GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
#############################################################################
##
#W misc.gd RDS Package Marc Roeder
##
## Some methods for general use
##
#H @(#)$Id: misc.gd, v 1.6 2012/02/16 18:07:49 gap Exp $
##
#Y Copyright (C) 2006-2011 Marc Roeder
#Y
#Y This program is free software; you can redistribute it and/or
#Y modify it under the terms of the GNU General Public License
#Y as published by the Free Software Foundation; either version 2
#Y of the License, or (at your option) any later version.
#Y
#Y This program is distributed in the hope that it will be useful,
#Y but WITHOUT ANY WARRANTY; without even the implied warranty of
#Y MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#Y GNU General Public License for more details.
#Y
#Y You should have received a copy of the GNU General Public License
#Y along with this program; if not, write to the Free Software
#Y Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
##
Revision.("sers/roeder/gap/pkg/rdsraw/rds/lib/misc_gd"):=
"@(#)$Id: misc.gd, v 1.6 2012/02/16 18:07:49 gap Exp $";
#############################################################################
##
#F IsComputableFilter( <filter> ) test if a filter is computable
##
##
DeclareGlobalFunction("IsComputableFilter");
#############################################################################
##
#F OnSubgroups(<subgroup>,<aut>) Action on subgroups
##
## For a group $G$ and an automorphism <aut> of $G$,
## `OnSubgroups(<subgroup>,<aut>)' is the image of <subgroup> under <aut>
##
DeclareGlobalFunction("OnSubgroups");
#############################################################################
##
#F OnSubgroupsSet(<subgroupset>,<aut>) Action on subgroups
##
## For a group $G$ and an automorphism <aut> of $G$,
## `OnSubgroupsSet(<subgroupset>,<aut>)' is the image of the set
## <subgroupset> of subgroups under <aut>. The returned object is again a
## set (it ist not tested if <subgroupset> is a set. Lists are also accepted)
##
DeclareGlobalFunction("OnSubgroupsSet");
#############################################################################
##
#O CartesianIterator( <tuplelist> ) returns an iterator for the cartesian product of <tuplelist>
##
## Returns an iterator for `Cartesian(<tuplelist>)'
##
DeclareOperation("CartesianIterator",[IsList]);
#############################################################################
##
#F ConcatenationOfIterators(<iterlist>) returns an iterator which is the concatenation of all iterators in <iterlist>.
##
## `ConcatenationOfIterators(<iterlist>)' returns an iterator which runs
## through all iterators in <iterlist>. Note that the returned iterator loops
## over the iterators in <iterlist> *sequentially* beginning with the first
## one.
##
##
DeclareGlobalFunction("ConcatenationOfIterators");
DeclareGlobalFunction("Pointwiseleq");
DeclareOperation("RemovedSublist",[IsList,IsList]);
#############################################################################
##
#O PartitionByFunctionNF( <list>,<f> ) partitions a list according to a function.
##
## `PartitionByFunctionNF( <list>, <f> )' partitions the list <list>
## according to the values of the function <f> defined on <list>.
## If <f> returns `fail' for some element of <list>,
## `PartitionByFunctionNF( <list>, <f> )' enters a break loop.
## Leaving the break loop with 'return;' is safe because
## `PartitionByFunctionNF' treats `fail' as all other results of <f>.
##
DeclareOperation("PartitionByFunctionNF",[IsList,IsFunction]);
#############################################################################
##
#O PartitionByFunction( <list>,<f> ) partitions a list according to a function.
##
## `PartitionByFunction( <list>, <f> )' partitions the list <list>
## according to the values of the function <f> defined on <list>.
## All elements, for which <f> returns `fail' are omitted, so
## `PartitionByFunction' does not necessarily return a partition.
## If `InfoLevel(InfoRDS)'\index{InfoRDS@{\tt InfoRDS}} is at least 2, the number of
## elements for which <f> returns `fail' is shown
## (if `fail' is returned at all).
##
DeclareOperation("PartitionByFunction",[IsDenseList,IsFunction]);
#############################################################################
##
#O RepsCClassesGivenOrder( <group>, <order> ) find all elements of given order up to conjugacy.
##
## `RepsCClassesGivenOrder( <group>, <order> )' returns all elements of
## order <order> up to conjugacy. Note that the representatives are *not*
## always the smallest elements of each conjugacy class.
##
DeclareOperation("RepsCClassesGivenOrder",[IsMagmaWithInverses,IsInt]);
#############################################################################
##
#O MatTimesTransMat(<mat>)
##
## does the same as `<mat>*TransposedMat( <mat> )' but uses slightly less
## space and time for large matrices.
##
DeclareOperation("MatTimesTransMat",[IsMatrix]);
#############################################################################
##
#E END
##