, 98, 96, 97, [128X[104X634[4X[28X 94, 91, 88, 85, 89, 87, 91, 90, 88, 89, 86, 84, 81, 85, 83, 87, 86, [128X[104X635[4X[28X 90, 94, 98, 97, 101, 105, 109, 107, 111, 110, 108, 109, 113, 117, 115, [128X[104X636[4X[28X 119, 118, 122, 126, 125, 123, 120, 124, 122, 126, 125, 123, 124, 121, [128X[104X637[4X[28X 119, 116, 117, 114, 111, 115, 113, 117, 116, 114, 115, 119, 123, 122, [128X[104X638[4X[28X 120, 117, 121, 119, 123, 122, 120, 121, 118, 116, 112, 110, 106, 103, [128X[104X639[4X[28X 107, 105, 109, 108, 106, 107, 111, 109, 113, 112, 116, 114, 118, 117, [128X[104X640[4X[28X 115, 116, 113, 110, 111, 108, 104, 102, 99, 103, 101, 105, 104, 108, [128X[104X641[4X[28X 106, 110, 109, 107, 108, 112, 111, 109, 105, 102, 103, 100, 98, 95, [128X[104X642[4X[28X 92, 96, 94, 98, 97, 95, 96, 93, 91, 88, 92, 90, 94, 93, 97, 101, 105, [128X[104X643[4X[28X 109, 108, 106, 103, 107, 105, 109, 108, 106, 107, 104, 102, 99, 103, [128X[104X644[4X[28X 101, 105, 104, 108, 112, 110, 114, 113, 111, 112, 116, 115, 113, 109, [128X[104X645[4X[28X 106, 110, 108, 112, 111, 109, 110, 114, 112, 116, 115, 113, 114, 111, [128X[104X646[4X[28X 107, 105, 102, 103, 100, 98, 95, 99, 97, 101, 100, 104, 103, 107, 105, [128X[104X647[4X[28X 109, 108, 106, 107, 104, 101, 98, 99, 96, 94, 91, 92, 89, 87, 84, 85, [128X[104X648[4X[28X 82, 80, 77, 81, 79, 83, 82, 86, 85, 89, 88, 86, 83, 80, 81, 78, 76, [128X[104X649[4X[28X 73, 74, 71, 68, 72, 70, 74, 73, 71, 72, 76, 80, 79, 83, 87, 91, 90, [128X[104X650[4X[28X 88, 85, 89, 87, 91, 90, 88, 89, 86, 84, 81, 85, 83, 87, 86, 90, 94, [128X[104X651[4X[28X 92, 96, 95, 93, 94, 98, 96, 100, 99, 97, 98, 102, 106, 110, 114, 113, [128X[104X652[4X[28X 111, 108, 112, 110, 114, 113, 111, 112, 109, 107, 104, 108, 106, 110, [128X[104X653[4X[28X 109, 113, 117, 115, 119, 118, 116, 117, 114, 111, 115, 113, 117, 116, [128X[104X654[4X[28X 114, 115, 119, 118, 116, 112, 110, 107, 108, 105, 103, 100, 104, 102, [128X[104X655[4X[28X 106, 105, 109, 108, 112, 110, 114, 113, 111, 112, 116, 115, 113, 109, [128X[104X656[4X[28X 106, 103, 104, 101, 99, 95, 91, 88, 92, 90, 94, 93, 91, 92, 96, 94, [128X[104X657[4X[28X 98, 97, 95, 96, 100, 98, 102, 101, 105, 104, 102, 99, 100, 97, 93, 89, [128X[104X658[4X[28X 87, 84, 85, 82, 80, 77, 74, 78, 76, 80, 79, 77, 78, 75, 73, 69, 67, [128X[104X659[4X[28X 64, 68, 66, 70, 69, 73, 71, 75, 74, 72, 73, 70, 67, 68, 65, 63, 60, [128X[104X660[4X[28X 64, 62, 66, 65, 69, 68, 66, 63, 64, 61, 59, 56, 60, 58, 62, 61, 65, [128X[104X661[4X[28X 64, 62, 59, 60, 57, 55, 51, 48, 49, 46, 44, 40, 37, 34, 35, 32, 28, [128X[104X662[4X[28X 26, 23, 27, 25, 29, 28, 32, 30, 34, 33, 31, 32, 36, 35, 33, 29, 26, [128X[104X663[4X[28X 27, 24, 22, 19, 23, 21, 25, 24, 28, 27, 25, 22, 23, 20, 18, 14, 18, [128X[104X664[4X[28X 22, 20, 24, 23, 21, 22, 19, 16, 20, 18, 22, 21, 19, 20, 24, 23, 21, [128X[104X665[4X[28X 17, 15, 17, 15, 19, 18, 16 ][128X[104X666[4X[25Xgap>[125X [27Xlngs := List(Cycle(g,25855),n->Length(Trajectory(T,n,[1])));;[127X[104X667[4X[25Xgap>[125X [27XMinimum(lngs);[127X[104X668[4X[28X55[128X[104X669[4X[25Xgap>[125X [27XMaximum(lngs);[127X[104X670[4X[28X521[128X[104X671[4X[25Xgap>[125X [27XPosition(lngs,55);[127X[104X672[4X[28X15[128X[104X673[4X[25Xgap>[125X [27XPosition(lngs,521);[127X[104X674[4X[28X2807[128X[104X675[4X[28X[128X[104X676[4X[32X[104X677678[33X[0;0YFinally let's have a look at elements of [22XG[122X with small modulus:[133X679680[4X[32X Example [32X[104X681[4X[28X[128X[104X682[4X[25Xgap>[125X [27XB := RestrictedBall(G,One(G),20,36:Spheres);;[127X[104X683[4X[25Xgap>[125X [27XList(B,Length);[127X[104X684[4X[28X[ 1, 3, 6, 12, 4, 6, 6, 4, 4, 4, 6, 6, 3, 3, 2, 0, 0, 0, 0, 0, 0 ][128X[104X685[4X[25Xgap>[125X [27XSum(last);[127X[104X686[4X[28X70[128X[104X687[4X[25Xgap>[125X [27XPosition(last2,0)-2;[127X[104X688[4X[28X14[128X[104X689[4X[28X[128X[104X690[4X[32X[104X691692[33X[0;0YSo we have 70 elements of modulus 36 or less in [22XG[122X which can be reached from693the identity by successive multiplication with generators without passing694elements with mudulus exceeding 36. Further we see that the longest word in695the generators yielding an element with modulus at most 36 has length 14.696Now we double our bound on the modulus:[133X697698[4X[32X Example [32X[104X699[4X[28X[128X[104X700[4X[25Xgap>[125X [27XB := RestrictedBall(G,One(G),100,72:Spheres);;[127X[104X701[4X[25Xgap>[125X [27XList(B,Length);[127X[104X702[4X[28X[ 1, 3, 6, 12, 22, 14, 18, 22, 24, 26, 26, 34, 35, 32, 37, 38, 46, 58, [128X[104X703[4X[28X 65, 73, 82, 91, 93, 96, 110, 121, 114, 117, 146, 138, 148, 168, 174, [128X[104X704[4X[28X 196, 215, 214, 232, 255, 280, 305, 315, 359, 377, 371, 363, 366, 397, [128X[104X705[4X[28X 419, 401, 405, 405, 401, 407, 415, 435, 424, 401, 359, 338, 330, 332, [128X[104X706[4X[28X 281, 278, 271, 269, 254, 255, 257, 258, 258, 233, 215, 202, 185, 154, [128X[104X707[4X[28X 121, 88, 55, 35, 20, 10, 5, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, [128X[104X708[4X[28X 0, 0, 0, 0, 0 ][128X[104X709[4X[25Xgap>[125X [27XSum(last);[127X[104X710[4X[28X15614[128X[104X711[4X[25Xgap>[125X [27XPosition(last2,0)-2;[127X[104X712[4X[28X83[128X[104X713[4X[25Xgap>[125X [27XCollected(List(Flat(B),Modulus));[127X[104X714[4X[28X[ [ 1, 1 ], [ 6, 3 ], [ 12, 4 ], [ 18, 2 ], [ 24, 4 ], [ 36, 56 ], [128X[104X715[4X[28X [ 48, 4 ], [ 72, 15540 ] ][128X[104X716[4X[28X[128X[104X717[4X[32X[104X718719[33X[0;0YWe observe that there are 15540 elements in [22XG[122X with modulus 72 which are720[21Xreachable[121X from the identity by successive multiplication with generators721without passing elements with mudulus exceeding 72. Further we see that the722longest word in the generators yielding an element with modulus at most 72723has length 83.[133X724725[33X[0;0YIt is obvious that many questions regarding the group [22XG[122X remain open.[133X726727728[1X7.4 [33X[0;0YA group with huge finite orbits[133X[101X729730[33X[0;0YIn this section we investigate a group which has huge finite orbits on ℤ.[133X731732[4X[32X Example [32X[104X733[4X[28X[128X[104X734[4X[25Xgap>[125X [27Xa := ClassTransposition(0,2,1,2);;[127X[104X735[4X[25Xgap>[125X [27Xb := ClassTransposition(0,5,4,5);;[127X[104X736[4X[25Xgap>[125X [27Xc := ClassTransposition(1,4,0,6);;[127X[104X737[4X[25Xgap>[125X [27XG := Group(a,b,c);[127X[104X738[4X[28X<(0(2),1(2)),(0(5),4(5)),(1(4),0(6))>[128X[104X739[4X[25Xgap>[125X [27XLoadDatabaseOfGroupsGeneratedBy3ClassTranspositions();[127X[104X740[4X[28X"3CTsGroups6"[128X[104X741[4X[25Xgap>[125X [27X3CTsGroups6.Id3CTsGroup(G,3CTsGroups6.grps); # 'catalogue number' of G[127X[104X742[4X[28X1284[128X[104X743[4X[28X[128X[104X744[4X[32X[104X745746[33X[0;0YWe look for orbits of length at most 100 containing an integer in the range747[10X[0..1000][110X:[133X748749[4X[32X Example [32X[104X750[4X[28X[128X[104X751[4X[25Xgap>[125X [27Xorbs := ShortOrbits(G,[0..1000],100);;[127X[104X752[4X[25Xgap>[125X [27XList(orbs,Length);[127X[104X753[4X[28X[ 16, 2, 24, 2, 2, 2, 8, 2, 8, 2, 2, 8, 2, 8, 2, 2, 2, 40, 2, 8, 24, 2, [128X[104X754[4X[28X 8, 2, 2, 8, 2, 24, 8, 2, 56, 2, 2, 2, 8, 2, 8, 2, 2, 8, 2, 8, 2, 2, 2, [128X[104X755[4X[28X 24, 2, 8, 2, 8, 2, 2, 8, 2, 8, 2, 24, 2, 2, 2, 8, 2, 8, 2, 2, 8, 2, 8, [128X[104X756[4X[28X 2, 2, 2, 2, 8, 24, 2, 8, 2, 2, 8, 2, 24, 8, 2, 2, 2, 2, 8, 2, 8, 2, 2, [128X[104X757[4X[28X 8, 2, 8, 2, 2, 2, 24, 2, 8, 2, 8, 2, 2, 8, 2, 8, 2, 24, 2, 2 ][128X[104X758[4X[25Xgap>[125X [27XCollected(last);[127X[104X759[4X[28X[ [ 2, 67 ], [ 8, 32 ], [ 16, 1 ], [ 24, 9 ], [ 40, 1 ], [ 56, 1 ] ][128X[104X760[4X[25Xgap>[125X [27XLength(Difference([0..1000],Union(orbs)));[127X[104X761[4X[28X491[128X[104X762[4X[28X[128X[104X763[4X[32X[104X764765[33X[0;0YSo almost half of the integers in the range [10X[0..1000][110X lie in orbits of766length larger than 100. In fact there are much larger orbits. For example:[133X767768[4X[32X Example [32X[104X769[4X[28X[128X[104X770[4X[25Xgap>[125X [27XB := Ball(G,32,500,OnPoints:Spheres);; # compute ball about 32[127X[104X771[4X[25Xgap>[125X [27XPosition(B,[]); # <> fail -> we have exhausted the orbit[127X[104X772[4X[28X354[128X[104X773[4X[25Xgap>[125X [27XSum(List(B,Length)); # the orbit length[127X[104X774[4X[28X6296[128X[104X775[4X[25Xgap>[125X [27XMaximum(Flat(B)); # the largest integer in the orbit[127X[104X776[4X[28X3301636381609509797437679[128X[104X777[4X[25Xgap>[125X [27XB := Ball(G,736,5000,OnPoints:Spheres);; # the same for 736 ...[127X[104X778[4X[25Xgap>[125X [27XPosition(B,[]);[127X[104X779[4X[28X2997[128X[104X780[4X[25Xgap>[125X [27XSum(List(B,Length)); # the orbit length for this time[127X[104X781[4X[28X495448[128X[104X782[4X[25Xgap>[125X [27XMaximum(Flat(B));[127X[104X783[4X[28X2461374276522713949036151811903149785690151467356354652860276957152301465\[128X[104X784[4X[28X0546360696627187194849439881973442451686685024708652634593861146709752378\[128X[104X785[4X[28X847078493406287854573381920553713155967741550498839[128X[104X786[4X[28X[128X[104X787[4X[32X[104X788789[33X[0;0YIt seems that the cycles of [22Xabc[122X completely traverse all orbits of [22XG[122X, with790the only exception of the orbit of 0. Let's check this in the above791examples:[133X792793[4X[32X Example [32X[104X794[4X[28X[128X[104X795[4X[25Xgap>[125X [27Xg := a*b*c;;[127X[104X796[4X[25Xgap>[125X [27XDisplay(g);[127X[104X797[4X[28X[128X[104X798[4X[28XRcwa permutation of Z with modulus 60[128X[104X799[4X[28X[128X[104X800[4X[28X /[128X[104X801[4X[28X | n-1 if n in 3(30) U 9(30) U 17(30) U 23(30) U 27(30) U [128X[104X802[4X[28X | 29(30)[128X[104X803[4X[28X | 3n/2 if n in 0(20) U 12(20) U 16(20)[128X[104X804[4X[28X | n+1 if n in 2(20) U 6(20) U 10(20)[128X[104X805[4X[28X | (2n+1)/3 if n in 7(30) U 13(30) U 19(30)[128X[104X806[4X[28X | n+3 if n in 1(30) U 11(30)[128X[104X807[4X[28X n |-> < n-5 if n in 15(30) U 25(30)[128X[104X808[4X[28X | (3n+12)/2 if n in 4(20)[128X[104X809[4X[28X | (3n-12)/2 if n in 8(20)[128X[104X810[4X[28X | n+5 if n in 14(20)[128X[104X811[4X[28X | n-3 if n in 18(20)[128X[104X812[4X[28X | (2n-7)/3 if n in 5(30)[128X[104X813[4X[28X | (2n+9)/3 if n in 21(30)[128X[104X814[4X[28X \[128X[104X815[4X[28X[128X[104X816[4X[25Xgap>[125X [27XLength(Cycle(g,32));[127X[104X817[4X[28X6296[128X[104X818[4X[25Xgap>[125X [27XLength(Cycle(g,736));[127X[104X819[4X[28X495448[128X[104X820[4X[28X[128X[104X821[4X[32X[104X822823[33X[0;0YRepresentatives and lengths of the cycles of [22Xg[122X which intersect nontrivially824with the range [10X[0..1000][110X are as follows:[133X825826[4X[32X Example [32X[104X827[4X[28X[128X[104X828[4X[25Xgap>[125X [27XCycleRepresentativesAndLengths(g,[0..1000]:notify:=50000);[127X[104X829[4X[28Xn = 736: after 50000 steps, the iterate has 157 binary digits.[128X[104X830[4X[28Xn = 736: after 100000 steps, the iterate has 135 binary digits.[128X[104X831[4X[28Xn = 736: after 150000 steps, the iterate has 131 binary digits.[128X[104X832[4X[28Xn = 736: after 200000 steps, the iterate has 507 binary digits.[128X[104X833[4X[28Xn = 736: after 250000 steps, the iterate has 414 binary digits.[128X[104X834[4X[28Xn = 736: after 300000 steps, the iterate has 457 binary digits.[128X[104X835[4X[28Xn = 736: after 350000 steps, the iterate has 465 binary digits.[128X[104X836[4X[28Xn = 736: after 400000 steps, the iterate has 325 binary digits.[128X[104X837[4X[28Xn = 736: after 450000 steps, the iterate has 534 binary digits.[128X[104X838[4X[28Xn = 896: after 50000 steps, the iterate has 359 binary digits.[128X[104X839[4X[28Xn = 896: after 100000 steps, the iterate has 206 binary digits.[128X[104X840[4X[28X[ [ 1, 15 ], [ 2, 2 ], [ 16, 24 ], [ 22, 2 ], [ 26, 2 ], [ 32, 6296 ], [128X[104X841[4X[28X [ 46, 2 ], [ 52, 8 ], [ 56, 296 ], [ 62, 2 ], [ 76, 8 ], [ 82, 2 ], [128X[104X842[4X[28X [ 86, 2 ], [ 92, 8 ], [ 106, 2 ], [ 112, 104 ], [ 116, 8 ], [128X[104X843[4X[28X [ 122, 2 ], [ 136, 440 ], [ 142, 2 ], [ 146, 2 ], [ 152, 40 ], [128X[104X844[4X[28X [ 166, 2 ], [ 172, 8 ], [ 176, 24 ], [ 182, 2 ], [ 196, 8 ], [128X[104X845[4X[28X [ 202, 2 ], [ 206, 2 ], [ 212, 8 ], [ 226, 2 ], [ 232, 24 ], [128X[104X846[4X[28X [ 236, 8 ], [ 242, 2 ], [ 256, 56 ], [ 262, 2 ], [ 266, 2 ], [128X[104X847[4X[28X [ 272, 408 ], [ 286, 2 ], [ 292, 8 ], [ 296, 104 ], [ 302, 2 ], [128X[104X848[4X[28X [ 316, 8 ], [ 322, 2 ], [ 326, 2 ], [ 332, 8 ], [ 346, 2 ], [128X[104X849[4X[28X [ 352, 264 ], [ 356, 8 ], [ 362, 2 ], [ 376, 1304 ], [ 382, 2 ], [128X[104X850[4X[28X [ 386, 2 ], [ 392, 24 ], [ 406, 2 ], [ 412, 8 ], [ 416, 200 ], [128X[104X851[4X[28X [ 422, 2 ], [ 436, 8 ], [ 442, 2 ], [ 446, 2 ], [ 452, 8 ], [128X[104X852[4X[28X [ 466, 2 ], [ 472, 104 ], [ 476, 8 ], [ 482, 2 ], [ 496, 24 ], [128X[104X853[4X[28X [ 502, 2 ], [ 506, 2 ], [ 512, 696 ], [ 526, 2 ], [ 532, 8 ], [128X[104X854[4X[28X [ 536, 3912 ], [ 542, 2 ], [ 556, 8 ], [ 562, 2 ], [ 566, 2 ], [128X[104X855[4X[28X [ 572, 8 ], [ 586, 2 ], [ 592, 888 ], [ 596, 8 ], [ 602, 2 ], [128X[104X856[4X[28X [ 616, 728 ], [ 622, 2 ], [ 626, 2 ], [ 632, 2776 ], [ 646, 2 ], [128X[104X857[4X[28X [ 652, 8 ], [ 656, 24 ], [ 662, 2 ], [ 676, 8 ], [ 682, 2 ], [128X[104X858[4X[28X [ 686, 2 ], [ 692, 8 ], [ 706, 2 ], [ 712, 24 ], [ 716, 8 ], [128X[104X859[4X[28X [ 722, 2 ], [ 736, 495448 ], [ 742, 2 ], [ 746, 2 ], [ 752, 1272 ], [128X[104X860[4X[28X [ 766, 2 ], [ 772, 8 ], [ 776, 376 ], [ 782, 2 ], [ 796, 8 ], [128X[104X861[4X[28X [ 802, 2 ], [ 806, 2 ], [ 812, 8 ], [ 826, 2 ], [ 832, 120 ], [128X[104X862[4X[28X [ 836, 8 ], [ 842, 2 ], [ 856, 2264 ], [ 862, 2 ], [ 866, 2 ], [128X[104X863[4X[28X [ 872, 24 ], [ 886, 2 ], [ 892, 8 ], [ 896, 132760 ], [ 902, 2 ], [128X[104X864[4X[28X [ 916, 8 ], [ 922, 2 ], [ 926, 2 ], [ 932, 8 ], [ 946, 2 ], [128X[104X865[4X[28X [ 952, 456 ], [ 956, 8 ], [ 962, 2 ], [ 976, 24 ], [ 982, 2 ], [128X[104X866[4X[28X [ 986, 2 ], [ 992, 1064 ] ][128X[104X867[4X[28X[128X[104X868[4X[32X[104X869870[33X[0;0YSo far the author has checked that all positive integers less than 173176871lie in finite cycles of [22Xg[122X. Several of them are longer than 1000000, and the872cycle containing 25952 has length 245719352. Whether the cycle containing873173176 is finite or infinite has not been checked so far -- in any case it874is longer than 5700000000, and it exceeds [22X10^40000[122X. Presumably it is finite875as well, but checking this may require a lot of computing time.[133X876877[33X[0;0YOn the one hand the cycles of [22Xg[122X seem to behave [21Xrandomly[121X, perhaps as if they878would ascend or descend from one point to the next by a certain factor879depending on which side a thrown coin falls on. -- In this [21Xmodel[121X, cycles880would be finite with probability 1 since the simple random walk on ℤ is881recurrent. On the other, there seems to be quite some structure on them,882however little is known so far.[133X883884[33X[0;0YFirst we observe that each orbit under the action of [22XG[122X seems to split into885two cycles of [22Xh := abcacb[122X of the same length (of course this has been886checked for many more orbits than those shown here):[133X887888[4X[32X Example [32X[104X889[4X[28X[128X[104X890[4X[25Xgap>[125X [27Xh := a*b*c*a*c*b;[127X[104X891[4X[28X<rcwa permutation of Z with modulus 360>[128X[104X892[4X[25Xgap>[125X [27XList(CyclesOnFiniteOrbit(G,h,32),Length);[127X[104X893[4X[28X[ 3148, 3148 ][128X[104X894[4X[25Xgap>[125X [27XList(CyclesOnFiniteOrbit(G,h,736),Length);[127X[104X895[4X[28X[ 247724, 247724 ][128X[104X896[4X[28X[128X[104X897[4X[32X[104X898899[33X[0;0YOne cycle seems to contain the points at the odd positions and the other900seems to contain the points at the even positions in the cycle of [22Xg[122X:[133X901902[4X[32X Example [32X[104X903[4X[28X[128X[104X904[4X[25Xgap>[125X [27Xcycle_g := Cycle(g,32);;[127X[104X905[4X[25Xgap>[125X [27Xpositions1 := List(Cycle(h,32),n->Position(cycle_g,n));;[127X[104X906[4X[25Xgap>[125X [27XCollected(positions1 mod 2);[127X[104X907[4X[28X[ [ 1, 3148 ] ][128X[104X908[4X[25Xgap>[125X [27Xpositions2 := List(Cycle(h,33),n->Position(cycle_g,n));;[127X[104X909[4X[25Xgap>[125X [27XCollected(positions2 mod 2);[127X[104X910[4X[28X[ [ 0, 3148 ] ][128X[104X911[4X[28X[128X[104X912[4X[32X[104X913914[33X[0;0YHowever the ordering in which these points are traversed looks pretty915[21Xscrambled[121X:[133X916917[4X[32X Example [32X[104X918[4X[28X[128X[104X919[4X[25Xgap>[125X [27Xpositions1{[1..200]};[127X[104X920[4X[28X[ 1, 6271, 6291, 6281, 6285, 6287, 6283, 6289, 6273, 6275, 6277, 6279, [128X[104X921[4X[28X 6293, 5, 15, 17, 19, 6259, 6261, 6263, 6265, 21, 23, 25, 41, 6227, [128X[104X922[4X[28X 6229, 6231, 6233, 6235, 6237, 6239, 43, 53, 55, 57, 63, 59, 61, 65, [128X[104X923[4X[28X 45, 47, 49, 51, 67, 6223, 6221, 69, 6163, 6215, 6205, 6209, 6211, [128X[104X924[4X[28X 6207, 6213, 6165, 6171, 6177, 6179, 6181, 6183, 6175, 6173, 6185, [128X[104X925[4X[28X 6189, 6191, 6187, 6193, 6169, 6167, 6195, 6199, 6201, 6197, 6203, [128X[104X926[4X[28X 6217, 73, 83, 85, 87, 103, 113, 115, 117, 4357, 4361, 4363, 4359, [128X[104X927[4X[28X 4365, 4371, 4373, 4375, 4377, 4369, 4367, 4379, 119, 121, 123, 125, [128X[104X928[4X[28X 129, 131, 127, 133, 139, 141, 143, 145, 137, 135, 147, 149, 151, 153, [128X[104X929[4X[28X 155, 159, 161, 157, 163, 169, 175, 4283, 4281, 177, 4271, 4273, 4275, [128X[104X930[4X[28X 4277, 181, 4255, 4257, 4259, 4261, 4263, 4265, 4267, 183, 2161, 2163, [128X[104X931[4X[28X 4195, 4199, 4201, 4197, 4203, 4209, 4211, 4213, 4215, 4207, 4205, [128X[104X932[4X[28X 4217, 2165, 2167, 2169, 2171, 2175, 2177, 2173, 2179, 2185, 2187, [128X[104X933[4X[28X 2189, 2191, 2183, 2181, 2193, 2195, 2197, 2199, 2201, 2467, 2469, [128X[104X934[4X[28X 4117, 4121, 4123, 4119, 4125, 4131, 4133, 4135, 4137, 4129, 4127, [128X[104X935[4X[28X 4139, 2471, 2473, 2475, 2477, 2487, 2489, 2491, 2507, 2517, 2519, [128X[104X936[4X[28X 2521, 2537, 3923, 3925, 3941, 3943 ][128X[104X937[4X[28X[128X[104X938[4X[32X[104X939940941[1X7.5 [33X[0;0YA group which acts 4-transitively on the positive integers[133X[101X942943[33X[0;0YIn this section, we would like to show that the group [22XG[122X generated by the two944permutations[133X945946[4X[32X Example [32X[104X947[4X[28X[128X[104X948[4X[25Xgap>[125X [27Xa := RcwaMapping([[3,0,2],[3,1,4],[3,0,2],[3,-1,4]]);;[127X[104X949[4X[25Xgap>[125X [27Xu := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;[127X[104X950[4X[25Xgap>[125X [27XSetName(a,"a"); SetName(u,"u"); G := Group(a,u);;[127X[104X951[4X[28X[128X[104X952[4X[32X[104X953954[33X[0;0Ywhich we have already investigated in earlier examples acts 4-transitively955on the set of positive integers. Obviously, it acts on the set of positive956integers. First we show that this action is transitive. We start by checking957in which residue classes sufficiently large positive integers are mapped to958smaller ones by a suitable group element:[133X959960[4X[32X Example [32X[104X961[4X[28X[128X[104X962[4X[25Xgap>[125X [27XList([a,a^-1,u,u^-1],DecreasingOn);[127X[104X963[4X[28X[ 1(2), 0(3), 0(5) U 2(5), 2(3) ][128X[104X964[4X[25Xgap>[125X [27XUnion(last);[127X[104X965[4X[28XZ \ 4(30) U 16(30) U 28(30)[128X[104X966[4X[28X[128X[104X967[4X[32X[104X968969[33X[0;0YWe see that we cannot always choose such a group element from the set of970generators and their inverses -- otherwise the union would be [10XIntegers[110X.[133X971972[4X[32X Example [32X[104X973[4X[28X[128X[104X974[4X[25Xgap>[125X [27XList([a,a^-1,u,u^-1,a^2,a^-2,u^2,u^-2],DecreasingOn);[127X[104X975[4X[28X[ 1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9), [128X[104X976[4X[28X 0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9) ][128X[104X977[4X[25Xgap>[125X [27XUnion(last); # Still not enough ...[127X[104X978[4X[28XZ \ 4(90) U 58(90) U 76(90)[128X[104X979[4X[25Xgap>[125X [27XList([a,a^-1,u,u^-1,a^2,a^-2,u^2,u^-2,a*u,u*a,(a*u)^-1,(u*a)^-1],[127X[104X980[4X[25X>[125X [27X DecreasingOn);[127X[104X981[4X[28X[ 1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9), [128X[104X982[4X[28X 0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9), [128X[104X983[4X[28X 3(5) U 0(10) U 7(20) U 9(20), 0(5) U 2(5), 2(3), 3(9) U 4(9) U 8(9) ][128X[104X984[4X[25Xgap>[125X [27XUnion(last); # ... but that's it![127X[104X985[4X[28XIntegers[128X[104X986[4X[28X[128X[104X987[4X[32X[104X988989[33X[0;0YFinally, we have to deal with [21Xsmall[121X integers. We use the notation for the990coefficients of rcwa mappings introduced at the beginning of this manual.991Let [22Xc_r(m) > a_r(m)[122X. Then we easily see that [22X(a_r(m)n+b_r(m))/c_r(m) > n[122X992implies [22Xn < b_r(m)/(c_r(m)-a_r(m))[122X. Thus we can restrict our considerations993to integers [22Xn < b_ max[122X, where [22Xb_ max[122X is the largest second entry of a994coefficient triple of one of the group elements in our list:[133X995996[4X[32X Example [32X[104X997[4X[28X[128X[104X998[4X[25Xgap>[125X [27XList([a,a^-1,u,u^-1,a^2,a^-2,u^2,u^-2,a*u,u*a,(a*u)^-1,(u*a)^-1],[127X[104X999[4X[25X>[125X [27X f->Maximum(List(Coefficients(f),c->c[2])));[127X[104X1000[4X[28X[ 1, 1, 4, 2, 7, 7, 56, 28, 25, 17, 17, 11 ][128X[104X1001[4X[25Xgap>[125X [27XMaximum(last);[127X[104X1002[4X[28X56[128X[104X1003[4X[28X[128X[104X1004[4X[32X[104X10051006[33X[0;0YThus this upper bound is 56. The rest is easy -- all we have to do is to1007check that the orbit containing 1 contains also all other positive integers1008less than or equal to 56:[133X10091010[4X[32X Example [32X[104X1011[4X[28X[128X[104X1012[4X[25Xgap>[125X [27XS := [1];;[127X[104X1013[4X[25Xgap>[125X [27Xwhile not IsSubset(S,[1..56]) do[127X[104X1014[4X[25X>[125X [27X S := Union(S,S^a,S^u,S^(a^-1),S^(u^-1));[127X[104X1015[4X[25X>[125X [27X od;[127X[104X1016[4X[25Xgap>[125X [27XIsSubset(S,[1..56]);[127X[104X1017[4X[28Xtrue[128X[104X1018[4X[28X[128X[104X1019[4X[32X[104X10201021[33X[0;0YChecking 2-transitivity is computationally harder, and in the sequel we will1022omit some steps which are in practice needed to find out [21Xwhat to do[121X. The1023approach taken here is to show that the stabilizer of 1 in [22XG[122X acts1024transitively on the set of positive integers greater than 1. We do this by1025similar means as used above for showing the transitivity of the action of [22XG[122X1026on the positive integers. We start by determining all products of at most 51027generators and their inverses, which stabilize 1 (taking at most 4-generator1028products would not suffice!):[133X10291030[4X[32X Example [32X[104X1031[4X[28X[128X[104X1032[4X[25Xgap>[125X [27Xgens := [a,u,a^-1,u^-1];;[127X[104X1033[4X[25Xgap>[125X [27Xtups := Concatenation(List([1..5],k->Tuples([1..4],k)));;[127X[104X1034[4X[25Xgap>[125X [27XLength(tups);[127X[104X1035[4X[28X1364[128X[104X1036[4X[25Xgap>[125X [27Xtups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],[127X[104X1037[4X[25X>[125X [27X l->PositionSublist(tup,l)=fail));;[127X[104X1038[4X[25Xgap>[125X [27XLength(tups);[127X[104X1039[4X[28X484[128X[104X1040[4X[25Xgap>[125X [27Xstab := [];;[127X[104X1041[4X[25Xgap>[125X [27Xfor tup in tups do[127X[104X1042[4X[25X>[125X [27X n := 1;[127X[104X1043[4X[25X>[125X [27X for i in tup do n := n^gens[i]; od;[127X[104X1044[4X[25X>[125X [27X if n = 1 then Add(stab,tup); fi;[127X[104X1045[4X[25X>[125X [27X od;[127X[104X1046[4X[25Xgap>[125X [27XLength(stab);[127X[104X1047[4X[28X118[128X[104X1048[4X[25Xgap>[125X [27Xstabelm := List(stab,tup->Product(List(tup,i->gens[i])));;[127X[104X1049[4X[25Xgap>[125X [27XForAll(stabelm,elm->1^elm=1); # Check.[127X[104X1050[4X[28Xtrue[128X[104X1051[4X[28X[128X[104X1052[4X[32X[104X10531054[33X[0;0YThe resulting products have various different not quite small moduli:[133X10551056[4X[32X Example [32X[104X1057[4X[28X[128X[104X1058[4X[25Xgap>[125X [27XList(stabelm,Modulus);[127X[104X1059[4X[28X[ 4, 3, 16, 25, 9, 81, 64, 100, 108, 100, 25, 75, 27, 243, 324, 243, [128X[104X1060[4X[28X 256, 400, 144, 400, 100, 432, 324, 400, 80, 400, 625, 25, 75, 135, [128X[104X1061[4X[28X 150, 75, 225, 81, 729, 486, 729, 144, 144, 81, 729, 1296, 729, 6561, [128X[104X1062[4X[28X 1024, 1600, 192, 1600, 400, 576, 432, 1600, 320, 1600, 2500, 100, 100, [128X[104X1063[4X[28X 180, 192, 192, 108, 972, 1728, 972, 8748, 1600, 400, 320, 80, 1600, [128X[104X1064[4X[28X 2500, 300, 2500, 625, 625, 75, 675, 75, 75, 135, 405, 600, 120, 600, [128X[104X1065[4X[28X 1875, 75, 225, 405, 225, 225, 675, 243, 2187, 729, 2187, 216, 216, [128X[104X1066[4X[28X 243, 2187, 1944, 2187, 19683, 576, 144, 576, 432, 81, 81, 729, 2187, [128X[104X1067[4X[28X 5184, 324, 8748, 243, 2187, 19683, 26244, 19683 ][128X[104X1068[4X[25Xgap>[125X [27XLcm(last);[127X[104X1069[4X[28X12597120000[128X[104X1070[4X[25Xgap>[125X [27XCollected(Factors(last));[127X[104X1071[4X[28X[ [ 2, 10 ], [ 3, 9 ], [ 5, 4 ] ][128X[104X1072[4X[28X[128X[104X1073[4X[32X[104X10741075[33X[0;0YSimilar as before, we determine for any of the above mappings the residue1076classes whose elements larger than the largest [22Xb_r(m)[122X - coefficient of the1077respective mapping are mapped to smaller integers:[133X10781079[4X[32X Example [32X[104X1080[4X[28X[128X[104X1081[4X[25Xgap>[125X [27Xdecs := List(stabelm,DecreasingOn);;[127X[104X1082[4X[25Xgap>[125X [27XList(decs,Modulus);[127X[104X1083[4X[28X[ 2, 3, 8, 25, 9, 9, 16, 100, 12, 50, 25, 75, 27, 81, 54, 81, 64, 400, [128X[104X1084[4X[28X 48, 200, 100, 72, 108, 400, 80, 200, 625, 25, 75, 45, 75, 75, 225, 81, [128X[104X1085[4X[28X 243, 81, 243, 144, 144, 81, 243, 216, 243, 243, 128, 1600, 64, 400, [128X[104X1086[4X[28X 400, 48, 144, 1600, 320, 400, 2500, 100, 100, 60, 96, 192, 108, 324, [128X[104X1087[4X[28X 144, 324, 972, 400, 400, 80, 80, 400, 2500, 100, 1250, 625, 625, 25, [128X[104X1088[4X[28X 75, 75, 75, 45, 135, 600, 120, 150, 1875, 75, 225, 135, 225, 225, 675, [128X[104X1089[4X[28X 243, 729, 243, 729, 108, 216, 243, 729, 162, 729, 2187, 144, 144, 144, [128X[104X1090[4X[28X 144, 81, 81, 243, 729, 1296, 324, 972, 243, 729, 2187, 1458, 2187 ][128X[104X1091[4X[25Xgap>[125X [27XLcm(last);[127X[104X1092[4X[28X174960000[128X[104X1093[4X[28X[128X[104X1094[4X[32X[104X10951096[33X[0;0YSince the least common multiple of the moduli of these unions of residue1097classes is as large as 174960000, directly forming their union and checking1098whether it is equal to the set of integers would take relatively much time1099and memory. However, starting with the set of integers and subtracting the1100above sets one-by-one in a suitably chosen order is cheap:[133X11011102[4X[32X Example [32X[104X1103[4X[28X[128X[104X1104[4X[25Xgap>[125X [27XSortParallel(decs,stabelm,[127X[104X1105[4X[25X>[125X [27X function(S1,S2)[127X[104X1106[4X[25X>[125X [27X return First([1..100],k->Factorial(k) mod Modulus(S1)=0)[127X[104X1107[4X[25X>[125X [27X < First([1..100],k->Factorial(k) mod Modulus(S2)=0);[127X[104X1108[4X[25X>[125X [27X end);[127X[104X1109[4X[25Xgap>[125X [27XS := Integers;;[127X[104X1110[4X[25Xgap>[125X [27Xfor i in [1..Length(decs)] do[127X[104X1111[4X[25X>[125X [27X S_old := S; S := Difference(S,decs[i]);[127X[104X1112[4X[25X>[125X [27X if S <> S_old then ViewObj(S); Print("\n"); fi;[127X[104X1113[4X[25X>[125X [27X if S = [] then maxind := i; break; fi;[127X[104X1114[4X[25X>[125X [27X od;[127X[104X1115[4X[28X0(2)[128X[104X1116[4X[28X2(6) U 4(6)[128X[104X1117[4X[28X<union of 8 residue classes (mod 30)>[128X[104X1118[4X[28X<union of 19 residue classes (mod 90) (9 classes)>[128X[104X1119[4X[28X<union of 114 residue classes (mod 720)>[128X[104X1120[4X[28X<union of 99 residue classes (mod 720)>[128X[104X1121[4X[28X<union of 57 residue classes (mod 720)>[128X[104X1122[4X[28X<union of 54 residue classes (mod 720)>[128X[104X1123[4X[28X<union of 41 residue classes (mod 720)>[128X[104X1124[4X[28X<union of 35 residue classes (mod 720)>[128X[104X1125[4X[28X<union of 8 residue classes (mod 720) (6 classes)>[128X[104X1126[4X[28X4(720) U 94(720) U 148(720) U 238(720)[128X[104X1127[4X[28X<union of 24 residue classes (mod 5760)>[128X[104X1128[4X[28X<union of 72 residue classes (mod 51840)>[128X[104X1129[4X[28X<union of 48 residue classes (mod 51840)>[128X[104X1130[4X[28X<union of 192 residue classes (mod 259200)>[128X[104X1131[4X[28X<union of 168 residue classes (mod 259200)>[128X[104X1132[4X[28X<union of 120 residue classes (mod 259200)>[128X[104X1133[4X[28X<union of 96 residue classes (mod 259200)>[128X[104X1134[4X[28X<union of 72 residue classes (mod 259200)>[128X[104X1135[4X[28X<union of 60 residue classes (mod 259200)>[128X[104X1136[4X[28X<union of 48 residue classes (mod 259200)>[128X[104X1137[4X[28X<union of 24 residue classes (mod 259200)>[128X[104X1138[4X[28X<union of 12 residue classes (mod 259200) (6 classes)>[128X[104X1139[4X[28X<union of 24 residue classes (mod 777600)>[128X[104X1140[4X[28X<union of 12 residue classes (mod 777600) (6 classes)>[128X[104X1141[4X[28X111604(194400) U 14404(777600) U 208804(777600)[128X[104X1142[4X[28X[ ][128X[104X1143[4X[28X[128X[104X1144[4X[32X[104X11451146[33X[0;0YSimilar as above, it remains to check that the [21Xsmall[121X integers all lie in the1147orbit containing 2. Obviously, it is sufficient to check that any integer1148greater than 2 is mapped to a smaller one by some suitably chosen element of1149the stabilizer under consideration:[133X11501151[4X[32X Example [32X[104X1152[4X[28X[128X[104X1153[4X[25Xgap>[125X [27XMaximum(List(stabelm{[1..maxind]},[127X[104X1154[4X[25X>[125X [27X f->Maximum(List(Coefficients(f),c->c[2]))));[127X[104X1155[4X[28X6581[128X[104X1156[4X[25Xgap>[125X [27XFiltered([3..6581],n->Minimum(List(stabelm,elm->n^elm))>=n);[127X[104X1157[4X[28X[ 4 ][128X[104X1158[4X[28X[128X[104X1159[4X[32X[104X11601161[33X[0;0YWe have to treat 4 separately:[133X11621163[4X[32X Example [32X[104X1164[4X[28X[128X[104X1165[4X[25Xgap>[125X [27X1^(u*a*u^2*a^-1*u);[127X[104X1166[4X[28X1[128X[104X1167[4X[25Xgap>[125X [27X4^(u*a*u^2*a^-1*u);[127X[104X1168[4X[28X3[128X[104X1169[4X[28X[128X[104X1170[4X[32X[104X11711172[33X[0;0YNow we know that any positive integer greater than 1 lies in the same orbit1173under the action of the stabilizer of 1 in [22XG[122X as 2, thus that this stabilizer1174acts transitively on [22Xℕ ∖ {1}[122X. But this means that we have established the11752-transitivity of the action of [22XG[122X on ℕ.[133X11761177[33X[0;0YIn the following, we essentially repeat the above steps to show that this1178action is indeed 3-transitive:[133X11791180[4X[32X Example [32X[104X1181[4X[28X[128X[104X1182[4X[25Xgap>[125X [27Xtups := Concatenation(List([1..6],k->Tuples([1..4],k)));;[127X[104X1183[4X[25Xgap>[125X [27Xtups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],[127X[104X1184[4X[25X>[125X [27X l->PositionSublist(tup,l)=fail));;[127X[104X1185[4X[25Xgap>[125X [27Xstab := [];;[127X[104X1186[4X[25Xgap>[125X [27Xfor tup in tups do[127X[104X1187[4X[25X>[125X [27X l := [1,2];[127X[104X1188[4X[25X>[125X [27X for i in tup do l := List(l,n->n^gens[i]); od;[127X[104X1189[4X[25X>[125X [27X if l = [1,2] then Add(stab,tup); fi;[127X[104X1190[4X[25X>[125X [27X od;[127X[104X1191[4X[25Xgap>[125X [27XLength(stab);[127X[104X1192[4X[28X212[128X[104X1193[4X[25Xgap>[125X [27Xstabelm := List(stab,tup->Product(List(tup,i->gens[i])));;[127X[104X1194[4X[25Xgap>[125X [27Xdecs := List(stabelm,DecreasingOn);;[127X[104X1195[4X[25Xgap>[125X [27XSortParallel(decs,stabelm,function(S1,S2)[127X[104X1196[4X[25X>[125X [27X return First([1..100],k->Factorial(k) mod Mod(S1)=0)[127X[104X1197[4X[25X>[125X [27X < First([1..100],k->Factorial(k) mod Mod(S2)=0); end);[127X[104X1198[4X[25Xgap>[125X [27XS := Integers;;[127X[104X1199[4X[25Xgap>[125X [27Xfor i in [1..Length(decs)] do[127X[104X1200[4X[25X>[125X [27X S_old := S; S := Difference(S,decs[i]);[127X[104X1201[4X[25X>[125X [27X if S <> S_old then ViewObj(S); Print("\n"); fi;[127X[104X1202[4X[25X>[125X [27X if S = [] then break; fi;[127X[104X1203[4X[25X>[125X [27X od;[127X[104X1204[4X[28XZ \ 1(8) U 7(8)[128X[104X1205[4X[28X<union of 151 residue classes (mod 240)>[128X[104X1206[4X[28X<union of 208 residue classes (mod 720)>[128X[104X1207[4X[28X<union of 51 residue classes (mod 720)>[128X[104X1208[4X[28X<union of 45 residue classes (mod 720)>[128X[104X1209[4X[28X<union of 39 residue classes (mod 720)>[128X[104X1210[4X[28X<union of 33 residue classes (mod 720)>[128X[104X1211[4X[28X<union of 23 residue classes (mod 720)>[128X[104X1212[4X[28X<union of 19 residue classes (mod 720) (7 classes)>[128X[104X1213[4X[28X<union of 17 residue classes (mod 720) (6 classes)>[128X[104X1214[4X[28X<union of 16 residue classes (mod 720) (7 classes)>[128X[104X1215[4X[28X<union of 14 residue classes (mod 720) (9 classes)>[128X[104X1216[4X[28X<union of 8 residue classes (mod 720) (6 classes)>[128X[104X1217[4X[28X<union of 7 residue classes (mod 720) (6 classes)>[128X[104X1218[4X[28X238(360) U 4(720) U 148(720) U 454(720)[128X[104X1219[4X[28X<union of 38 residue classes (mod 5760)>[128X[104X1220[4X[28X<union of 37 residue classes (mod 5760)>[128X[104X1221[4X[28X<union of 25 residue classes (mod 5760)>[128X[104X1222[4X[28X<union of 21 residue classes (mod 5760)>[128X[104X1223[4X[28X<union of 17 residue classes (mod 5760) (13 classes)>[128X[104X1224[4X[28X<union of 16 residue classes (mod 5760) (12 classes)>[128X[104X1225[4X[28X<union of 138 residue classes (mod 51840)>[128X[104X1226[4X[28X<union of 48 residue classes (mod 51840)>[128X[104X1227[4X[28X<union of 32 residue classes (mod 51840)>[128X[104X1228[4X[28X<union of 20 residue classes (mod 51840) (14 classes)>[128X[104X1229[4X[28X<union of 16 residue classes (mod 51840) (12 classes)>[128X[104X1230[4X[28X<union of 68 residue classes (mod 259200)>[128X[104X1231[4X[28X<union of 42 residue classes (mod 259200)>[128X[104X1232[4X[28X<union of 32 residue classes (mod 259200)>[128X[104X1233[4X[28X<union of 26 residue classes (mod 259200)>[128X[104X1234[4X[28X<union of 25 residue classes (mod 259200)>[128X[104X1235[4X[28X<union of 11 residue classes (mod 259200) (10 classes)>[128X[104X1236[4X[28X<union of 10 residue classes (mod 259200) (9 classes)>[128X[104X1237[4X[28X<union of 7 residue classes (mod 259200) (6 classes)>[128X[104X1238[4X[28X13414(129600) U 2164(259200) U 66964(259200) U 228964(259200)[128X[104X1239[4X[28X2164(259200) U 66964(259200) U 228964(259200)[128X[104X1240[4X[28X[ ][128X[104X1241[4X[25Xgap>[125X [27XMaximum(List(stabelm,f->Maximum(List(Coefficients(f),c->c[2]))));[127X[104X1242[4X[28X515816[128X[104X1243[4X[25Xgap>[125X [27Xsmallnum := [4..515816];;[127X[104X1244[4X[25Xgap>[125X [27Xfor i in [1..Length(stabelm)] do[127X[104X1245[4X[25X>[125X [27X smallnum := Filtered(smallnum,n->n^stabelm[i]>=n);[127X[104X1246[4X[25X>[125X [27X od;[127X[104X1247[4X[25Xgap>[125X [27Xsmallnum;[127X[104X1248[4X[28X[ ][128X[104X1249[4X[28X[128X[104X1250[4X[32X[104X12511252[33X[0;0YThe same for 4-transitivity:[133X12531254[4X[32X Example [32X[104X1255[4X[28X[128X[104X1256[4X[25Xgap>[125X [27Xtups := Concatenation(List([1..8],k->Tuples([1..4],k)));;[127X[104X1257[4X[25Xgap>[125X [27Xtups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],[127X[104X1258[4X[25X>[125X [27X l->PositionSublist(tup,l)=fail));;[127X[104X1259[4X[25Xgap>[125X [27Xstab := [];;[127X[104X1260[4X[25Xgap>[125X [27Xfor tup in tups do[127X[104X1261[4X[25X>[125X [27X l := [1,2,3];[127X[104X1262[4X[25X>[125X [27X for i in tup do l := List(l,n->n^gens[i]); od;[127X[104X1263[4X[25X>[125X [27X if l = [1,2,3] then Add(stab,tup); fi;[127X[104X1264[4X[25X>[125X [27X od;[127X[104X1265[4X[25Xgap>[125X [27XLength(stab);[127X[104X1266[4X[28X528[128X[104X1267[4X[25Xgap>[125X [27Xstabelm := [];;[127X[104X1268[4X[25Xgap>[125X [27Xfor i in [1..Length(stab)] do[127X[104X1269[4X[25X>[125X [27X elm := One(G);[127X[104X1270[4X[25X>[125X [27X for j in stab[i] do[127X[104X1271[4X[25X>[125X [27X if Modulus(elm) > 10000 then elm := fail; break; fi;[127X[104X1272[4X[25X>[125X [27X elm := elm * gens[j];[127X[104X1273[4X[25X>[125X [27X od;[127X[104X1274[4X[25X>[125X [27X if elm <> fail then Add(stabelm,elm); fi;[127X[104X1275[4X[25X>[125X [27X od;[127X[104X1276[4X[25Xgap>[125X [27XLength(stabelm);[127X[104X1277[4X[28X334[128X[104X1278[4X[25Xgap>[125X [27Xdecs := List(stabelm,DecreasingOn);;[127X[104X1279[4X[25Xgap>[125X [27XSortParallel(decs,stabelm,[127X[104X1280[4X[25X>[125X [27X function(S1,S2)[127X[104X1281[4X[25X>[125X [27X return First([1..100],k->Factorial(k) mod Modulus(S1) = 0)[127X[104X1282[4X[25X>[125X [27X < First([1..100],k->Factorial(k) mod Modulus(S2) = 0);[127X[104X1283[4X[25X>[125X [27X end);[127X[104X1284[4X[25Xgap>[125X [27XS := Integers;;[127X[104X1285[4X[25Xgap>[125X [27Xfor i in [1..Length(decs)] do[127X[104X1286[4X[25X>[125X [27X S_old := S; S := Difference(S,decs[i]);[127X[104X1287[4X[25X>[125X [27X if S <> S_old then ViewObj(S); Print("\n"); fi;[127X[104X1288[4X[25X>[125X [27X if S = [] then maxind := i; break; fi;[127X[104X1289[4X[25X>[125X [27X od;[127X[104X1290[4X[28XZ \ 1(8) U 7(8)[128X[104X1291[4X[28X<union of 46 residue classes (mod 72)>[128X[104X1292[4X[28X<union of 20 residue classes (mod 72) (8 classes)>[128X[104X1293[4X[28X4(18)[128X[104X1294[4X[28X<union of 28 residue classes (mod 576)>[128X[104X1295[4X[28X<union of 22 residue classes (mod 576)>[128X[104X1296[4X[28X<union of 21 residue classes (mod 576)>[128X[104X1297[4X[28X40(72) U 4(144) U 94(144) U 346(576) U 418(576)[128X[104X1298[4X[28X<union of 16 residue classes (mod 576) (6 classes)>[128X[104X1299[4X[28X<union of 15 residue classes (mod 576) (6 classes)>[128X[104X1300[4X[28X4(144) U 94(144) U 346(576) U 418(576)[128X[104X1301[4X[28X<union of 30 residue classes (mod 5184)>[128X[104X1302[4X[28X<union of 26 residue classes (mod 5184)>[128X[104X1303[4X[28X<union of 6 residue classes (mod 1296)>[128X[104X1304[4X[28X<union of 504 residue classes (mod 129600)>[128X[104X1305[4X[28X<union of 324 residue classes (mod 129600)>[128X[104X1306[4X[28X<union of 282 residue classes (mod 129600)>[128X[104X1307[4X[28X<union of 239 residue classes (mod 129600)>[128X[104X1308[4X[28X<union of 218 residue classes (mod 129600)>[128X[104X1309[4X[28X<union of 194 residue classes (mod 129600)>[128X[104X1310[4X[28X<union of 154 residue classes (mod 129600)>[128X[104X1311[4X[28X<union of 97 residue classes (mod 129600)>[128X[104X1312[4X[28X<union of 85 residue classes (mod 129600)>[128X[104X1313[4X[28X<union of 77 residue classes (mod 129600)>[128X[104X1314[4X[28X<union of 67 residue classes (mod 129600)>[128X[104X1315[4X[28X<union of 125 residue classes (mod 259200)>[128X[104X1316[4X[28X<union of 108 residue classes (mod 259200)>[128X[104X1317[4X[28X<union of 107 residue classes (mod 259200)>[128X[104X1318[4X[28X<union of 101 residue classes (mod 259200)>[128X[104X1319[4X[28X<union of 100 residue classes (mod 259200)>[128X[104X1320[4X[28X<union of 84 residue classes (mod 259200)>[128X[104X1321[4X[28X<union of 80 residue classes (mod 259200)>[128X[104X1322[4X[28X<union of 76 residue classes (mod 259200)>[128X[104X1323[4X[28X<union of 70 residue classes (mod 259200)>[128X[104X1324[4X[28X<union of 66 residue classes (mod 259200)>[128X[104X1325[4X[28X<union of 54 residue classes (mod 259200)>[128X[104X1326[4X[28X<union of 53 residue classes (mod 259200)>[128X[104X1327[4X[28X<union of 47 residue classes (mod 259200)>[128X[104X1328[4X[28X<union of 43 residue classes (mod 259200)>[128X[104X1329[4X[28X<union of 31 residue classes (mod 259200)>[128X[104X1330[4X[28X<union of 24 residue classes (mod 259200)>[128X[104X1331[4X[28X<union of 23 residue classes (mod 259200)>[128X[104X1332[4X[28X<union of 13 residue classes (mod 259200) (8 classes)>[128X[104X1333[4X[28X57406(129600) U 115006(129600) U 192676(259200) U 250276(259200)[128X[104X1334[4X[28X57406(129600) U 192676(259200) U 250276(259200) U 374206(388800)[128X[104X1335[4X[28X57406(129600) U 192676(259200) U 250276(259200)[128X[104X1336[4X[28X250276(259200) U 57406(388800) U 316606(388800) U 451876(777600)[128X[104X1337[4X[28X316606(388800) U 451876(777600) U 509476(777600) U 768676(777600)[128X[104X1338[4X[28X<union of 18 residue classes (mod 3110400) (6 classes)>[128X[104X1339[4X[28X451876(777600) U 509476(777600) U 705406(777600) U 768676(777600)[128X[104X1340[4X[28X U 2649406(3110400)[128X[104X1341[4X[28X451876(777600) U 705406(777600) U 768676(777600) U 2649406(3110400)[128X[104X1342[4X[28X451876(777600) U 705406(777600) U 2649406(3110400)[128X[104X1343[4X[28X705406(777600) U 2007076(3110400) U 2649406(3110400) U 2784676(3110400)[128X[104X1344[4X[28X<union of 14 residue classes (mod 9331200) (8 classes)>[128X[104X1345[4X[28X2260606(2332800) U 5759806(9331200) U 5895076(9331200) U 8227876(9331200)[128X[104X1346[4X[28X4593406(6998400) U 15091006(27993600) U 17559076(27993600)[128X[104X1347[4X[28X U 24557476(27993600)[128X[104X1348[4X[28X<union of 14 residue classes (mod 83980800) (8 classes)>[128X[104X1349[4X[28X18590206(20995200) U 24557476(83980800) U 45552676(83980800)[128X[104X1350[4X[28X U 71078206(83980800)[128X[104X1351[4X[28X[ ][128X[104X1352[4X[25Xgap>[125X [27XMaximum(List(stabelm{[1..maxind]},[127X[104X1353[4X[25X>[125X [27X f->Maximum(List(Coefficients(f),c->c[2]))));[127X[104X1354[4X[28X58975[128X[104X1355[4X[25Xgap>[125X [27Xsmallnum := [5..58975];;[127X[104X1356[4X[25Xgap>[125X [27Xfor i in [1..maxind] do[127X[104X1357[4X[25X>[125X [27X smallnum := Filtered(smallnum,n->n^stabelm[i]>=n);[127X[104X1358[4X[25X>[125X [27X od;[127X[104X1359[4X[25Xgap>[125X [27Xsmallnum;[127X[104X1360[4X[28X[ ][128X[104X1361[4X[28X[128X[104X1362[4X[32X[104X13631364[33X[0;0YThere is even some evidence that the degree of transitivity of the action of1365[22XG[122X on the positive integers is higher than 4:[133X13661367[4X[32X Example [32X[104X1368[4X[28X[128X[104X1369[4X[25Xgap>[125X [27Xphi := EpimorphismFromFreeGroup(G);[127X[104X1370[4X[28X[ a, u ] -> [ a, u ][128X[104X1371[4X[25Xgap>[125X [27XF := Source(phi);[127X[104X1372[4X[28X<free group on the generators [ a, u ]>[128X[104X1373[4X[25Xgap>[125X [27XList([5..20],[127X[104X1374[4X[25X>[125X [27X n->RepresentativeActionPreImage(G,[1,2,3,4,5],[127X[104X1375[4X[25X>[125X [27X [1,2,3,4,n],OnTuples,F));[127X[104X1376[4X[28X[ <identity ...>, a^-3*u^4*a*u^-2*a^2, a^-1*(a^-1*u)^4*a^-1*u^-1*a, [128X[104X1377[4X[28X a^4*u^-2*a^-4, a^-1*u^-4*a, (u^2*a^-1)^2*u^-2, u^-2*a^-2*u^4, [128X[104X1378[4X[28X a^-1*u^2*a, a^-1*u^-6*a, a^2*u^4*a^2*u^2, u^-4*a*u^-2*a^-3, [128X[104X1379[4X[28X a^-1*u^-2*a^-3*u^4*a^2, a^2*(a*u^2)^2, (a*u^-4)^2*a^-2, [128X[104X1380[4X[28X u^-2*a*u^2*a*u^-2, u^-4*a^2*u^2 ][128X[104X1381[4X[28X[128X[104X1382[4X[32X[104X13831384[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().CollatzlikePerms);[110X in order to assign1385the global variables defined in this section.[133X138613871388[1X7.6 [33X[0;0YA group which acts 3-transitively, but not 4-transitively on ℤ[133X[101X13891390[33X[0;0YIn this section, we would like to show that the group [22XG[122X generated by the two1391permutations [22Xn ↦ n + 1[122X and [22Xτ_1(2),0(4)[122X acts 3-transitively, but not13924-transitively on the set of integers.[133X13931394[4X[32X Example [32X[104X1395[4X[28X[128X[104X1396[4X[25Xgap>[125X [27XG := Group(ClassShift(0,1),ClassTransposition(1,2,0,4));[127X[104X1397[4X[28X<rcwa group over Z with 2 generators>[128X[104X1398[4X[25Xgap>[125X [27XIsTame(G);[127X[104X1399[4X[28Xfalse[128X[104X1400[4X[25Xgap>[125X [27X(G.1^-2*G.2)^3*(G.1^2*G.2)^3; # G <> the free product C_infty * C_2.[127X[104X1401[4X[28XIdentityMapping( Integers )[128X[104X1402[4X[25Xgap>[125X [27XDisplay(G:CycleNotation:=false);[127X[104X1403[4X[28X[128X[104X1404[4X[28XWild rcwa group over Z, generated by[128X[104X1405[4X[28X[128X[104X1406[4X[28X[[128X[104X1407[4X[28XTame rcwa permutation of Z: n -> n + 1[128X[104X1408[4X[28X[128X[104X1409[4X[28XRcwa permutation of Z with modulus 4, of order 2[128X[104X1410[4X[28X[128X[104X1411[4X[28X /[128X[104X1412[4X[28X | 2n-2 if n in 1(2)[128X[104X1413[4X[28X n |-> < (n+2)/2 if n in 0(4)[128X[104X1414[4X[28X | n if n in 2(4)[128X[104X1415[4X[28X \[128X[104X1416[4X[28X[128X[104X1417[4X[28X][128X[104X1418[4X[28X[128X[104X1419[4X[32X[104X14201421[33X[0;0YThis group acts transitively on ℤ, since already the cyclic group generated1422by the first of the two generators does so. Next we have to show that it1423acts 2-transitively. We essentially proceed as in the example in the1424previous section, by checking that the stabilizer of 0 acts transitively on1425[22Xℤ ∖ {0}[122X.[133X14261427[4X[32X Example [32X[104X1428[4X[28X[128X[104X1429[4X[25Xgap>[125X [27Xgens := [ClassShift(0,1)^-1,ClassTransposition(1,2,0,4),[127X[104X1430[4X[25X>[125X [27X ClassShift(0,1)];;[127X[104X1431[4X[25Xgap>[125X [27Xtups := Concatenation(List([1..6],k->Tuples([-1,0,1],k)));;[127X[104X1432[4X[25Xgap>[125X [27Xtups := Filtered(tups,tup->ForAll([[0,0],[-1,1],[1,-1]],[127X[104X1433[4X[25X>[125X [27X l->PositionSublist(tup,l)=fail));;[127X[104X1434[4X[25Xgap>[125X [27XLength(tups);[127X[104X1435[4X[28X189[128X[104X1436[4X[25Xgap>[125X [27Xstab := [];;[127X[104X1437[4X[25Xgap>[125X [27Xfor tup in tups do[127X[104X1438[4X[25X>[125X [27X n := 0;[127X[104X1439[4X[25X>[125X [27X for i in tup do n := n^gens[i+2]; od;[127X[104X1440[4X[25X>[125X [27X if n = 0 then Add(stab,tup); fi;[127X[104X1441[4X[25X>[125X [27X od;[127X[104X1442[4X[25Xgap>[125X [27Xstabelm := List(stab,tup->Product(List(tup,i->gens[i+2])));;[127X[104X1443[4X[25Xgap>[125X [27XCollected(List(stabelm,Modulus));[127X[104X1444[4X[28X[ [ 4, 6 ], [ 8, 4 ], [ 16, 3 ] ][128X[104X1445[4X[25Xgap>[125X [27Xdecs := List(stabelm,DecreasingOn);[127X[104X1446[4X[28X[ 0(4), 3(4), 0(4), 3(4), 2(4), 0(4), 4(8), 2(4), 2(4), 0(4), 1(4), [128X[104X1447[4X[28X 0(8), 3(8) ][128X[104X1448[4X[25Xgap>[125X [27XUnion(decs);[127X[104X1449[4X[28XIntegers[128X[104X1450[4X[28X[128X[104X1451[4X[32X[104X14521453[33X[0;0YSimilar as in the previous section, it remains to check that the integers1454with [21Xsmall[121X absolute value all lie in the orbit containing 1 under the action1455of the stabilizer of 0:[133X14561457[4X[32X Example [32X[104X1458[4X[28X[128X[104X1459[4X[25Xgap>[125X [27XMaximum(List(stabelm,f->Maximum(List(Coefficients(f),[127X[104X1460[4X[25X>[125X [27X c->AbsInt(c[2])))));[127X[104X1461[4X[28X21[128X[104X1462[4X[25Xgap>[125X [27XS := [1];;[127X[104X1463[4X[25Xgap>[125X [27Xfor elm in stabelm do S := Union(S,S^elm,S^(elm^-1)); od;[127X[104X1464[4X[25Xgap>[125X [27XIsSubset(S,Difference([-21..21],[0])); # Not yet ..[127X[104X1465[4X[28Xfalse[128X[104X1466[4X[25Xgap>[125X [27Xfor elm in stabelm do S := Union(S,S^elm,S^(elm^-1)); od;[127X[104X1467[4X[25Xgap>[125X [27XIsSubset(S,Difference([-21..21],[0])); # ... but now![127X[104X1468[4X[28Xtrue[128X[104X1469[4X[28X[128X[104X1470[4X[32X[104X14711472[33X[0;0YNow we have to check for 3-transitivity. Since we cannot find for every1473residue class an element of the pointwise stabilizer of [22X{0,1}[122X which properly1474divides its elements, we also have to take additions and subtractions into1475consideration. Since the moduli of all of our stabilizer elements are quite1476small, simply looking at sets of representatives is cheap:[133X14771478[4X[32X Example [32X[104X1479[4X[28X[128X[104X1480[4X[25Xgap>[125X [27Xtups := Concatenation(List([1..10],k->Tuples([-1,0,1],k)));;[127X[104X1481[4X[25Xgap>[125X [27Xtups := Filtered(tups,tup->ForAll([[0,0],[-1,1],[1,-1]],[127X[104X1482[4X[25X>[125X [27X l->PositionSublist(tup,l)=fail));;[127X[104X1483[4X[25Xgap>[125X [27XLength(tups);[127X[104X1484[4X[28X3069[128X[104X1485[4X[25Xgap>[125X [27Xstab := [];;[127X[104X1486[4X[25Xgap>[125X [27Xfor tup in tups do[127X[104X1487[4X[25X>[125X [27X l := [0,1];[127X[104X1488[4X[25X>[125X [27X for i in tup do l := List(l,n->n^gens[i+2]); od;[127X[104X1489[4X[25X>[125X [27X if l = [0,1] then Add(stab,tup); fi;[127X[104X1490[4X[25X>[125X [27X od;[127X[104X1491[4X[25Xgap>[125X [27XLength(stab);[127X[104X1492[4X[28X10[128X[104X1493[4X[25Xgap>[125X [27Xstabelm := List(stab,tup->Product(List(tup,i->gens[i+2])));;[127X[104X1494[4X[25Xgap>[125X [27XMaximum(List(stabelm,Modulus));[127X[104X1495[4X[28X8[128X[104X1496[4X[25Xgap>[125X [27XMaximum(List(stabelm,[127X[104X1497[4X[25X>[125X [27X f->Maximum(List(Coefficients(f),c->AbsInt(c[2])))));[127X[104X1498[4X[28X8[128X[104X1499[4X[25Xgap>[125X [27Xdecsp := List(stabelm,elm->Filtered([9..16],n->n^elm<n));[127X[104X1500[4X[28X[ [ 9, 13 ], [ 10, 12, 14, 16 ], [ 12, 16 ], [ 9, 13 ], [ 12, 16 ], [128X[104X1501[4X[28X [ 9, 11, 13, 15 ], [ 9, 11, 13, 15 ], [ 12, 16 ], [ 12, 16 ], [128X[104X1502[4X[28X [ 9, 11, 13, 15 ] ][128X[104X1503[4X[25Xgap>[125X [27XUnion(decsp);[127X[104X1504[4X[28X[ 9, 10, 11, 12, 13, 14, 15, 16 ][128X[104X1505[4X[25Xgap>[125X [27Xdecsm := List(stabelm,elm->Filtered([-16..-9],n->n^elm>n));[127X[104X1506[4X[28X[ [ -15, -13, -11, -9 ], [ -16, -12 ], [ -16, -12 ], [ -15, -11 ], [128X[104X1507[4X[28X [ -16, -14, -12, -10 ], [ -15, -11 ], [ -15, -11 ], [128X[104X1508[4X[28X [ -16, -14, -12, -10 ], [ -16, -14, -12, -10 ], [ -15, -11 ] ][128X[104X1509[4X[25Xgap>[125X [27XUnion(decsm);[127X[104X1510[4X[28X[ -16, -15, -14, -13, -12, -11, -10, -9 ][128X[104X1511[4X[25Xgap>[125X [27XS := [2];;[127X[104X1512[4X[25Xgap>[125X [27Xfor elm in stabelm do S := Union(S,S^elm,S^(elm^-1)); od;[127X[104X1513[4X[25Xgap>[125X [27XIsSubset(S,Difference([-8..8],[0,1]));[127X[104X1514[4X[28Xtrue[128X[104X1515[4X[28X[128X[104X1516[4X[32X[104X15171518[33X[0;0YAt this point we have established 3-transitivity. It remains to check that1519the group [22XG[122X does not act 4-transitively. We do this by checking that it is1520not transitive on 4-tuples (mod 4). Since [22Xn[122X mod 8 determines the image of [22Xn[122X1521under a generator of [22XG[122X (mod 4), it suffices to compute (mod 8):[133X15221523[4X[32X Example [32X[104X1524[4X[28X[128X[104X1525[4X[25Xgap>[125X [27Xorb := [[0,1,2,3]];;[127X[104X1526[4X[25Xgap>[125X [27Xextend := function ()[127X[104X1527[4X[25X>[125X [27X local gen;[127X[104X1528[4X[25X>[125X [27X for gen in gens do[127X[104X1529[4X[25X>[125X [27X orb := Union(orb,List(orb,l->List(l,n->n^gen) mod 8));[127X[104X1530[4X[25X>[125X [27X od;[127X[104X1531[4X[25X>[125X [27X end;;[127X[104X1532[4X[25Xgap>[125X [27Xrepeat[127X[104X1533[4X[25X>[125X [27X old := ShallowCopy(orb);[127X[104X1534[4X[25X>[125X [27X extend(); Print(Length(orb),"\n");[127X[104X1535[4X[25X>[125X [27X until orb = old;[127X[104X1536[4X[28X7[128X[104X1537[4X[28X27[128X[104X1538[4X[28X97[128X[104X1539[4X[28X279[128X[104X1540[4X[28X573[128X[104X1541[4X[28X916[128X[104X1542[4X[28X1185[128X[104X1543[4X[28X1313[128X[104X1544[4X[28X1341[128X[104X1545[4X[28X1344[128X[104X1546[4X[28X1344[128X[104X1547[4X[25Xgap>[125X [27XLength(Set(List(orb,l->l mod 4)));[127X[104X1548[4X[28X120[128X[104X1549[4X[25Xgap>[125X [27Xlast < 4^4;[127X[104X1550[4X[28Xtrue[128X[104X1551[4X[28X[128X[104X1552[4X[32X[104X15531554[33X[0;0YThis shows that [22XG[122X acts not 4-transitively on ℤ. The corresponding1555calculation for 3-tuples looks as follows:[133X15561557[4X[32X Example [32X[104X1558[4X[28X[128X[104X1559[4X[25Xgap>[125X [27Xorb := [[0,1,2]];;[127X[104X1560[4X[25Xgap>[125X [27Xrepeat[127X[104X1561[4X[25X>[125X [27X old := ShallowCopy(orb);[127X[104X1562[4X[25X>[125X [27X extend(); Print(Length(orb),"\n");[127X[104X1563[4X[25X>[125X [27X until orb = old;[127X[104X1564[4X[28X7[128X[104X1565[4X[28X27[128X[104X1566[4X[28X84[128X[104X1567[4X[28X207[128X[104X1568[4X[28X363[128X[104X1569[4X[28X459[128X[104X1570[4X[28X503[128X[104X1571[4X[28X512[128X[104X1572[4X[28X512[128X[104X1573[4X[25Xgap>[125X [27XLength(Set(List(orb,l->l mod 4)));[127X[104X1574[4X[28X64[128X[104X1575[4X[25Xgap>[125X [27Xlast = 4^3;[127X[104X1576[4X[28Xtrue[128X[104X1577[4X[28X[128X[104X1578[4X[32X[104X15791580[33X[0;0YNeedless to say that the latter kind of argumentation is not suitable for1581proving, but only for disproving [22Xk[122X-transitivity.[133X158215831584[1X7.7 [33X[0;0YAn rcwa mapping which seems to be contracting, but very slow[133X[101X15851586[33X[0;0YThe iterates of an integer under the Collatz mapping [22XT[122X seem to approach its1587contraction centre -- this is the finite set where all trajectories end up1588after a finite number of steps -- rather quickly and do not get very large1589before doing so (of course this is a purely heuristic statement as the [22X3n+1[122X1590conjecture has not been proved so far!):[133X15911592[4X[32X Example [32X[104X1593[4X[28X[128X[104X1594[4X[25Xgap>[125X [27XT := RcwaMapping([[1,0,2],[3,1,2]]);;[127X[104X1595[4X[25Xgap>[125X [27XS0 := LikelyContractionCentre(T,100,1000);[127X[104X1596[4X[28X#I Warning: `LikelyContractionCentre' is highly probabilistic.[128X[104X1597[4X[28XThe returned result can only be regarded as a rough guess.[128X[104X1598[4X[28XSee ?LikelyContractionCentre for more information.[128X[104X1599[4X[28X[ -136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5, [128X[104X1600[4X[28X -1, 0, 1, 2 ][128X[104X1601[4X[25Xgap>[125X [27XS0^T = S0; # This holds by definition of the contraction centre.[127X[104X1602[4X[28Xtrue[128X[104X1603[4X[25Xgap>[125X [27XList([1..30],n->Length(Trajectory(T,n,S0)));[127X[104X1604[4X[28X[ 1, 1, 5, 2, 4, 6, 11, 3, 13, 5, 10, 7, 7, 12, 12, 4, 9, 14, 14, 6, 6, [128X[104X1605[4X[28X 11, 11, 8, 16, 8, 70, 13, 13, 13 ][128X[104X1606[4X[25Xgap>[125X [27XMaximum(List([1..1000],n->Length(Trajectory(T,n,S0))));[127X[104X1607[4X[28X113[128X[104X1608[4X[25Xgap>[125X [27XMaximum(List([1..1000],n->Maximum(Trajectory(T,n,S0))));[127X[104X1609[4X[28X125252[128X[104X1610[4X[28X[128X[104X1611[4X[32X[104X16121613[33X[0;0YThe following mapping seems to be contracting as well, but its trajectories1614are much longer:[133X16151616[4X[32X Example [32X[104X1617[4X[28X[128X[104X1618[4X[25Xgap>[125X [27Xf6 := RcwaMapping([[ 1,0,6],[ 5, 1,6],[ 7,-2,6],[127X[104X1619[4X[25X>[125X [27X [11,3,6],[11,-2,6],[11,-1,6]]);;[127X[104X1620[4X[25Xgap>[125X [27XDisplay(f6);[127X[104X1621[4X[28X[128X[104X1622[4X[28XRcwa mapping of Z with modulus 6[128X[104X1623[4X[28X[128X[104X1624[4X[28X /[128X[104X1625[4X[28X | n/6 if n in 0(6)[128X[104X1626[4X[28X | (5n+1)/6 if n in 1(6)[128X[104X1627[4X[28X | (7n-2)/6 if n in 2(6)[128X[104X1628[4X[28X n |-> < (11n+3)/6 if n in 3(6)[128X[104X1629[4X[28X | (11n-2)/6 if n in 4(6)[128X[104X1630[4X[28X | (11n-1)/6 if n in 5(6)[128X[104X1631[4X[28X |[128X[104X1632[4X[28X \[128X[104X1633[4X[28X[128X[104X1634[4X[25Xgap>[125X [27XS0 := LikelyContractionCentre(f6,1000,100000);;[127X[104X1635[4X[28X#I Warning: `LikelyContractionCentre' is highly probabilistic.[128X[104X1636[4X[28XThe returned result can only be regarded as a rough guess.[128X[104X1637[4X[28XSee ?LikelyContractionCentre for more information.[128X[104X1638[4X[25Xgap>[125X [27XTrajectory(f6,25,S0);[127X[104X1639[4X[28X[ 25, 21, 39, 72, 12, 2 ][128X[104X1640[4X[25Xgap>[125X [27XList([1..100],n->Length(Trajectory(f6,n,S0)));[127X[104X1641[4X[28X[ 1, 1, 3, 4, 1, 2, 3, 2, 1, 5, 7, 2, 8, 17, 3, 16, 1, 4, 17, 6, 5, 2, [128X[104X1642[4X[28X 5, 5, 6, 1, 4, 2, 15, 1, 1, 3, 2, 5, 13, 3, 2, 3, 4, 1, 8, 4, 4, 2, 7, [128X[104X1643[4X[28X 19, 23517, 3, 9, 3, 1, 18, 14, 2, 20, 23512, 14, 2, 6, 6, 1, 4, 19, [128X[104X1644[4X[28X 12, 23511, 8, 23513, 10, 1, 13, 13, 3, 1, 23517, 7, 20, 7, 9, 9, 6, [128X[104X1645[4X[28X 12, 8, 6, 18, 14, 23516, 31, 12, 23545, 4, 21, 19, 5, 1, 17, 17, 13, [128X[104X1646[4X[28X 19, 6, 23515 ][128X[104X1647[4X[25Xgap>[125X [27XMaximum(Trajectory(f6,47,S0));[127X[104X1648[4X[28X7363391777762473304431877054771075818733690108051469808715809256737742295\[128X[104X1649[4X[28X45698886054[128X[104X1650[4X[28X[128X[104X1651[4X[32X[104X16521653[33X[0;0YComputing the trajectory of 3224 takes quite a while -- this trajectory1654ascends to about [22X3 ⋅ 10^2197[122X, before it approaches the fixed point 2 after165519949562 steps.[133X16561657[33X[0;0YWhen constructing the mapping [10Xf6[110X, the denominators of the partial mappings1658have been chosen to be equal and the numerators have been chosen to be1659numbers coprime to the common denominator, whose product is just a little1660bit smaller than the [10XModulus(f6)[110Xth power of the denominator. In the example1661we have [22X5 ⋅ 7 ⋅ 11^3 = 46585[122X and [22X6^6 = 46656[122X.[133X16621663[33X[0;0YAlthough the trajectories of [10XT[110X are much shorter than those of [10Xf6[110X, it seems1664likely that this does not make the problem of deciding whether the mapping [10XT[110X1665is contracting essentially easier -- even for mappings with much shorter1666trajectories than [10XT[110X the problem seems to be equally hard. A solution can1667usually only be found in trivial cases, i.e. for example when there is some1668[22Xk[122X such that applying the [22Xk[122Xth power of the respective mapping to any integer1669decreases its absolute value.[133X16701671[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().SlowlyContractingMappings);[110X in order1672to assign the global variables defined in this section.[133X167316741675[1X7.8 [33X[0;0YChecking a result by P. Andaloro[133X[101X16761677[33X[0;0YIn [And00], P. Andaloro has shown that proving that trajectories of integers1678[22Xn ∈ 1(16)[122X under the Collatz mapping always contain 1 would be sufficient to1679prove the [22X3n+1[122X conjecture. In the sequel, this result is verified by [5XRCWA[105X.1680Checking that the union of the images of the residue class 1(16) under1681powers of the Collatz mapping [22XT[122X contains [22Xℤ ∖ 0(3)[122X is obviously enough. Thus1682we put [22XS := 1(16)[122X, and successively unite the set [22XS[122X with its image under [22XT[122X:[133X16831684[4X[32X Example [32X[104X1685[4X[28X[128X[104X1686[4X[25Xgap>[125X [27XT := RcwaMapping([[1,0,2],[3,1,2]]);[127X[104X1687[4X[28X<rcwa mapping of Z with modulus 2>[128X[104X1688[4X[25Xgap>[125X [27XS := ResidueClass(Integers,16,1);[127X[104X1689[4X[28X1(16)[128X[104X1690[4X[25Xgap>[125X [27XS := Union(S,S^T);[127X[104X1691[4X[28X1(16) U 2(24)[128X[104X1692[4X[25Xgap>[125X [27XS := Union(S,S^T);[127X[104X1693[4X[28X1(12) U 2(24) U 17(48) U 33(48)[128X[104X1694[4X[25Xgap>[125X [27XS := Union(S,S^T);[127X[104X1695[4X[28X<union of 30 residue classes (mod 144)>[128X[104X1696[4X[25Xgap>[125X [27XS := Union(S,S^T);[127X[104X1697[4X[28X<union of 42 residue classes (mod 144)>[128X[104X1698[4X[25Xgap>[125X [27XS := Union(S,S^T);[127X[104X1699[4X[28X<union of 172 residue classes (mod 432)>[128X[104X1700[4X[25Xgap>[125X [27XS := Union(S,S^T);[127X[104X1701[4X[28X<union of 676 residue classes (mod 1296)>[128X[104X1702[4X[25Xgap>[125X [27XS := Union(S,S^T);[127X[104X1703[4X[28X<union of 810 residue classes (mod 1296)>[128X[104X1704[4X[25Xgap>[125X [27XS := Union(S,S^T);[127X[104X1705[4X[28X<union of 2638 residue classes (mod 3888)>[128X[104X1706[4X[25Xgap>[125X [27XS := Union(S,S^T);[127X[104X1707[4X[28X<union of 33 residue classes (mod 48)>[128X[104X1708[4X[25Xgap>[125X [27XS := Union(S,S^T);[127X[104X1709[4X[28X<union of 33 residue classes (mod 48)>[128X[104X1710[4X[25Xgap>[125X [27XUnion(S,ResidueClass(Integers,3,0)); # Et voila ...[127X[104X1711[4X[28XIntegers[128X[104X1712[4X[28X[128X[104X1713[4X[32X[104X17141715[33X[0;0YFurther similar computations are shown in Section [14X7.17[114X.[133X17161717[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().CollatzMapping);[110X in order to assign1718the global variables defined in this section.[133X171917201721[1X7.9 [33X[0;0YTwo examples by Matthews and Leigh[133X[101X17221723[33X[0;0YIn [ML87], K. R. Matthews and G. M. Leigh have shown that two trajectories1724of the following (surjective, but not injective) mappings are acyclic1725(mod [22Xx[122X) and divergent:[133X17261727[4X[32X Example [32X[104X1728[4X[28X[128X[104X1729[4X[25Xgap>[125X [27Xx := Indeterminate(GF(4),1);; SetName(x,"x");[127X[104X1730[4X[25Xgap>[125X [27XR := PolynomialRing(GF(2),1);[127X[104X1731[4X[28XGF(2)[x][128X[104X1732[4X[25Xgap>[125X [27XML1 := RcwaMapping(R,x,[[1,0,x],[(x+1)^3,1,x]]*One(R));;[127X[104X1733[4X[25Xgap>[125X [27XML2 := RcwaMapping(R,x,[[1,0,x],[(x+1)^2,1,x]]*One(R));;[127X[104X1734[4X[25Xgap>[125X [27XDisplay(ML1);[127X[104X1735[4X[28X[128X[104X1736[4X[28XRcwa mapping of GF(2)[x] with modulus x[128X[104X1737[4X[28X[128X[104X1738[4X[28X /[128X[104X1739[4X[28X | P/x if P in 0(x)[128X[104X1740[4X[28X P |-> < ((x^3+x^2+x+1)*P + 1)/x if P in 1(x)[128X[104X1741[4X[28X |[128X[104X1742[4X[28X \[128X[104X1743[4X[28X[128X[104X1744[4X[25Xgap>[125X [27XDisplay(ML2);[127X[104X1745[4X[28X[128X[104X1746[4X[28XRcwa mapping of GF(2)[x] with modulus x[128X[104X1747[4X[28X[128X[104X1748[4X[28X /[128X[104X1749[4X[28X | P/x if P in 0(x)[128X[104X1750[4X[28X P |-> < ((x^2+1)*P + 1)/x if P in 1(x)[128X[104X1751[4X[28X |[128X[104X1752[4X[28X \[128X[104X1753[4X[28X[128X[104X1754[4X[25Xgap>[125X [27XList([ML1,ML2],IsSurjective);[127X[104X1755[4X[28X[ true, true ][128X[104X1756[4X[25Xgap>[125X [27XList([ML1,ML2],IsInjective);[127X[104X1757[4X[28X[ false, false ][128X[104X1758[4X[25Xgap>[125X [27Xtraj1 := Trajectory(ML1,One(R),16);[127X[104X1759[4X[28X[ 1, x^2+x+1, x^4+x^2+x, x^3+x+1, x^5+x^4+x^2, x^4+x^3+x, x^3+x^2+1, [128X[104X1760[4X[28X x^5+x^2+1, x^7+x^6+x^5+x^3+1, x^9+x^7+x^6+x^5+x^3+x+1, [128X[104X1761[4X[28X x^11+x^10+x^8+x^7+x^6+x^5+x^2, x^10+x^9+x^7+x^6+x^5+x^4+x, [128X[104X1762[4X[28X x^9+x^8+x^6+x^5+x^4+x^3+1, x^11+x^8+x^7+x^6+x^4+x+1, [128X[104X1763[4X[28X x^13+x^12+x^11+x^8+x^7+x^6+x^4, x^12+x^11+x^10+x^7+x^6+x^5+x^3 ][128X[104X1764[4X[25Xgap>[125X [27Xtraj2 := Trajectory(ML2,(x^3+x+1)*One(R),16);[127X[104X1765[4X[28X[ x^3+x+1, x^4+x+1, x^5+x^3+x^2+x+1, x^6+x^3+1, x^7+x^5+x^4+x^2+x, [128X[104X1766[4X[28X x^6+x^4+x^3+x+1, x^7+x^4+x^3+x+1, x^8+x^6+x^5+x^4+x^3+x+1, [128X[104X1767[4X[28X x^9+x^6+x^3+x+1, x^10+x^8+x^7+x^5+x^4+x+1, [128X[104X1768[4X[28X x^11+x^8+x^7+x^5+x^4+x^3+x^2+x+1, x^12+x^10+x^9+x^8+x^7+x^5+1, [128X[104X1769[4X[28X x^13+x^10+x^7+x^4+x, x^12+x^9+x^6+x^3+1, [128X[104X1770[4X[28X x^13+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x, [128X[104X1771[4X[28X x^12+x^10+x^9+x^7+x^6+x^4+x^3+x+1 ][128X[104X1772[4X[28X[128X[104X1773[4X[32X[104X17741775[33X[0;0YThe pattern which Matthews and Leigh used to show the divergence of the1776above trajectories can be recognized easily by looking at the corresponding1777Markov chains with the two states 0 mod [22Xx[122X and 1 mod [22Xx[122X:[133X17781779[4X[32X Example [32X[104X1780[4X[28X[128X[104X1781[4X[25Xgap>[125X [27Xtraj1modx := Trajectory(ML1,One(R),400,x);;[127X[104X1782[4X[25Xgap>[125X [27Xtraj2modx := Trajectory(ML2,(x^3+x+1)*One(R),600,x);;[127X[104X1783[4X[25Xgap>[125X [27XList(traj1modx{[1..150]},val->Position([Zero(R),One(R)],val)-1);[127X[104X1784[4X[28X[ 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, [128X[104X1785[4X[28X 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, [128X[104X1786[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, [128X[104X1787[4X[28X 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, [128X[104X1788[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1789[4X[28X 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, [128X[104X1790[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ][128X[104X1791[4X[25Xgap>[125X [27XList(traj2modx{[1..150]},val->Position([Zero(R),One(R)],val)-1);[127X[104X1792[4X[28X[ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1793[4X[28X 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1794[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, [128X[104X1795[4X[28X 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1796[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1797[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, [128X[104X1798[4X[28X 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 ][128X[104X1799[4X[28X[128X[104X1800[4X[32X[104X18011802[33X[0;0YWhat is important here are the lengths of the intervals between two changes1803from one state to the other:[133X18041805[4X[32X Example [32X[104X1806[4X[28X[128X[104X1807[4X[25Xgap>[125X [27XChangePoints := l->Filtered([1..Length(l)-1],pos->l[pos]<>l[pos+1]);;[127X[104X1808[4X[25Xgap>[125X [27XDiffs := l->List([1..Length(l)-1],pos->l[pos+1]-l[pos]);;[127X[104X1809[4X[25Xgap>[125X [27XDiffs(ChangePoints(traj1modx)); # The pattern in the first ...[127X[104X1810[4X[28X[ 1, 1, 2, 4, 2, 2, 4, 8, 4, 4, 8, 16, 8, 8, 16, 32, 16, 16, 32, 64, 32, [128X[104X1811[4X[28X 32, 64 ][128X[104X1812[4X[25Xgap>[125X [27XDiffs(ChangePoints(traj2modx)); # ... and in the second example.[127X[104X1813[4X[28X[ 1, 7, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1814[4X[28X 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1815[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 97, 1, 1, 1, 1, 1, 1, 1, [128X[104X1816[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1817[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1818[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 193, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1819[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1820[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1821[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, [128X[104X1822[4X[28X 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ][128X[104X1823[4X[25Xgap>[125X [27XDiffs(ChangePoints(last)); # Make this a bit more obvious.[127X[104X1824[4X[28X[ 1, 3, 1, 7, 1, 15, 1, 31, 1, 63, 1 ][128X[104X1825[4X[28X[128X[104X1826[4X[32X[104X18271828[33X[0;0YThis looks clearly acyclic, thus the trajectories diverge. Needless to say1829however that this computational evidence does not replace the proof along1830these lines given in the article cited above, but just sheds a light on the1831idea behind it.[133X18321833[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().MatthewsLeigh);[110X in order to assign1834the global variables defined in this section.[133X183518361837[1X7.10 [33X[0;0YOrders of commutators[133X[101X18381839[33X[0;0YWe enter some wild rcwa permutation:[133X18401841[4X[32X Example [32X[104X1842[4X[28X[128X[104X1843[4X[25Xgap>[125X [27Xu := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;[127X[104X1844[4X[25Xgap>[125X [27XIsTame(u);;[127X[104X1845[4X[25Xgap>[125X [27XDisplay(u);[127X[104X1846[4X[28X[128X[104X1847[4X[28XWild rcwa permutation of Z with modulus 5[128X[104X1848[4X[28X[128X[104X1849[4X[28X /[128X[104X1850[4X[28X | 3n/5 if n in 0(5)[128X[104X1851[4X[28X | (9n+1)/5 if n in 1(5)[128X[104X1852[4X[28X n |-> < (3n-1)/5 if n in 2(5)[128X[104X1853[4X[28X | (9n-2)/5 if n in 3(5)[128X[104X1854[4X[28X | (9n+4)/5 if n in 4(5)[128X[104X1855[4X[28X \[128X[104X1856[4X[28X[128X[104X1857[4X[32X[104X18581859[33X[0;0YWe would like to compute the order of [22X[u,n ↦ n + k][122X and [22X[u^2,n ↦ n + k][122X for1860different values of [22Xk[122X:[133X18611862[4X[32X Example [32X[104X1863[4X[28X[128X[104X1864[4X[25Xgap>[125X [27Xnu := ClassShift(0,1);; # n -> n + 1[127X[104X1865[4X[25Xgap>[125X [27Xl := Filtered([0..100],k->IsTame(Comm(u,nu^k)));[127X[104X1866[4X[28X[ 0, 2, 3, 5, 6, 9, 10, 12, 13, 15, 17, 18, 20, 21, 24, 25, 27, 28, 30, [128X[104X1867[4X[28X 32, 33, 35, 36, 39, 40, 42, 43, 45, 47, 48, 50, 51, 54, 55, 57, 58, [128X[104X1868[4X[28X 60, 62, 63, 65, 66, 69, 70, 72, 73, 75, 77, 78, 80, 81, 84, 85, 87, [128X[104X1869[4X[28X 88, 90, 92, 93, 95, 96, 99, 100 ][128X[104X1870[4X[25Xgap>[125X [27XList(l,k->Order(Comm(u,nu^k)));[127X[104X1871[4X[28X[ 1, 6, 5, 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3, infinity, [128X[104X1872[4X[28X infinity, 3, 5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5, infinity, [128X[104X1873[4X[28X infinity, infinity, 5, 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3, [128X[104X1874[4X[28X infinity, infinity, 3, 5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5, [128X[104X1875[4X[28X infinity, infinity, infinity, 5, 3, 5, 5, 3 ][128X[104X1876[4X[25Xgap>[125X [27Xu2 := u^2;[127X[104X1877[4X[28X<wild rcwa permutation of Z with modulus 25>[128X[104X1878[4X[25Xgap>[125X [27XFiltered([1..16],k->IsTame(Comm(u2,nu^k))); # k<15->[u^2,nu^k] wild![127X[104X1879[4X[28X[ 15 ][128X[104X1880[4X[25Xgap>[125X [27XOrder(Comm(u2,nu^15));[127X[104X1881[4X[28Xinfinity[128X[104X1882[4X[25Xgap>[125X [27Xu2nu17 := Comm(u2,nu^17);[127X[104X1883[4X[28X<rcwa permutation of Z with modulus 81>[128X[104X1884[4X[25Xgap>[125X [27Xcycs := ShortCycles(u2nu17,[-100..100],100);;[127X[104X1885[4X[25Xgap>[125X [27XList(cycs,Length);[127X[104X1886[4X[28X[ 72, 73, 72, 72, 72, 73, 72, 72, 73, 72, 72, 73, 72, 72, 73, 72, 72, [128X[104X1887[4X[28X 73, 72, 72, 73, 72, 72 ][128X[104X1888[4X[25Xgap>[125X [27XLcm(last);[127X[104X1889[4X[28X5256[128X[104X1890[4X[25Xgap>[125X [27Xu2nu17^5256; # This element has indeed order 2^3*3^2*73 = 5256.[127X[104X1891[4X[28XIdentityMapping( Integers )[128X[104X1892[4X[25Xgap>[125X [27Xu2nu18 := Comm(u2,nu^18);[127X[104X1893[4X[28X<rcwa permutation of Z with modulus 81>[128X[104X1894[4X[25Xgap>[125X [27Xcycs := ShortCycles(u2nu18,[-100..100],100);;[127X[104X1895[4X[25Xgap>[125X [27XList(cycs,Length);[127X[104X1896[4X[28X[ 21, 22, 22, 22, 21, 22, 22, 21, 22, 22, 21, 22, 21, 22, 22, 21, 22, [128X[104X1897[4X[28X 22, 21, 22, 22, 21, 22 ][128X[104X1898[4X[25Xgap>[125X [27XLcm(last);[127X[104X1899[4X[28X462[128X[104X1900[4X[25Xgap>[125X [27Xu2nu18^462; # This is an element of order 2*3*7*11 = 462.[127X[104X1901[4X[28XIdentityMapping( Integers )[128X[104X1902[4X[25Xgap>[125X [27XList([Comm(u2,nu^20),Comm(u2,nu^25),Comm(u2,nu^30)],Order);[127X[104X1903[4X[28X[ 29, 9, 15 ][128X[104X1904[4X[28X[128X[104X1905[4X[32X[104X19061907[33X[0;0YWe observe that our commutators have various different orders, and that the1908prime factors of these orders are not all [21Xvery small[121X.[133X19091910[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().CollatzlikePerms);[110X in order to assign1911the global variables defined in this section.[133X191219131914[1X7.11 [33X[0;0YAn infinite subgroup of CT(GF(2)[x]) with many torsion elements[133X[101X19151916[33X[0;0YIn this section, we have a look at the following subgroup of CT(GF(2)[x]):[133X19171918[4X[32X Example [32X[104X1919[4X[28X[128X[104X1920[4X[25Xgap>[125X [27Xx := Indeterminate(GF(2));; SetName(x,"x");[127X[104X1921[4X[25Xgap>[125X [27XR := PolynomialRing(GF(2),1);[127X[104X1922[4X[28XGF(2)[x][128X[104X1923[4X[25Xgap>[125X [27Xa := ClassTransposition(0,x,1,x);;[127X[104X1924[4X[25Xgap>[125X [27Xb := ClassTransposition(0,x^2+1,1,x^2+1);;[127X[104X1925[4X[25Xgap>[125X [27Xc := ClassTransposition(1,x,0,x^2+x);;[127X[104X1926[4X[25Xgap>[125X [27XG := Group(a,b,c);[127X[104X1927[4X[28X<rcwa group over GF(2)[x] with 3 generators>[128X[104X1928[4X[25Xgap>[125X [27XDisplay(G);[127X[104X1929[4X[28X[128X[104X1930[4X[28XRcwa group over GF(2)[x], generated by[128X[104X1931[4X[28X[128X[104X1932[4X[28X[[128X[104X1933[4X[28XRcwa permutation of GF(2)[x]: P -> P + Z(2)^0[128X[104X1934[4X[28X[128X[104X1935[4X[28XRcwa permutation of GF(2)[x] with modulus x^2+1, of order 2[128X[104X1936[4X[28X[128X[104X1937[4X[28X /[128X[104X1938[4X[28X | P + 1 if P in 0(x^2+1) U 1(x^2+1)[128X[104X1939[4X[28X P |-> < P if P in x(x^2+1) U x+1(x^2+1)[128X[104X1940[4X[28X |[128X[104X1941[4X[28X \[128X[104X1942[4X[28X[128X[104X1943[4X[28X[128X[104X1944[4X[28XRcwa permutation of GF(2)[x] with modulus x^2+x, of order 2[128X[104X1945[4X[28X[128X[104X1946[4X[28X /[128X[104X1947[4X[28X | (x+1)*P + x+1 if P in 1(x)[128X[104X1948[4X[28X P |-> < (P + x+1)/(x+1) if P in 0(x^2+x)[128X[104X1949[4X[28X | P if P in x(x^2+x)[128X[104X1950[4X[28X \[128X[104X1951[4X[28X[128X[104X1952[4X[28X][128X[104X1953[4X[28X[128X[104X1954[4X[32X[104X19551956[33X[0;0YWe can easily find 2 normal subgroups of [10XG[110X:[133X19571958[4X[32X Example [32X[104X1959[4X[28X[128X[104X1960[4X[25Xgap>[125X [27XN1 := Subgroup(G,[a*b,a*c]);[127X[104X1961[4X[28X<rcwa group over GF(2)[x] with 2 generators>[128X[104X1962[4X[25Xgap>[125X [27XIsNormal(G,N1);[127X[104X1963[4X[28Xtrue[128X[104X1964[4X[25Xgap>[125X [27XIndex(G,N1);[127X[104X1965[4X[28X2[128X[104X1966[4X[25Xgap>[125X [27XG/N1;[127X[104X1967[4X[28XGroup([ (1,2), (1,2), (1,2) ])[128X[104X1968[4X[25Xgap>[125X [27XN2 := Subgroup(G,[a*b*c,a*c]);;[127X[104X1969[4X[25Xgap>[125X [27XIsNormal(G,N2);[127X[104X1970[4X[28Xtrue[128X[104X1971[4X[25Xgap>[125X [27XIsSubgroup(N1,N2);[127X[104X1972[4X[28Xfalse[128X[104X1973[4X[28X[128X[104X1974[4X[32X[104X19751976[33X[0;0YProducts of even numbers of generators of [10XG[110X may have infinite order. For1977example, we have[133X19781979[4X[32X Example [32X[104X1980[4X[28X[128X[104X1981[4X[25Xgap>[125X [27XOrder(a*b);[127X[104X1982[4X[28X2[128X[104X1983[4X[25Xgap>[125X [27XOrder(a*c);[127X[104X1984[4X[28Xinfinity[128X[104X1985[4X[25Xgap>[125X [27XOrder(b*c);[127X[104X1986[4X[28Xinfinity[128X[104X1987[4X[28X[128X[104X1988[4X[32X[104X19891990[33X[0;0YWe would like to have a look at orders of products of odd numbers of1991generators. In order to restrict our considerations to [21Xessentially different[121X1992products (as far as we can easily do this), we use the following auxiliary1993function:[133X19941995[4X[32X GAP code [32X[104X1996[4X[104X1997[4XNormedWords := function ( F, lng )[104X1998[4X[104X1999[4X local words, gens, tuples, w;[104X2000[4X[104X2001[4X gens := GeneratorsOfGroup(F);[104X2002[4X tuples := EnumeratorOfTuples([1..3],lng);[104X2003[4X words := [];[104X2004[4X[104X2005[4X for w in tuples do[104X2006[4X if (w[1] = 1 or not 1 in w)[104X2007[4X and PositionSublist(w,[1,1]) = fail[104X2008[4X and PositionSublist(w,[2,2]) = fail[104X2009[4X and PositionSublist(w,[3,3]) = fail[104X2010[4X and PositionSublist(w,[2,1]) = fail[104X2011[4X and w[1] < w[lng][104X2012[4X and w{[1,lng]} <> [1,2][104X2013[4X and (w{[1..3]} = [1,2,3] or PositionSublist(w,[1,2,3]) = fail)[104X2014[4X then Add(words,w); fi;[104X2015[4X od;[104X2016[4X[104X2017[4X words := List(words,word->Product(List(word,i->gens[i])));[104X2018[4X return words;[104X2019[4Xend;[104X2020[4X[104X2021[4X[32X[104X20222023[33X[0;0YNow let's compute the possible orders of products of 3, 5, 7 or 92024generators:[133X20252026[4X[32X Example [32X[104X2027[4X[28X[128X[104X2028[4X[25Xgap>[125X [27XF := FreeGroup("a","b","c");;[127X[104X2029[4X[25Xgap>[125X [27Xphi := EpimorphismByGenerators(F,G);[127X[104X2030[4X[28X[ a, b, c ] -> [128X[104X2031[4X[28X[ ClassTransposition(0,x,1,x), ClassTransposition(0,x^2+1,1,x^2+1), [128X[104X2032[4X[28X ClassTransposition(1,x,0,x^2+x) ][128X[104X2033[4X[25Xgap>[125X [27XB3 := NormedWords(F,3);[127X[104X2034[4X[28X[ a*b*c ][128X[104X2035[4X[25Xgap>[125X [27XB3 := List(B3,g->g^phi);[127X[104X2036[4X[28X[ <rcwa permutation of GF(2)[x] with modulus x^3+x> ][128X[104X2037[4X[25Xgap>[125X [27XList(B3,Order);[127X[104X2038[4X[28X[ 20 ][128X[104X2039[4X[25Xgap>[125X [27XB5 := NormedWords(F,5);[127X[104X2040[4X[28X[ a*b*c*a*c, a*b*c*b*c ][128X[104X2041[4X[25Xgap>[125X [27XB5 := List(B5,g->g^phi);[127X[104X2042[4X[28X[ <rcwa permutation of GF(2)[x] with modulus x^3+x>, [128X[104X2043[4X[28X <rcwa permutation of GF(2)[x] with modulus x^4+x^3+x^2+x> ][128X[104X2044[4X[25Xgap>[125X [27XList(B5,Order);[127X[104X2045[4X[28X[ 12, 12 ][128X[104X2046[4X[25Xgap>[125X [27XB7 := NormedWords(F,7);[127X[104X2047[4X[28X[ a*b*c*a*c*a*c, a*b*c*a*c*b*c, a*b*c*b*c*a*c, a*b*c*b*c*b*c ][128X[104X2048[4X[25Xgap>[125X [27XB7 := List(B7,g->g^phi);[127X[104X2049[4X[28X[ <rcwa permutation of GF(2)[x] with modulus x^4+x^3+x^2+x>, [128X[104X2050[4X[28X <rcwa permutation of GF(2)[x] with modulus x^5+x>, [128X[104X2051[4X[28X <rcwa permutation of GF(2)[x] with modulus x^4+x^3+x^2+x>, [128X[104X2052[4X[28X <rcwa permutation of GF(2)[x] with modulus x^5+x> ][128X[104X2053[4X[25Xgap>[125X [27XList(B7,Order);[127X[104X2054[4X[28X[ 12, 12, 12, 30 ][128X[104X2055[4X[25Xgap>[125X [27XB9 := NormedWords(F,9);[127X[104X2056[4X[28X[ a*b*c*a*b*c*a*b*c, a*b*c*a*c*a*c*a*c, a*b*c*a*c*a*c*b*c, a*b*c*a*c*b*c*a*c, [128X[104X2057[4X[28X a*b*c*a*c*b*c*b*c, a*b*c*b*c*a*c*a*c, a*b*c*b*c*a*c*b*c, a*b*c*b*c*b*c*a*c, [128X[104X2058[4X[28X a*b*c*b*c*b*c*b*c ][128X[104X2059[4X[25Xgap>[125X [27XB9 := List(B9,g->g^phi);;[127X[104X2060[4X[25Xgap>[125X [27XList(B9,Order);[127X[104X2061[4X[28X[ 20, 4, 30, 12, 42, 30, 4, 42, 12 ][128X[104X2062[4X[28X[128X[104X2063[4X[32X[104X20642065[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().OddNumberOfGens_FiniteOrder);[110X in2066order to assign the global variables defined in this section.[133X206720682069[1X7.12 [33X[0;0YAn abelian rcwa group over a polynomial ring[133X[101X20702071[33X[0;0YWe enter a 2-generated abelian wild rcwa group over GF(4)[[22Xx[122X]:[133X20722073[4X[32X Example [32X[104X2074[4X[28X[128X[104X2075[4X[25Xgap>[125X [27Xx := Indeterminate(GF(4),1);; SetName(x,"x");[127X[104X2076[4X[25Xgap>[125X [27XR := PolynomialRing(GF(4),1);[127X[104X2077[4X[28XGF(2^2)[x][128X[104X2078[4X[25Xgap>[125X [27Xe := One(GF(4));;[127X[104X2079[4X[25Xgap>[125X [27Xp := x^2 + x + e;; q := x^2 + e;;[127X[104X2080[4X[25Xgap>[125X [27Xr := x^2 + x + Z(4);; s := x^2 + x + Z(4)^2;;[127X[104X2081[4X[25Xgap>[125X [27Xcg := List( AllResidues(R,x^2), pol -> [ p, p * pol mod q, q ] );;[127X[104X2082[4X[25Xgap>[125X [27Xch := List( AllResidues(R,x^2), pol -> [ r, r * pol mod s, s ] );;[127X[104X2083[4X[25Xgap>[125X [27Xg := RcwaMapping( R, q, cg );[127X[104X2084[4X[28X<rcwa mapping of GF(2^2)[x] with modulus x^2+1>[128X[104X2085[4X[25Xgap>[125X [27Xh := RcwaMapping( R, s, ch );[127X[104X2086[4X[28X<rcwa mapping of GF(2^2)[x] with modulus x^2+x+Z(2^2)^2>[128X[104X2087[4X[25Xgap>[125X [27XList([g,h],IsTame);[127X[104X2088[4X[28X[ false, false ][128X[104X2089[4X[25Xgap>[125X [27XG := Group(g,h);[127X[104X2090[4X[28X<rcwa group over GF(2^2)[x] with 2 generators>[128X[104X2091[4X[25Xgap>[125X [27XIsAbelian(G);[127X[104X2092[4X[28Xtrue[128X[104X2093[4X[25Xgap>[125X [27XIsTame(G);[127X[104X2094[4X[28Xfalse[128X[104X2095[4X[28X[128X[104X2096[4X[32X[104X20972098[33X[0;0YIt is easy to see that all orbits on GF(4)[[22Xx[122X] under the action of [10XG[110X are2099finite.[133X21002101[33X[0;0YNow we compute the action of the group [10XG[110X on one of its orbits, and make some2102statistics of the orbits of [10XG[110X containing polynomials of degree less than 4:[133X21032104[4X[32X Example [32X[104X2105[4X[28X[128X[104X2106[4X[25Xgap>[125X [27Xorb := Orbit(G,x^5);[127X[104X2107[4X[28X[ x^5, x^5+x^4+x^2+1, x^5+x^3+x^2+Z(2^2)*x+Z(2)^0, x^5+x^3, [128X[104X2108[4X[28X x^5+x^4+x^3+x^2+Z(2^2)^2*x+Z(2^2)^2, x^5+x, x^5+x^4+x^3, [128X[104X2109[4X[28X x^5+x^2+Z(2^2)^2*x, x^5+x^4+x^2+x, x^5+x^3+x^2+Z(2^2)^2*x+Z(2)^0, [128X[104X2110[4X[28X x^5+x^4+Z(2^2)*x+Z(2^2), x^5+x^3+x, x^5+x^4+x^3+x^2+Z(2^2)*x+Z(2^2), [128X[104X2111[4X[28X x^5+x^4+x^3+x+1, x^5+x^2+Z(2^2)*x, x^5+x^4+Z(2^2)^2*x+Z(2^2)^2 ][128X[104X2112[4X[25Xgap>[125X [27XH := Action(G,orb);[127X[104X2113[4X[28XGroup([ (1,2,4,7,6,9,12,14)(3,5,8,11,10,13,15,16), [128X[104X2114[4X[28X (1,3,6,10)(2,5,9,13)(4,8,12,15)(7,11,14,16) ])[128X[104X2115[4X[25Xgap>[125X [27XIsAbelian(H); # check ...[127X[104X2116[4X[28Xtrue[128X[104X2117[4X[25Xgap>[125X [27XIsCyclic(H); # H, and therefore also G, is not cyclic[127X[104X2118[4X[28Xfalse[128X[104X2119[4X[25Xgap>[125X [27XExponent(H);[127X[104X2120[4X[28X8[128X[104X2121[4X[25Xgap>[125X [27XCollected(List(ShortOrbits(G,AllResidues(R,x^4),100),Length));[127X[104X2122[4X[28X[ [ 1, 4 ], [ 2, 6 ], [ 4, 12 ], [ 8, 24 ] ][128X[104X2123[4X[28X[128X[104X2124[4X[32X[104X21252126[33X[0;0YChanging the generators a little changes the structure of the group and its2127action on the underlying ring a lot:[133X21282129[4X[32X Example [32X[104X2130[4X[28X[128X[104X2131[4X[25Xgap>[125X [27Xcg[1][2] := cg[1][2] + (x^2 + e) * p * q;;[127X[104X2132[4X[25Xgap>[125X [27Xch[7][2] := ch[7][2] + x * r * s;;[127X[104X2133[4X[25Xgap>[125X [27Xg := RcwaMapping( R, q, cg );; h := RcwaMapping( R, s, ch );;[127X[104X2134[4X[25Xgap>[125X [27XG := Group(g,h);[127X[104X2135[4X[28X<rcwa group over GF(2^2)[x] with 2 generators>[128X[104X2136[4X[25Xgap>[125X [27XIsAbelian(G);[127X[104X2137[4X[28Xfalse[128X[104X2138[4X[25Xgap>[125X [27XSupport(G);[127X[104X2139[4X[28XGF(2^2)[x] \ [ 1, Z(2^2), Z(2^2)^2 ][128X[104X2140[4X[25Xgap>[125X [27Xorb := Orbit(G,Zero(R));;[127X[104X2141[4X[25Xgap>[125X [27XLength(orb);[127X[104X2142[4X[28X87[128X[104X2143[4X[25Xgap>[125X [27XStructureDescription(Action(G,orb));[127X[104X2144[4X[28X"A87"[128X[104X2145[4X[25Xgap>[125X [27XCollected(List(orb,DegreeOfLaurentPolynomial));[127X[104X2146[4X[28X[ [ -infinity, 1 ], [ 1, 2 ], [ 2, 4 ], [ 3, 16 ], [ 4, 64 ] ][128X[104X2147[4X[25Xgap>[125X [27XS := AllResidues(R,x^6);;[127X[104X2148[4X[25Xgap>[125X [27Xorbs := ShortOrbits(G,S,-1:finite);;[127X[104X2149[4X[25Xgap>[125X [27XList(orbs,Length);[127X[104X2150[4X[28X[ 87, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 20, 4, 12, 4, 20, 4, 4, 12, 8, 8, [128X[104X2151[4X[28X 48, 48, 16, 8, 8, 56, 8, 88, 8, 8, 8, 400, 16, 48, 16, 16, 16, 80, 16, [128X[104X2152[4X[28X 16, 16, 96, 32, 192, 32, 16, 16, 416, 16, 48, 16, 16, 880, 16, 16, 16, [128X[104X2153[4X[28X 16, 16, 16, 16, 16, 16, 848, 16, 16, 32, 16, 16, 16, 16, 16, 16, 16 ][128X[104X2154[4X[25Xgap>[125X [27XPosition(last,880);[127X[104X2155[4X[28X55[128X[104X2156[4X[25Xgap>[125X [27XSet(orbs[55],DegreeOfLaurentPolynomial); # all elm's have same degree[127X[104X2157[4X[28X[ 5 ][128X[104X2158[4X[25Xgap>[125X [27XH := Action(G,orbs[55]);;[127X[104X2159[4X[25Xgap>[125X [27XIsPrimitive(H,MovedPoints(H));[127X[104X2160[4X[28Xfalse[128X[104X2161[4X[25Xgap>[125X [27XList(Blocks(H,MovedPoints(H)),Length);[127X[104X2162[4X[28X[ 110, 110, 110, 110, 110, 110, 110, 110 ][128X[104X2163[4X[28X[128X[104X2164[4X[32X[104X21652166[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().AbelianGroupOverPolynomialRing);[110X in2167order to assign the global variables defined in this section.[133X216821692170[1X7.13 [33X[0;0YChecking for solvability[133X[101X21712172[33X[0;0YPresently there is no general method available for testing wild rcwa groups2173for solvability. However, sometimes the question for solvability can be2174answered anyway. In the example below, the idea is to find a subgroup [3XU[103X2175which acts on a finite set [3XS[103X of integers, and which induces on [3XS[103X a2176non-solvable finite permutation group:[133X21772178[4X[32X Example [32X[104X2179[4X[28X[128X[104X2180[4X[25Xgap>[125X [27Xa := RcwaMapping([[3,0,2],[3, 1,4],[3,0,2],[3,-1,4]]);;[127X[104X2181[4X[25Xgap>[125X [27Xb := RcwaMapping([[3,0,2],[3,13,4],[3,0,2],[3,-1,4]]);;[127X[104X2182[4X[25Xgap>[125X [27XG := Group(a,b);;[127X[104X2183[4X[25Xgap>[125X [27XShortOrbits(Group(Comm(a,b)),[-10..10],100);[127X[104X2184[4X[28X[ [ -10 ], [ -9 ], [ -30, -21, -14, -13, -11, -8 ], [ -7 ], [ -6 ], [128X[104X2185[4X[28X [ -12, -5, -4, -3, -2, 1 ], [ -1 ], [ 0 ], [ 2 ], [ 3 ], [128X[104X2186[4X[28X [ 4, 5, 6, 7, 10, 15 ], [ 8 ], [ 9 ] ][128X[104X2187[4X[25Xgap>[125X [27XS := [ 4, 5, 6, 7, 10, 15 ];;[127X[104X2188[4X[25Xgap>[125X [27XCycle(Comm(a,b),4);[127X[104X2189[4X[28X[ 4, 7, 10, 15, 5, 6 ][128X[104X2190[4X[25Xgap>[125X [27Xelm := RepresentativeAction(G,S,Permuted(S,(1,4)),OnTuples);[127X[104X2191[4X[28X<rcwa permutation of Z with modulus 81>[128X[104X2192[4X[25Xgap>[125X [27XList(S,n->n^elm);[127X[104X2193[4X[28X[ 7, 5, 6, 4, 10, 15 ][128X[104X2194[4X[25Xgap>[125X [27XU := Group(Comm(a,b),elm);[127X[104X2195[4X[28X<rcwa group over Z with 2 generators>[128X[104X2196[4X[25Xgap>[125X [27XAction(U,S);[127X[104X2197[4X[28XGroup([ (1,4,5,6,2,3), (1,4) ])[128X[104X2198[4X[25Xgap>[125X [27XIsNaturalSymmetricGroup(last);[127X[104X2199[4X[28Xtrue[128X[104X2200[4X[28X[128X[104X2201[4X[32X[104X22022203[33X[0;0YThus the subgroup [3XU[103X induces on [3XS[103X a natural symmetric group of degree 6.2204Therefore the group [3XG[103X is not solvable. We conclude this example by factoring2205the group element [3Xelm[103X into generators:[133X22062207[4X[32X Example [32X[104X2208[4X[28X[128X[104X2209[4X[25Xgap>[125X [27XF := FreeGroup("a","b");[127X[104X2210[4X[28X<free group on the generators [ a, b ]>[128X[104X2211[4X[25Xgap>[125X [27XRepresentativeActionPreImage(G,S,Permuted(S,(1,4)),OnTuples,F);[127X[104X2212[4X[28Xa^-2*b^-2*a*b*a^-1*b*a*b^-2*a[128X[104X2213[4X[25Xgap>[125X [27Xa^-2*b^-2*a*b*a^-1*b*a*b^-2*a = elm;[127X[104X2214[4X[28Xtrue[128X[104X2215[4X[28X[128X[104X2216[4X[32X[104X22172218[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().CheckingForSolvability);[110X in order to2219assign the global variables defined in this section.[133X222022212222[1X7.14 [33X[0;0YSome examples over (semi)localizations of the integers[133X[101X22232224[33X[0;0YWe start with something one can observe when trying to [21Xtransfer[121X an rcwa2225mapping from the ring of integers to one of its localizations:[133X22262227[4X[32X Example [32X[104X2228[4X[28X[128X[104X2229[4X[25Xgap>[125X [27Xa := RcwaMapping([[3,0,2],[3,1,4],[3,0,2],[3,-1,4]]);;[127X[104X2230[4X[25Xgap>[125X [27XIsBijective(a);[127X[104X2231[4X[28Xtrue[128X[104X2232[4X[25Xgap>[125X [27Xa2 := LocalizedRcwaMapping(a,2);[127X[104X2233[4X[28X<rcwa mapping of Z_( 2 ) with modulus 4>[128X[104X2234[4X[25Xgap>[125X [27XIsSurjective(a2); # As expected[127X[104X2235[4X[28Xtrue[128X[104X2236[4X[25Xgap>[125X [27XIsInjective(a2); # Why not??[127X[104X2237[4X[28Xfalse[128X[104X2238[4X[25Xgap>[125X [27X0^a2;[127X[104X2239[4X[28X0[128X[104X2240[4X[25Xgap>[125X [27X(1/3)^a2; # That's the reason![127X[104X2241[4X[28X0[128X[104X2242[4X[28X[128X[104X2243[4X[32X[104X22442245[33X[0;0YThe above can also be explained easily by pointing out that the modulus of2246the inverse of [10Xa[110X is 3, and that 3 is a unit of [22Xℤ_(2)[122X. Moving to [22Xℤ_(2,3)[122X2247solves this problem:[133X22482249[4X[32X Example [32X[104X2250[4X[28X[128X[104X2251[4X[25Xgap>[125X [27Xa23 := SemilocalizedRcwaMapping(a,[2,3]);[127X[104X2252[4X[28X<rcwa mapping of Z_( 2, 3 ) with modulus 4>[128X[104X2253[4X[25Xgap>[125X [27XIsBijective(a23);[127X[104X2254[4X[28Xtrue[128X[104X2255[4X[28X[128X[104X2256[4X[32X[104X22572258[33X[0;0YWe get additional finite cycles, e.g.:[133X22592260[4X[32X Example [32X[104X2261[4X[28X[128X[104X2262[4X[25Xgap>[125X [27XList(ShortOrbits(Group(a23),[0..50]/5,50),orb->Cycle(a23,orb[1]));[127X[104X2263[4X[28X[ [ 0 ], [ 1/5, 2/5, 3/5 ], [128X[104X2264[4X[28X [ 4/5, 6/5, 9/5, 8/5, 12/5, 18/5, 27/5, 19/5, 13/5, 11/5, 7/5 ], [128X[104X2265[4X[28X [ 1 ], [ 2, 3 ], [ 14/5, 21/5, 17/5 ], [128X[104X2266[4X[28X [ 16/5, 24/5, 36/5, 54/5, 81/5, 62/5, 93/5, 71/5, 52/5, 78/5, 117/5, [128X[104X2267[4X[28X 89/5, 68/5, 102/5, 153/5, 116/5, 174/5, 261/5, 197/5, 149/5, [128X[104X2268[4X[28X 113/5, 86/5, 129/5, 98/5, 147/5, 109/5, 83/5, 61/5, 47/5, 34/5, [128X[104X2269[4X[28X 51/5, 37/5, 29/5, 23/5 ], [ 4, 6, 9, 7, 5 ] ][128X[104X2270[4X[25Xgap>[125X [27XList(last,Length);[127X[104X2271[4X[28X[ 1, 3, 11, 1, 2, 3, 34, 5 ][128X[104X2272[4X[25Xgap>[125X [27XList(ShortOrbits(Group(a23),[0..50]/7,50),orb->Cycle(a23,orb[1]));[127X[104X2273[4X[28X[ [ 0 ], [ -1/7, 1/7 ], [ 2/7, 3/7, 4/7, 6/7, 9/7, 5/7 ], [ 1 ], [128X[104X2274[4X[28X [ 2, 3 ], [ 4, 6, 9, 7, 5 ] ][128X[104X2275[4X[25Xgap>[125X [27XList(last,Length);[127X[104X2276[4X[28X[ 1, 2, 6, 1, 2, 5 ][128X[104X2277[4X[28X[128X[104X2278[4X[32X[104X22792280[33X[0;0YHowever the structure of a group with prime set [22XP[122X remains invariant under2281the [21Xtransfer[121X from ℤ to [22Xℤ_(P)[122X.[133X22822283[33X[0;0Y[21XTransferring[121X a non-invertible rcwa mapping from the ring of integers to some2284of its (semi)localizations can also turn it into an invertible one:[133X22852286[4X[32X Example [32X[104X2287[4X[28X[128X[104X2288[4X[25Xgap>[125X [27Xv := RcwaMapping([[6,0,1],[1,-7,2],[6,0,1],[1,-1,1],[127X[104X2289[4X[25X>[125X [27X [6,0,1],[1, 1,2],[6,0,1],[1,-1,1]]);;[127X[104X2290[4X[25Xgap>[125X [27XDisplay(v);[127X[104X2291[4X[28X[128X[104X2292[4X[28XRcwa mapping of Z with modulus 8[128X[104X2293[4X[28X[128X[104X2294[4X[28X /[128X[104X2295[4X[28X | 6n if n in 0(2)[128X[104X2296[4X[28X | n-1 if n in 3(4)[128X[104X2297[4X[28X n |-> < (n-7)/2 if n in 1(8)[128X[104X2298[4X[28X | (n+1)/2 if n in 5(8)[128X[104X2299[4X[28X |[128X[104X2300[4X[28X \[128X[104X2301[4X[28X[128X[104X2302[4X[25Xgap>[125X [27XIsInjective(v);[127X[104X2303[4X[28Xtrue[128X[104X2304[4X[25Xgap>[125X [27XIsSurjective(v);[127X[104X2305[4X[28Xfalse[128X[104X2306[4X[25Xgap>[125X [27XImage(v);[127X[104X2307[4X[28XZ \ 4(12) U 8(12)[128X[104X2308[4X[25Xgap>[125X [27XDifference(Integers,last);[127X[104X2309[4X[28X4(12) U 8(12)[128X[104X2310[4X[25Xgap>[125X [27Xv2 := LocalizedRcwaMapping(v,2);[127X[104X2311[4X[28X<rcwa mapping of Z_( 2 ) with modulus 8>[128X[104X2312[4X[25Xgap>[125X [27XIsBijective(v2);[127X[104X2313[4X[28Xtrue[128X[104X2314[4X[25Xgap>[125X [27XDisplay(v2^-1);[127X[104X2315[4X[28X[128X[104X2316[4X[28XRcwa permutation of Z_( 2 ) with modulus 4[128X[104X2317[4X[28X[128X[104X2318[4X[28X /[128X[104X2319[4X[28X | 1/3 n / 2 if n in 0(4)[128X[104X2320[4X[28X | 2 n + 7 if n in 1(4)[128X[104X2321[4X[28X n |-> < n + 1 if n in 2(4)[128X[104X2322[4X[28X | 2 n - 1 if n in 3(4)[128X[104X2323[4X[28X |[128X[104X2324[4X[28X \[128X[104X2325[4X[28X[128X[104X2326[4X[25Xgap>[125X [27XS := ResidueClass(Z_pi(2),2,0);; l := [S];;[127X[104X2327[4X[25Xgap>[125X [27Xfor i in [1..10] do Add(l,l[Length(l)]^v2); od;[127X[104X2328[4X[25Xgap>[125X [27Xl; # Visibly v2 is wild ...[127X[104X2329[4X[28X[ 0(2), 0(4), 0(8), 0(16), 0(32), 0(64), 0(128), 0(256), 0(512),[128X[104X2330[4X[28X 0(1024), 0(2048) ][128X[104X2331[4X[25Xgap>[125X [27Xw2 := RcwaMapping(Z_pi(2),[[1,0,2],[2,-1,1],[1,1,1],[2,-1,1]]);;[127X[104X2332[4X[25Xgap>[125X [27Xv2w2 := Comm(v2,w2);; v2w2^-1;;[127X[104X2333[4X[25Xgap>[125X [27XDisplay(v2w2);[127X[104X2334[4X[28X[128X[104X2335[4X[28XRcwa permutation of Z_( 2 ) with modulus 8[128X[104X2336[4X[28X[128X[104X2337[4X[28X /[128X[104X2338[4X[28X | 3 n if n in 2(4)[128X[104X2339[4X[28X | n + 4 if n in 1(8)[128X[104X2340[4X[28X n |-> < n - 4 if n in 5(8)[128X[104X2341[4X[28X | n if n in 0(4) U 3(4)[128X[104X2342[4X[28X |[128X[104X2343[4X[28X \[128X[104X2344[4X[28X[128X[104X2345[4X[32X[104X23462347[33X[0;0YAgain, viewed as an rcwa mapping of the integers the commutator given at the2348end of the example would not be surjective.[133X23492350[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().Semilocals);[110X in order to assign the2351global variables defined in this section.[133X235223532354[1X7.15 [33X[0;0YTwisting 257-cycles into an rcwa mapping with modulus 32[133X[101X23552356[33X[0;0YWe define an rcwa mapping [3Xx[103X of order 257 with modulus 32. The easiest way to2357construct such a mapping is to prescribe a transition graph and then to2358assign suitable affine mappings to its vertices.[133X23592360[4X[32X Example [32X[104X2361[4X[28X[128X[104X2362[4X[25Xgap>[125X [27Xx_257 := RcwaMapping([127X[104X2363[4X[25X>[125X [27X [[ 16, 2, 1], [ 16, 18, 1], [ 1, 16, 1], [ 16, 18, 1],[127X[104X2364[4X[25X>[125X [27X [ 1, 16, 1], [ 16, 18, 1], [ 1, 16, 1], [ 16, 18, 1],[127X[104X2365[4X[25X>[125X [27X [ 1, 16, 1], [ 16, 18, 1], [ 1, 16, 1], [ 16, 18, 1],[127X[104X2366[4X[25X>[125X [27X [ 1, 16, 1], [ 16, 18, 1], [ 1, 16, 1], [ 16, 18, 1],[127X[104X2367[4X[25X>[125X [27X [ 1, 0, 16], [ 16, 18, 1], [ 1,-14, 1], [ 16, 18, 1],[127X[104X2368[4X[25X>[125X [27X [ 1,-14, 1], [ 16, 18, 1], [ 1,-14, 1], [ 16, 18, 1],[127X[104X2369[4X[25X>[125X [27X [ 1,-14, 1], [ 16, 18, 1], [ 1,-14, 1], [ 16, 18, 1],[127X[104X2370[4X[25X>[125X [27X [ 1,-14, 1], [ 16, 18, 1], [ 1,-14, 1], [ 1,-31, 1]]);;[127X[104X2371[4X[25Xgap>[125X [27XOrder(x_257);; Display(x_257:CycleNotation:=false);[127X[104X2372[4X[28X[128X[104X2373[4X[28XRcwa permutation of Z with modulus 32, of order 257[128X[104X2374[4X[28X[128X[104X2375[4X[28X /[128X[104X2376[4X[28X | 16n+18 if n in 1(2) \ 31(32)[128X[104X2377[4X[28X | n+16 if n in 2(32) U 4(32) U 6(32) U 8(32) U 10(32) U [128X[104X2378[4X[28X | 12(32) U 14(32)[128X[104X2379[4X[28X | n-14 if n in 18(32) U 20(32) U 22(32) U 24(32) U 26(32) U [128X[104X2380[4X[28X n |-> < 28(32) U 30(32)[128X[104X2381[4X[28X | 16n+2 if n in 0(32)[128X[104X2382[4X[28X | n/16 if n in 16(32)[128X[104X2383[4X[28X | n-31 if n in 31(32)[128X[104X2384[4X[28X |[128X[104X2385[4X[28X \[128X[104X2386[4X[28X[128X[104X2387[4X[25Xgap>[125X [27XDisplay(x_257);[127X[104X2388[4X[28X[128X[104X2389[4X[28XRcwa permutation of Z with modulus 32, of order 257[128X[104X2390[4X[28X[128X[104X2391[4X[28X( 0(32), 2(512), 18(512), 4(512), 20(512), 6(512), 22(512), [128X[104X2392[4X[28X 8(512), 24(512), 10(512), 26(512), 12(512), 28(512), 14(512), [128X[104X2393[4X[28X 30(512), 16(512), 1(32), 34(512), 50(512), 36(512), 52(512), [128X[104X2394[4X[28X 38(512), 54(512), 40(512), 56(512), 42(512), 58(512), 44(512), [128X[104X2395[4X[28X 60(512), 46(512), 62(512), 48(512), 3(32), 66(512), 82(512), [128X[104X2396[4X[28X 68(512), 84(512), 70(512), 86(512), 72(512), 88(512), 74(512), [128X[104X2397[4X[28X 90(512), 76(512), 92(512), 78(512), 94(512), 80(512), 5(32), [128X[104X2398[4X[28X 98(512), 114(512), 100(512), 116(512), 102(512), 118(512), [128X[104X2399[4X[28X 104(512), 120(512), 106(512), 122(512), 108(512), 124(512), [128X[104X2400[4X[28X 110(512), 126(512), 112(512), 7(32), 130(512), 146(512), [128X[104X2401[4X[28X 132(512), 148(512), 134(512), 150(512), 136(512), 152(512), [128X[104X2402[4X[28X 138(512), 154(512), 140(512), 156(512), 142(512), 158(512), [128X[104X2403[4X[28X 144(512), 9(32), 162(512), 178(512), 164(512), 180(512), [128X[104X2404[4X[28X 166(512), 182(512), 168(512), 184(512), 170(512), 186(512), [128X[104X2405[4X[28X 172(512), 188(512), 174(512), 190(512), 176(512), 11(32), [128X[104X2406[4X[28X 194(512), 210(512), 196(512), 212(512), 198(512), 214(512), [128X[104X2407[4X[28X 200(512), 216(512), 202(512), 218(512), 204(512), 220(512), [128X[104X2408[4X[28X 206(512), 222(512), 208(512), 13(32), 226(512), 242(512), [128X[104X2409[4X[28X 228(512), 244(512), 230(512), 246(512), 232(512), 248(512), [128X[104X2410[4X[28X 234(512), 250(512), 236(512), 252(512), 238(512), 254(512), [128X[104X2411[4X[28X 240(512), 15(32), 258(512), 274(512), 260(512), 276(512), [128X[104X2412[4X[28X 262(512), 278(512), 264(512), 280(512), 266(512), 282(512), [128X[104X2413[4X[28X 268(512), 284(512), 270(512), 286(512), 272(512), 17(32), [128X[104X2414[4X[28X 290(512), 306(512), 292(512), 308(512), 294(512), 310(512), [128X[104X2415[4X[28X 296(512), 312(512), 298(512), 314(512), 300(512), 316(512), [128X[104X2416[4X[28X 302(512), 318(512), 304(512), 19(32), 322(512), 338(512), [128X[104X2417[4X[28X 324(512), 340(512), 326(512), 342(512), 328(512), 344(512), [128X[104X2418[4X[28X 330(512), 346(512), 332(512), 348(512), 334(512), 350(512), [128X[104X2419[4X[28X 336(512), 21(32), 354(512), 370(512), 356(512), 372(512), [128X[104X2420[4X[28X 358(512), 374(512), 360(512), 376(512), 362(512), 378(512), [128X[104X2421[4X[28X 364(512), 380(512), 366(512), 382(512), 368(512), 23(32), [128X[104X2422[4X[28X 386(512), 402(512), 388(512), 404(512), 390(512), 406(512), [128X[104X2423[4X[28X 392(512), 408(512), 394(512), 410(512), 396(512), 412(512), [128X[104X2424[4X[28X 398(512), 414(512), 400(512), 25(32), 418(512), 434(512), [128X[104X2425[4X[28X 420(512), 436(512), 422(512), 438(512), 424(512), 440(512), [128X[104X2426[4X[28X 426(512), 442(512), 428(512), 444(512), 430(512), 446(512), [128X[104X2427[4X[28X 432(512), 27(32), 450(512), 466(512), 452(512), 468(512), [128X[104X2428[4X[28X 454(512), 470(512), 456(512), 472(512), 458(512), 474(512), [128X[104X2429[4X[28X 460(512), 476(512), 462(512), 478(512), 464(512), 29(32), [128X[104X2430[4X[28X 482(512), 498(512), 484(512), 500(512), 486(512), 502(512), [128X[104X2431[4X[28X 488(512), 504(512), 490(512), 506(512), 492(512), 508(512), [128X[104X2432[4X[28X 494(512), 510(512), 496(512), 31(32) )[128X[104X2433[4X[28X[128X[104X2434[4X[25Xgap>[125X [27XLength(Cycle(x_257,0));[127X[104X2435[4X[28X257[128X[104X2436[4X[28X[128X[104X2437[4X[32X[104X24382439[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().LongCyclesOfPrimeLength);[110X in order to2440assign the global variables defined in this section.[133X244124422443[1X7.16 [33X[0;0YThe behaviour of the moduli of powers[133X[101X24442445[33X[0;0YWe give some examples of how the series of the moduli of powers of a given2446rcwa mapping of the integers can look like.[133X24472448[4X[32X Example [32X[104X2449[4X[28X[128X[104X2450[4X[25Xgap>[125X [27Xa := RcwaMapping([[3,0,2],[3, 1,4],[3,0,2],[3,-1,4]]);;[127X[104X2451[4X[25Xgap>[125X [27XList([0..4],i->Modulus(a^i));[127X[104X2452[4X[28X[ 1, 4, 16, 64, 256 ][128X[104X2453[4X[25Xgap>[125X [27Xe1 := RcwaMapping([[1,4,1],[2,0,1],[1,0,2],[2,0,1]]);;[127X[104X2454[4X[25Xgap>[125X [27Xe2 := RcwaMapping([[1,4,1],[2,0,1],[1,0,2],[1,0,1],[127X[104X2455[4X[25X>[125X [27X [1,4,1],[2,0,1],[1,0,1],[1,0,1]]);;[127X[104X2456[4X[25Xgap>[125X [27XList([e1,e2],Order);[127X[104X2457[4X[28X[ infinity, infinity ][128X[104X2458[4X[25Xgap>[125X [27XList([1..20],i->Modulus(e1^i));[127X[104X2459[4X[28X[ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ][128X[104X2460[4X[25Xgap>[125X [27XList([1..20],i->Modulus(e2^i));[127X[104X2461[4X[28X[ 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4 ][128X[104X2462[4X[25Xgap>[125X [27XDisplay(e2);[127X[104X2463[4X[28X[128X[104X2464[4X[28XRcwa permutation of Z with modulus 8, of order infinity[128X[104X2465[4X[28X[128X[104X2466[4X[28X /[128X[104X2467[4X[28X | n+4 if n in 0(4)[128X[104X2468[4X[28X | 2n if n in 1(4)[128X[104X2469[4X[28X n |-> < n/2 if n in 2(8)[128X[104X2470[4X[28X | n if n in 3(4) U 6(8)[128X[104X2471[4X[28X |[128X[104X2472[4X[28X \[128X[104X2473[4X[28X[128X[104X2474[4X[25Xgap>[125X [27Xe2^2 = Restriction(RcwaMapping([[1,2,1]]),RcwaMapping([[4,0,1]]));[127X[104X2475[4X[28Xtrue[128X[104X2476[4X[25Xgap>[125X [27Xg:=RcwaMapping([[2,2,1],[1, 4,1],[1,0,2],[2,2,1],[1,-4,1],[1,-2,1]]);;[127X[104X2477[4X[25Xgap>[125X [27Xh:=RcwaMapping([[2,2,1],[1,-2,1],[1,0,2],[2,2,1],[1,-1,1],[1, 1,1]]);;[127X[104X2478[4X[25Xgap>[125X [27XList([0..7],i->Modulus(g^i));[127X[104X2479[4X[28X[ 1, 6, 12, 12, 12, 12, 6, 1 ][128X[104X2480[4X[25Xgap>[125X [27XList([1..18],i->Modulus((g^3*h)^i));[127X[104X2481[4X[28X[ 12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6 ][128X[104X2482[4X[25Xgap>[125X [27Xu := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;[127X[104X2483[4X[25Xgap>[125X [27XList([0..3],i->Modulus(u^i));[127X[104X2484[4X[28X[ 1, 5, 25, 125 ][128X[104X2485[4X[25Xgap>[125X [27Xv6 := RcwaMapping([[-1,2,1],[1,-1,1],[1,-1,1]]);;[127X[104X2486[4X[25Xgap>[125X [27XList([0..6],i->Modulus(v6^i));[127X[104X2487[4X[28X[ 1, 3, 3, 3, 3, 3, 1 ][128X[104X2488[4X[25Xgap>[125X [27Xw8 := RcwaMapping([[-1,3,1],[1,-1,1],[1,-1,1],[1,-1,1]]);;[127X[104X2489[4X[25Xgap>[125X [27XList([0..8],i->Modulus(w8^i));[127X[104X2490[4X[28X[ 1, 4, 4, 4, 4, 4, 4, 4, 1 ][128X[104X2491[4X[25Xgap>[125X [27Xz := RcwaMapping([[2,1,1],[1, 1,1],[2,-1,1],[2, -2,1],[127X[104X2492[4X[25X>[125X [27X [1,6,2],[1, 1,1],[1,-6,2],[2, 5,1],[127X[104X2493[4X[25X>[125X [27X [1,6,2],[1, 1,1],[1, 1,1],[2, -5,1],[127X[104X2494[4X[25X>[125X [27X [1,0,1],[1,-4,1],[1, 0,1],[2,-10,1]]);;[127X[104X2495[4X[25Xgap>[125X [27XIsBijective(z);[127X[104X2496[4X[28Xtrue[128X[104X2497[4X[25Xgap>[125X [27XList([0..25],i->Modulus(z^i));[127X[104X2498[4X[28X[ 1, 16, 32, 64, 64, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, [128X[104X2499[4X[28X 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024 ][128X[104X2500[4X[28X[128X[104X2501[4X[32X[104X25022503[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().ModuliOfPowers);[110X in order to assign2504the global variables defined in this section.[133X250525062507[1X7.17 [33X[0;0YImages and preimages under the Collatz mapping[133X[101X25082509[33X[0;0YWe have a look at the images of the residue class 1(2) under powers of the2510Collatz mapping.[133X25112512[4X[32X Example [32X[104X2513[4X[28X[128X[104X2514[4X[25Xgap>[125X [27XT := RcwaMapping([[1,0,2],[3,1,2]]);;[127X[104X2515[4X[25Xgap>[125X [27XS0 := ResidueClass(Integers,2,1);;[127X[104X2516[4X[25Xgap>[125X [27XS1 := S0^T;[127X[104X2517[4X[28X2(3)[128X[104X2518[4X[25Xgap>[125X [27XS2 := S1^T;[127X[104X2519[4X[28X1(3) U 8(9)[128X[104X2520[4X[25Xgap>[125X [27XS3 := S2^T;[127X[104X2521[4X[28X2(3) U 4(9)[128X[104X2522[4X[25Xgap>[125X [27XS4 := S3^T;[127X[104X2523[4X[28XZ \ 0(3) U 5(9)[128X[104X2524[4X[25Xgap>[125X [27XS5 := S4^T;[127X[104X2525[4X[28XZ \ 0(3) U 7(9)[128X[104X2526[4X[25Xgap>[125X [27XS6 := S5^T;[127X[104X2527[4X[28XZ \ 0(3)[128X[104X2528[4X[25Xgap>[125X [27XS7 := S6^T;[127X[104X2529[4X[28XZ \ 0(3)[128X[104X2530[4X[28X[128X[104X2531[4X[32X[104X25322533[33X[0;0YThus the image gets stable after applying the mapping [22XT[122X for the 6th time.2534Hence [22XT^6[122X maps the residue class 1(2) surjectively onto the union of the2535residue classes 1(3) and 2(3), which [22XT[122X stabilizes setwise. Now we would like2536to determine the preimages of 1(3) and 2(3) in 1(2) under [22XT^6[122X. The residue2537class 1(2) has to be the disjoint union of these sets.[133X25382539[4X[32X Example [32X[104X2540[4X[28X[128X[104X2541[4X[25Xgap>[125X [27XU := Intersection(PreImage(T^6,ResidueClass(Integers,3,1)),S0);[127X[104X2542[4X[28X<union of 11 residue classes (mod 64)>[128X[104X2543[4X[25Xgap>[125X [27XV := Intersection(PreImage(T^6,ResidueClass(Integers,3,2)),S0);[127X[104X2544[4X[28X<union of 21 residue classes (mod 64)>[128X[104X2545[4X[25Xgap>[125X [27XAsUnionOfFewClasses(U);[127X[104X2546[4X[28X[ 1(64), 5(64), 7(64), 9(64), 21(64), 23(64), 29(64), 31(64), 49(64), [128X[104X2547[4X[28X 51(64), 59(64) ][128X[104X2548[4X[25Xgap>[125X [27XAsUnionOfFewClasses(V);[127X[104X2549[4X[28X[ 3(32), 11(32), 13(32), 15(32), 25(32), 17(64), 19(64), 27(64), 33(64), [128X[104X2550[4X[28X 37(64), 39(64), 41(64), 53(64), 55(64), 61(64), 63(64) ][128X[104X2551[4X[25Xgap>[125X [27XUnion(U,V) = S0 and Intersection(U,V) = []; # consistency check[127X[104X2552[4X[28Xtrue[128X[104X2553[4X[28X[128X[104X2554[4X[32X[104X25552556[33X[0;0YThe images of the residue class 0(3) under powers of [22XT[122X look as follows:[133X25572558[4X[32X Example [32X[104X2559[4X[28X[128X[104X2560[4X[25Xgap>[125X [27XS0 := ResidueClass(Integers,3,0);[127X[104X2561[4X[28X0(3)[128X[104X2562[4X[25Xgap>[125X [27XS1 := S0^T;[127X[104X2563[4X[28X0(3) U 5(9)[128X[104X2564[4X[25Xgap>[125X [27XS2 := S1^T;[127X[104X2565[4X[28X0(3) U 5(9) U 7(9) U 8(27)[128X[104X2566[4X[25Xgap>[125X [27XS3 := S2^T;[127X[104X2567[4X[28X<union of 20 residue classes (mod 27) (6 classes)>[128X[104X2568[4X[25Xgap>[125X [27XS4 := S3^T;[127X[104X2569[4X[28X<union of 73 residue classes (mod 81)>[128X[104X2570[4X[25Xgap>[125X [27XS5 := S4^T;[127X[104X2571[4X[28XZ \ 10(81) U 37(81)[128X[104X2572[4X[25Xgap>[125X [27XS6 := S5^T;[127X[104X2573[4X[28XIntegers[128X[104X2574[4X[25Xgap>[125X [27XS7 := S6^T;[127X[104X2575[4X[28XIntegers[128X[104X2576[4X[28X[128X[104X2577[4X[32X[104X25782579[33X[0;0YThus every integer is the image of a multiple of 3 under [22XT^6[122X. This means2580that it would be sufficient to prove the [22X3n+1[122X conjecture for multiples of 3.2581We can obtain the corresponding result for multiples of 5 as follows:[133X25822583[4X[32X Example [32X[104X2584[4X[28X[128X[104X2585[4X[25Xgap>[125X [27XS := [ResidueClass(Integers,5,0)];[127X[104X2586[4X[28X[ 0(5) ][128X[104X2587[4X[25Xgap>[125X [27Xfor i in [1..12] do Add(S,S[i]^T); od;[127X[104X2588[4X[25Xgap>[125X [27Xfor s in S do View(s); Print("\n"); od;[127X[104X2589[4X[28X0(5)[128X[104X2590[4X[28X0(5) U 8(15)[128X[104X2591[4X[28X0(5) U 4(15) U 8(15)[128X[104X2592[4X[28X0(5) U 2(15) U 4(15) U 8(15) U 29(45)[128X[104X2593[4X[28X<union of 73 residue classes (mod 135)>[128X[104X2594[4X[28X<union of 244 residue classes (mod 405)>[128X[104X2595[4X[28X<union of 784 residue classes (mod 1215)>[128X[104X2596[4X[28X<union of 824 residue classes (mod 1215)>[128X[104X2597[4X[28X<union of 2593 residue classes (mod 3645)>[128X[104X2598[4X[28X<union of 2647 residue classes (mod 3645)>[128X[104X2599[4X[28X<union of 2665 residue classes (mod 3645)>[128X[104X2600[4X[28X<union of 2671 residue classes (mod 3645)>[128X[104X2601[4X[28X1(3) U 2(3) U 0(15)[128X[104X2602[4X[25Xgap>[125X [27XUnion(S[13],ResidueClass(Integers,3,0));[127X[104X2603[4X[28XIntegers[128X[104X2604[4X[25Xgap>[125X [27X List(S,Si->Float(Density(Si)));[127X[104X2605[4X[28X[ 0.2, 0.266667, 0.333333, 0.422222, 0.540741, 0.602469, 0.645267, [128X[104X2606[4X[28X 0.678189, 0.711385, 0.7262, 0.731139, 0.732785, 0.733333 ][128X[104X2607[4X[28X[128X[104X2608[4X[32X[104X26092610[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().CollatzMapping);[110X in order to assign2611the global variables defined in this section.[133X261226132614[1X7.18 [33X[0;0YAn extension of the Collatz mapping T to a permutation of [22Xℤ^2[122X[101X[1X[133X[101X26152616[33X[0;0YThe Collatz mapping [22XT[122X is surjective, but not injective:[133X26172618[4X[32X Example [32X[104X2619[4X[28X[128X[104X2620[4X[25Xgap>[125X [27XT := RcwaMapping([[1,0,2],[3,1,2]]);;[127X[104X2621[4X[25Xgap>[125X [27XDisplay(T);[127X[104X2622[4X[28X[128X[104X2623[4X[28XRcwa mapping of Z with modulus 2[128X[104X2624[4X[28X[128X[104X2625[4X[28X /[128X[104X2626[4X[28X | n/2 if n in 0(2)[128X[104X2627[4X[28X n |-> < (3n+1)/2 if n in 1(2)[128X[104X2628[4X[28X |[128X[104X2629[4X[28X \[128X[104X2630[4X[28X[128X[104X2631[4X[25Xgap>[125X [27XIsInjective(T); IsSurjective(T);[127X[104X2632[4X[28Xfalse[128X[104X2633[4X[28Xtrue[128X[104X2634[4X[25Xgap>[125X [27XPreImages(T,2);[127X[104X2635[4X[28X[ 1, 4 ][128X[104X2636[4X[28X[128X[104X2637[4X[32X[104X26382639[33X[0;0YOften, dealing with rcwa permutations is easier. Indeed the Collatz2640mapping [22XT[122X can be extended in natural ways to permutations of [22Xℤ^2[122X. For2641example, the following permutation acts on the second coordinate just2642like [22XT[122X:[133X26432644[4X[32X Example [32X[104X2645[4X[28X[128X[104X2646[4X[25Xgap>[125X [27XSigma_T := RcwaMapping( Integers^2, [[1,0],[0,6]],[127X[104X2647[4X[25X>[125X [27X [[[[2,0],[0,1]],[0,0],2],[127X[104X2648[4X[25X>[125X [27X [[[4,0],[0,3]],[2,1],2],[127X[104X2649[4X[25X>[125X [27X [[[2,0],[0,1]],[0,0],2],[127X[104X2650[4X[25X>[125X [27X [[[4,0],[0,3]],[2,1],2],[127X[104X2651[4X[25X>[125X [27X [[[4,0],[0,1]],[0,0],2],[127X[104X2652[4X[25X>[125X [27X [[[4,0],[0,3]],[2,1],2]] );[127X[104X2653[4X[28X<rcwa mapping of Z^2 with modulus (1,0)Z+(0,6)Z>[128X[104X2654[4X[25Xgap>[125X [27XIsBijective(Sigma_T);[127X[104X2655[4X[28Xtrue[128X[104X2656[4X[25Xgap>[125X [27XDisplay(Sigma_T);[127X[104X2657[4X[28X[128X[104X2658[4X[28XRcwa permutation of Z^2 with modulus (1,0)Z+(0,6)Z[128X[104X2659[4X[28X[128X[104X2660[4X[28X /[128X[104X2661[4X[28X | (2m+1,(3n+1)/2) if (m,n) in (0,1)+(1,0)Z+(0,2)Z[128X[104X2662[4X[28X | (m,n/2) if (m,n) in (0,0)+(1,0)Z+(0,6)Z U [128X[104X2663[4X[28X (m,n) |-> < (0,2)+(1,0)Z+(0,6)Z[128X[104X2664[4X[28X | (2m,n/2) if (m,n) in (0,4)+(1,0)Z+(0,6)Z[128X[104X2665[4X[28X |[128X[104X2666[4X[28X \[128X[104X2667[4X[28X[128X[104X2668[4X[25Xgap>[125X [27XDisplay(Sigma_T^-1);[127X[104X2669[4X[28X[128X[104X2670[4X[28XRcwa permutation of Z^2 with modulus (2,0)Z+(0,3)Z[128X[104X2671[4X[28X[128X[104X2672[4X[28X /[128X[104X2673[4X[28X | (m,2n) if (m,n) in (0,0)+(1,0)Z+(0,3)Z U [128X[104X2674[4X[28X | (0,1)+(1,0)Z+(0,3)Z[128X[104X2675[4X[28X (m,n) |-> < (m/2,2n) if (m,n) in (0,2)+(2,0)Z+(0,3)Z[128X[104X2676[4X[28X | ((m-1)/2,(2n-1)/3) if (m,n) in (1,2)+(2,0)Z+(0,3)Z[128X[104X2677[4X[28X |[128X[104X2678[4X[28X \[128X[104X2679[4X[28X[128X[104X2680[4X[32X[104X26812682[33X[0;0YNow, the [22X3n+1[122X conjecture is equivalent to the assertion that the line [22Xn=4[122X is2683a set of representatives for the cycles of [10XSigma_T[110X on the half plane [22Xn > 0[122X.[133X26842685[33X[0;0YLet's have a look at a part of a cycle of [10XSigma_T[110X:[133X26862687[4X[32X Example [32X[104X2688[4X[28X[128X[104X2689[4X[25Xgap>[125X [27XTrajectory(Sigma_T,[0,27],75);[127X[104X2690[4X[28X[ [ 0, 27 ], [ 1, 41 ], [ 3, 62 ], [ 3, 31 ], [ 7, 47 ], [ 15, 71 ], [128X[104X2691[4X[28X [ 31, 107 ], [ 63, 161 ], [ 127, 242 ], [ 127, 121 ], [ 255, 182 ], [128X[104X2692[4X[28X [ 255, 91 ], [ 511, 137 ], [ 1023, 206 ], [ 1023, 103 ], [128X[104X2693[4X[28X [ 2047, 155 ], [ 4095, 233 ], [ 8191, 350 ], [ 8191, 175 ], [128X[104X2694[4X[28X [ 16383, 263 ], [ 32767, 395 ], [ 65535, 593 ], [ 131071, 890 ], [128X[104X2695[4X[28X [ 131071, 445 ], [ 262143, 668 ], [ 262143, 334 ], [ 524286, 167 ], [128X[104X2696[4X[28X [ 1048573, 251 ], [ 2097147, 377 ], [ 4194295, 566 ], [ 4194295, 283 ], [128X[104X2697[4X[28X [ 8388591, 425 ], [ 16777183, 638 ], [ 16777183, 319 ], [128X[104X2698[4X[28X [ 33554367, 479 ], [ 67108735, 719 ], [ 134217471, 1079 ], [128X[104X2699[4X[28X [ 268434943, 1619 ], [ 536869887, 2429 ], [ 1073739775, 3644 ], [128X[104X2700[4X[28X [ 1073739775, 1822 ], [ 2147479550, 911 ], [ 4294959101, 1367 ], [128X[104X2701[4X[28X [ 8589918203, 2051 ], [ 17179836407, 3077 ], [ 34359672815, 4616 ], [128X[104X2702[4X[28X [ 34359672815, 2308 ], [ 68719345630, 1154 ], [ 68719345630, 577 ], [128X[104X2703[4X[28X [ 137438691261, 866 ], [ 137438691261, 433 ], [ 274877382523, 650 ], [128X[104X2704[4X[28X [ 274877382523, 325 ], [ 549754765047, 488 ], [ 549754765047, 244 ], [128X[104X2705[4X[28X [ 1099509530094, 122 ], [ 1099509530094, 61 ], [ 2199019060189, 92 ], [128X[104X2706[4X[28X [ 2199019060189, 46 ], [ 4398038120378, 23 ], [ 8796076240757, 35 ], [128X[104X2707[4X[28X [ 17592152481515, 53 ], [ 35184304963031, 80 ], [ 35184304963031, 40 ], [128X[104X2708[4X[28X [ 70368609926062, 20 ], [ 70368609926062, 10 ], [ 140737219852124, 5 ], [128X[104X2709[4X[28X [ 281474439704249, 8 ], [ 281474439704249, 4 ], [ 562948879408498, 2 ], [128X[104X2710[4X[28X [ 562948879408498, 1 ], [ 1125897758816997, 2 ], [128X[104X2711[4X[28X [ 1125897758816997, 1 ], [ 2251795517633995, 2 ], [128X[104X2712[4X[28X [ 2251795517633995, 1 ] ][128X[104X2713[4X[25Xgap>[125X [27XTrajectory(Sigma_T^-1,[0,27],20);[127X[104X2714[4X[28X[ [ 0, 27 ], [ 0, 54 ], [ 0, 108 ], [ 0, 216 ], [ 0, 432 ], [ 0, 864 ], [128X[104X2715[4X[28X [ 0, 1728 ], [ 0, 3456 ], [ 0, 6912 ], [ 0, 13824 ], [ 0, 27648 ], [128X[104X2716[4X[28X [ 0, 55296 ], [ 0, 110592 ], [ 0, 221184 ], [ 0, 442368 ], [128X[104X2717[4X[28X [ 0, 884736 ], [ 0, 1769472 ], [ 0, 3538944 ], [ 0, 7077888 ], [128X[104X2718[4X[28X [ 0, 14155776 ] ][128X[104X2719[4X[28X[128X[104X2720[4X[32X[104X27212722[33X[0;0YWhile it seems easy to make conjectures regarding the behaviour of cycles of2723[10XSigma_T[110X, obtaining results on it is apparently hard. We observe however that2724[10XSigma_T[110X can be written as a product of two permutations of [22Xℤ^2[122X whose cycles2725can be described easily:[133X27262727[4X[32X Example [32X[104X2728[4X[28X[128X[104X2729[4X[25Xgap>[125X [27Xa := RcwaMapping(Integers^2,[[1,0],[0,2]],[[[[4,0],[0,1]],[0, 0],2],[127X[104X2730[4X[25X>[125X [27X [[[4,0],[0,1]],[2,-1],2]]);[127X[104X2731[4X[28X<rcwa mapping of Z^2 with modulus (1,0)Z+(0,2)Z>[128X[104X2732[4X[25Xgap>[125X [27Xb := a^-1*Sigma_T;[127X[104X2733[4X[28X<rcwa permutation of Z^2 with modulus (2,0)Z+(0,3)Z>[128X[104X2734[4X[25Xgap>[125X [27XDisplay(a);[127X[104X2735[4X[28X[128X[104X2736[4X[28XRcwa permutation of Z^2 with modulus (1,0)Z+(0,2)Z[128X[104X2737[4X[28X[128X[104X2738[4X[28X /[128X[104X2739[4X[28X | (2m,n/2) if (m,n) in (0,0)+(1,0)Z+(0,2)Z[128X[104X2740[4X[28X (m,n) |-> < (2m+1,(n-1)/2) if (m,n) in (0,1)+(1,0)Z+(0,2)Z[128X[104X2741[4X[28X |[128X[104X2742[4X[28X \[128X[104X2743[4X[28X[128X[104X2744[4X[25Xgap>[125X [27XDisplay(b);[127X[104X2745[4X[28X[128X[104X2746[4X[28XRcwa permutation of Z^2 with modulus (2,0)Z+(0,3)Z[128X[104X2747[4X[28X[128X[104X2748[4X[28X /[128X[104X2749[4X[28X | (m,3n+2) if (m,n) in (1,0)+(2,0)Z+(0,1)Z[128X[104X2750[4X[28X | (m/2,n) if (m,n) in (0,0)+(2,0)Z+(0,3)Z U [128X[104X2751[4X[28X (m,n) |-> < (0,1)+(2,0)Z+(0,3)Z[128X[104X2752[4X[28X | (m,n) if (m,n) in (0,2)+(2,0)Z+(0,3)Z[128X[104X2753[4X[28X |[128X[104X2754[4X[28X \[128X[104X2755[4X[28X[128X[104X2756[4X[32X[104X27572758[33X[0;0YIt is easy to see that both [10Xa[110X and [10Xb[110X have infinite order. The cycles of [10Xa[110X2759have roughly hyperbolic shape and run, so to speak, from [22X(0,± ∞)[122X to [22X(± ∞,0)[122X.2760A given cycle contains only finitely many points both of whose coordinates2761are nonzero. The fixed points of [10Xa[110X are (0,0) and (-1,-1). We have a look at2762an example of a cycle of [10Xa[110X:[133X27632764[4X[32X Example [32X[104X2765[4X[28X[128X[104X2766[4X[25Xgap>[125X [27XTrajectory(a,[1000,1000],15);[127X[104X2767[4X[28X[ [ 1000, 1000 ], [ 2000, 500 ], [ 4000, 250 ], [ 8000, 125 ], [128X[104X2768[4X[28X [ 16001, 62 ], [ 32002, 31 ], [ 64005, 15 ], [ 128011, 7 ], [128X[104X2769[4X[28X [ 256023, 3 ], [ 512047, 1 ], [ 1024095, 0 ], [ 2048190, 0 ], [128X[104X2770[4X[28X [ 4096380, 0 ], [ 8192760, 0 ], [ 16385520, 0 ] ][128X[104X2771[4X[25Xgap>[125X [27XTrajectory(a^-1,[1000,1000],15);[127X[104X2772[4X[28X[ [ 1000, 1000 ], [ 500, 2000 ], [ 250, 4000 ], [ 125, 8000 ], [128X[104X2773[4X[28X [ 62, 16001 ], [ 31, 32002 ], [ 15, 64005 ], [ 7, 128011 ], [128X[104X2774[4X[28X [ 3, 256023 ], [ 1, 512047 ], [ 0, 1024095 ], [ 0, 2048190 ], [128X[104X2775[4X[28X [ 0, 4096380 ], [ 0, 8192760 ], [ 0, 16385520 ] ][128X[104X2776[4X[28X[128X[104X2777[4X[32X[104X27782779[33X[0;0YIt is left as an easy exercise to the reader to find out how the cycles of [10Xb[110X2780look like.[133X27812782[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().ZxZ);[110X in order to assign the global2783variables defined in this section.[133X278427852786[1X7.19 [33X[0;0YFinite quotients of Grigorchuk groups[133X[101X27872788[33X[0;0YIn this section, we show how to construct finite quotients of the two2789infinite periodic groups introduced by Rostislav Grigorchuk in [Gri80] with2790the help of [5XRCWA[105X. The first of these, nowadays known as [21XGrigorchuk group[121X, is2791investigated in an example given on the [5XGAP[105X website -- see2792[7Xhttp://www.gap-system.org/Doc/Examples/grigorchuk.html[107X. The [5XRCWA[105X package2793permits a simpler and more elegant construction of the finite quotients of2794this group: The function [10XTopElement[110X given on the mentioned webpage gets2795unnecessary, and the function [10XSequenceElement[110X can be simplified as follows:[133X27962797[4X[32X[104X2798[4X[104X2799[4XSequenceElement := function ( r, level )[104X2800[4X[104X2801[4X return Permutation(Product(Filtered([1..level-1],k->k mod 3 <> r),[104X2802[4X k->ClassTransposition( 2^(k-1)-1,2^(k+1),[104X2803[4X 2^k+2^(k-1)-1,2^(k+1))),[104X2804[4X [0..2^level-1]);[104X2805[4Xend;[104X2806[4X[104X2807[4X[32X[104X28082809[33X[0;0YThe actual constructors for the generators are modified as follows:[133X28102811[4X[32X[104X2812[4X[104X2813[4Xa := level -> Permutation(ClassTransposition(0,2,1,2),[0..2^level-1]);[104X2814[4Xb := level -> SequenceElement(0,level);[104X2815[4Xc := level -> SequenceElement(2,level);[104X2816[4Xd := level -> SequenceElement(1,level);[104X2817[4X[104X2818[4X[32X[104X28192820[33X[0;0YAll computations given on the webpage can now be done just as with the2821[21Xoriginal[121X construction of the quotients of the Grigorchuk group. In the2822sequel, we construct finite quotients of the second group introduced2823in [Gri80]:[133X28242825[4X[32X Example [32X[104X2826[4X[28X[128X[104X2827[4X[25Xgap>[125X [27XFourCycle := RcwaMapping((4,5,6,7),[4..7]);[127X[104X2828[4X[28X( 0(4), 1(4), 2(4), 3(4) )[128X[104X2829[4X[25Xgap>[125X [27XGrigorchukGroup2Generator := function ( level )[127X[104X2830[4X[25X>[125X [27X if level = 1 then return FourCycle; else[127X[104X2831[4X[25X>[125X [27X return Restriction(FourCycle, RcwaMapping([[4,1,1]]))[127X[104X2832[4X[25X>[125X [27X * Restriction(FourCycle, RcwaMapping([[4,3,1]]))[127X[104X2833[4X[25X>[125X [27X * Restriction(GrigorchukGroup2Generator(level-1),[127X[104X2834[4X[25X>[125X [27X RcwaMapping([[4,0,1]]));[127X[104X2835[4X[25X>[125X [27X fi;[127X[104X2836[4X[25X>[125X [27X end;;[127X[104X2837[4X[25Xgap>[125X [27XGrigorchukGroup2 := level -> Group(FourCycle,[127X[104X2838[4X[25X>[125X [27X GrigorchukGroup2Generator(level));;[127X[104X2839[4X[28X[128X[104X2840[4X[32X[104X28412842[33X[0;0YWe can do similar things as shown in the example on the [5XGAP[105X webpage for the2843[21Xfirst[121X Grigorchuk group:[133X28442845[4X[32X Example [32X[104X2846[4X[28X[128X[104X2847[4X[25Xgap>[125X [27XG := List([1..4],lev->GrigorchukGroup2(lev)); # The first 4 quotients.[127X[104X2848[4X[28X[ <rcwa group over Z with 2 generators>, [128X[104X2849[4X[28X <rcwa group over Z with 2 generators>, [128X[104X2850[4X[28X <rcwa group over Z with 2 generators>, [128X[104X2851[4X[28X <rcwa group over Z with 2 generators> ][128X[104X2852[4X[25Xgap>[125X [27XH := List([1..4],lev->Action(G[lev],[0..4^lev-1])); # Isom. perm.-gps.[127X[104X2853[4X[28X[ Group([ (1,2,3,4), (1,2,3,4) ]), [128X[104X2854[4X[28X Group([ (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), [128X[104X2855[4X[28X (1,5,9,13)(2,6,10,14)(4,8,12,16) ]), [128X[104X2856[4X[28X <permutation group with 2 generators>, [128X[104X2857[4X[28X <permutation group with 2 generators> ][128X[104X2858[4X[25Xgap>[125X [27XList(H,Size);[127X[104X2859[4X[28X[ 4, 1024, 4294967296, 1329227995784915872903807060280344576 ][128X[104X2860[4X[25Xgap>[125X [27XList(last,n->Collected(Factors(n)));[127X[104X2861[4X[28X[ [ [ 2, 2 ] ], [ [ 2, 10 ] ], [ [ 2, 32 ] ], [ [ 2, 120 ] ] ][128X[104X2862[4X[25Xgap>[125X [27XList(H,NilpotencyClassOfGroup); [127X[104X2863[4X[28X[ 1, 6, 14, 40 ][128X[104X2864[4X[28X[128X[104X2865[4X[32X[104X28662867[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().GrigorchukQuotients);[110X in order to2868assign the global variables defined in this section.[133X286928702871[1X7.20 [33X[0;0YForward orbits of a monoid with 2 generators[133X[101X28722873[33X[0;0YThe [22X3n+1[122X conjecture asserts that the forward orbit of any positive integer2874under the Collatz mapping [22XT[122X contains 1. In contrast, it seems likely that2875[21Xmost[121X trajectories of the two mappings[133X28762877/2878| n/2 if n even,2879T_5+/-: Z -> Z, n |-> <2880| (5n +/- 1)/2 if n odd2881\28822883[33X[0;0Ydiverge. However we can show by means of computation that the forward orbit2884of any positive integer under the action of the monoid generated by the two2885mappings [22XT_5^-[122X and [22XT_5^+[122X indeed contains 1. First of all, we enter the2886generators:[133X28872888[4X[32X Example [32X[104X2889[4X[28X[128X[104X2890[4X[25Xgap>[125X [27XT5m := RcwaMapping([[1,0,2],[5,-1,2]]);;[127X[104X2891[4X[25Xgap>[125X [27XT5p := RcwaMapping([[1,0,2],[5, 1,2]]);;[127X[104X2892[4X[28X[128X[104X2893[4X[32X[104X28942895[33X[0;0YWe look for a number [22Xk[122X such that for any residue class [22Xr(2^k)[122X there is a2896product [22Xf[122X of [22Xk[122X mappings [22XT_5^±[122X whose restriction to [22Xr(2^k)[122X is given by [22Xn ↦2897(an+b)/c[122X where [22Xc>a[122X:[133X28982899[4X[32X Example [32X[104X2900[4X[28X[128X[104X2901[4X[25Xgap>[125X [27Xk := 1;;[127X[104X2902[4X[25Xgap>[125X [27Xrepeat[127X[104X2903[4X[25X>[125X [27X maps := List(Tuples([T5m,T5p],k),Product);[127X[104X2904[4X[25X>[125X [27X decr := List(maps,DecreasingOn);[127X[104X2905[4X[25X>[125X [27X decreasable := Union(decr);[127X[104X2906[4X[25X>[125X [27X Print(k,": "); View(decreasable); Print("\n");[127X[104X2907[4X[25X>[125X [27X k := k + 1;[127X[104X2908[4X[25X>[125X [27X until decreasable = Integers;[127X[104X2909[4X[28X1: 0(2)[128X[104X2910[4X[28X2: 0(4)[128X[104X2911[4X[28X3: Z \ 1(8) U 7(8)[128X[104X2912[4X[28X4: 0(4) U 3(16) U 6(16) U 10(16) U 13(16)[128X[104X2913[4X[28X5: Z \ 7(32) U 25(32)[128X[104X2914[4X[28X6: <union of 48 residue classes (mod 64)>[128X[104X2915[4X[28X7: Integers[128X[104X2916[4X[28X[128X[104X2917[4X[32X[104X29182919[33X[0;0YThus [22Xk=7[122X serves our purposes. To be sure that for any positive integer [22Xn[122X our2920monoid contains a mapping [22Xf[122X such that [22Xn^f<n[122X, we still need to check this2921condition for [21Xsmall[121X [22Xn[122X. Since in case [22Xc>a[122X we have [22X(an+b)/c ≥ n[122X if only if [22Xn ≤2922b/(c-a)[122X, we only need to check those [22Xn[122X which are not larger than the largest2923coefficient [22Xb_r(m)[122X occurring in any of the products under consideration:[133X29242925[4X[32X Example [32X[104X2926[4X[28X[128X[104X2927[4X[25Xgap>[125X [27Xmaxb := Maximum(List(maps,f->Maximum(List(Coefficients(f),t->t[2]))));[127X[104X2928[4X[28X25999[128X[104X2929[4X[25Xgap>[125X [27Xsmall := Filtered([1..maxb],n->ForAll(maps,f->n^f>=n));[127X[104X2930[4X[28X[ 1, 7, 9, 11 ][128X[104X2931[4X[28X[128X[104X2932[4X[32X[104X29332934[33X[0;0YThis means that except of 1, only for [22Xn ∈ {7,9,11}[122X there is no product of 72935mappings [22XT_5^±[122X which maps [22Xn[122X to a smaller integer. We check that also the2936forward orbits of these three integers contain 1 by successively computing2937preimages of 1:[133X29382939[4X[32X Example [32X[104X2940[4X[28X[128X[104X2941[4X[25Xgap>[125X [27XS := [1];; k := 0;;[127X[104X2942[4X[25Xgap>[125X [27Xrepeat[127X[104X2943[4X[25X>[125X [27X S := Union(S,PreImage(T5m,S),PreImage(T5p,S));[127X[104X2944[4X[25X>[125X [27X k := k+1;[127X[104X2945[4X[25X>[125X [27X until IsSubset(S,small);[127X[104X2946[4X[25Xgap>[125X [27Xk;[127X[104X2947[4X[28X17[128X[104X2948[4X[28X[128X[104X2949[4X[32X[104X29502951[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().CollatzMapping);[110X in order to assign2952the global variables defined in this section.[133X295329542955[1X7.21 [33X[0;0YThe free group of rank 2 and the modular group PSL(2,ℤ)[133X[101X29562957[33X[0;0YThe free group of rank 2 embeds into RCWA(ℤ) -- in fact it embeds even in2958the subgroup which is generated by all class transpositions. An explicit2959embedding can be constructed by transferring the construction of the2960so-called [21XSchottky groups[121X (cf. [dlH00], page 27) from PSL(2,ℂ) to RCWA(ℤ)2961(we use the notation from the cited book):[133X29622963[4X[32X Example [32X[104X2964[4X[28X[128X[104X2965[4X[25Xgap>[125X [27XD := AllResidueClassesModulo(4);[127X[104X2966[4X[28X[ 0(4), 1(4), 2(4), 3(4) ][128X[104X2967[4X[25Xgap>[125X [27Xgamma1 := RepresentativeAction(RCWA(Integers),[127X[104X2968[4X[25X>[125X [27X Difference(Integers,D[1]),D[2]);;[127X[104X2969[4X[25Xgap>[125X [27Xgamma2 := RepresentativeAction(RCWA(Integers),[127X[104X2970[4X[25X>[125X [27X Difference(Integers,D[3]),D[4]);;[127X[104X2971[4X[25Xgap>[125X [27XF2 := Group(gamma1,gamma2);[127X[104X2972[4X[28X<rcwa group over Z with 2 generators>[128X[104X2973[4X[28X[128X[104X2974[4X[32X[104X29752976[33X[0;0YWe can do some checks:[133X29772978[4X[32X Example [32X[104X2979[4X[28X[128X[104X2980[4X[25Xgap>[125X [27XX1 := Union(D{[1,2]});; X2 := Union(D{[3,4]});;[127X[104X2981[4X[25Xgap>[125X [27X IsSubset(X1,X2^gamma1) and IsSubset(X1,X2^(gamma1^-1))[127X[104X2982[4X[25X>[125X [27X and IsSubset(X2,X1^gamma2) and IsSubset(X2,X1^(gamma2^-1));[127X[104X2983[4X[28Xtrue[128X[104X2984[4X[28X[128X[104X2985[4X[32X[104X29862987[33X[0;0YThe generators are products of 3 class transpositions, each:[133X29882989[4X[32X Example [32X[104X2990[4X[28X[128X[104X2991[4X[25Xgap>[125X [27XFactorization(gamma1);[127X[104X2992[4X[28X[ ( 0(2), 1(2) ), ( 3(4), 5(8) ), ( 0(2), 1(8) ) ][128X[104X2993[4X[25Xgap>[125X [27XFactorization(gamma2);[127X[104X2994[4X[28X[ ( 0(2), 1(2) ), ( 1(4), 7(8) ), ( 0(2), 3(8) ) ][128X[104X2995[4X[28X[128X[104X2996[4X[32X[104X29972998[33X[0;0YThe above construction is used by [2XIsomorphismRcwaGroup[102X ([14X3.1-1[114X) to embed free2999groups of any rank [22X≥ 2[122X.[133X30003001[33X[0;0YWe give another only slightly different representation of the free group of3002rank 2. We verify that it really is one by applying the so-called3003[13XTable-Tennis Lemma[113X (see e.g. [dlH00], Section II.B.) to the infinite cyclic3004groups generated by the two generators and to the same two sets [10XX1[110X and [10XX2[110X as3005above:[133X30063007[4X[32X Example [32X[104X3008[4X[28X[128X[104X3009[4X[25Xgap>[125X [27Xr1 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);;[127X[104X3010[4X[25Xgap>[125X [27Xr2 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,3,4);;[127X[104X3011[4X[25Xgap>[125X [27XF2 := Group(r1^2,r2^2);;[127X[104X3012[4X[25Xgap>[125X [27XList(GeneratorsOfGroup(F2),IsTame);[127X[104X3013[4X[28X[ false, false ][128X[104X3014[4X[25Xgap>[125X [27X IsSubset(X1,X2^F2.1) and IsSubset(X1,X2^(F2.1^-1))[127X[104X3015[4X[25X>[125X [27X and IsSubset(X2,X1^F2.2) and IsSubset(X2,X1^(F2.2^-1));[127X[104X3016[4X[28Xtrue[128X[104X3017[4X[25Xgap>[125X [27X[Sources(r1),Sinks(r1),Loops(r1)]; # compare with X1[127X[104X3018[4X[28X[ [ 0(4) ], [ 1(4) ], [ 0(4), 1(4) ] ][128X[104X3019[4X[25Xgap>[125X [27X[Sources(r2),Sinks(r2),Loops(r2)]; # compare with X2[127X[104X3020[4X[28X[ [ 2(4) ], [ 3(4) ], [ 2(4), 3(4) ] ][128X[104X3021[4X[25Xgap>[125X [27X IsSubset(X1,Union(Sinks(r1))) and IsSubset(X1,Union(Sinks(r1^-1)))[127X[104X3022[4X[25X>[125X [27X and IsSubset(X2,Union(Sinks(r2))) and IsSubset(X2,Union(Sinks(r2^-1)));[127X[104X3023[4X[28Xtrue[128X[104X3024[4X[25Xgap>[125X [27XIsSubset(Union(Sinks(r1)),X2^F2.1) and[127X[104X3025[4X[25X>[125X [27X IsSubset(Union(Sinks(r1^-1)),X2^(F2.1^-1));[127X[104X3026[4X[28Xtrue[128X[104X3027[4X[25Xgap>[125X [27XIsSubset(Union(Sinks(r2)),X1^F2.2) and[127X[104X3028[4X[25X>[125X [27X IsSubset(Union(Sinks(r2^-1)),X1^(F2.2^-1));[127X[104X3029[4X[28Xtrue[128X[104X3030[4X[28X[128X[104X3031[4X[32X[104X30323033[33X[0;0YDrawing the transition graphs of [10Xr1[110X and [10Xr2[110X for modulus 4 may help to3034understand what is actually done in this calculation. It is easy to see that3035the group generated by [10Xr1[110X and [10Xr2[110X is [13Xnot[113X free:[133X30363037[4X[32X Example [32X[104X3038[4X[28X[128X[104X3039[4X[25Xgap>[125X [27XOrder(r1/r2);[127X[104X3040[4X[28X3[128X[104X3041[4X[28X[128X[104X3042[4X[32X[104X30433044[33X[0;0YThe modular group PSL(2,ℤ) embeds into CT(ℤ) as well. We give an embedding,3045and check that it really is one by applying the Table Tennis Lemma as above:[133X30463047[4X[32X Example [32X[104X3048[4X[28X[128X[104X3049[4X[25Xgap>[125X [27XPSL2Z := [127X[104X3050[4X[25X>[125X [27X Group(ClassTransposition(0,3,1,3) * ClassTransposition(0,3,2,3),[127X[104X3051[4X[25X>[125X [27X ClassTransposition(1,3,0,6) * ClassTransposition(2,3,3,6));;[127X[104X3052[4X[25Xgap>[125X [27XList(GeneratorsOfGroup(PSL2Z),Order);[127X[104X3053[4X[28X[ 3, 2 ][128X[104X3054[4X[25Xgap>[125X [27XX1 := Difference(Integers,ResidueClass(0,3));[127X[104X3055[4X[28XZ \ 0(3)[128X[104X3056[4X[25Xgap>[125X [27XX2 := ResidueClass(0,3);[127X[104X3057[4X[28X0(3)[128X[104X3058[4X[25Xgap>[125X [27XIsSubset(X1,X2^PSL2Z.1) and IsSubset(X1,X2^(PSL2Z.1^2));[127X[104X3059[4X[28Xtrue[128X[104X3060[4X[25Xgap>[125X [27XIsSubset(X2,X1^PSL2Z.2);[127X[104X3061[4X[28Xtrue[128X[104X3062[4X[28X[128X[104X3063[4X[32X[104X30643065[33X[0;0YA slightly different representation of PSL(2,ℤ) can be obtained by using3066[5XRCWA[105X's general method for [10XIsomorphismRcwaGroup[110X for free products of finite3067groups:[133X30683069[4X[32X Example [32X[104X3070[4X[28X[128X[104X3071[4X[25Xgap>[125X [27XG := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(3),[127X[104X3072[4X[25X>[125X [27X CyclicGroup(2))));[127X[104X3073[4X[28X<wild rcwa group over Z with 2 generators>[128X[104X3074[4X[25Xgap>[125X [27XList(GeneratorsOfGroup(G),Factorization);[127X[104X3075[4X[28X[ [ ( 0(4), 2(4) ), ( 1(2), 0(4) ) ], [ ( 0(2), 1(2) ) ] ][128X[104X3076[4X[28X[128X[104X3077[4X[32X[104X30783079[33X[0;0YEnter [10XAssignGlobals(LoadRCWAExamples().F2_PSL2Z);[110X in order to assign the3080global variables defined in this section.[133X3081308230833084