CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Path: gap4r8 / prim / grps / gps1.g
Views: 418346
PRIMGRP[2]:=
[ [ 1, 2, 3, "1", [ [ 1, 1 ] ], 2, "Sym(2)", [ "Z", 2, 1 ], "Sym", 1 ] ];
PRIMGRP[3]:=
[ [ 1, 3, 3, "1", [ [ 1, 2 ] ], 1, "Alt(3)", [ "Z", 3, 1 ], "Alt", 1 ], 
  [ 2, 6, 2, "1", [ [ 2, 1 ] ], 3, "Sym(3)", [ "Z", 3, 1 ], "Sym", 2 ] ];
PRIMGRP[4]:=
[ [ 1, 12, 2, "1", [ [ 3, 1 ] ], 2, "Alt(4)", [ "Z", 2, 2 ], "Alt", 1 ], 
  [ 2, 24, 2, "1", [ [ 3, 1 ] ], 4, "Sym(4)", [ "Z", 2, 2 ], "Sym", 2 ] ];
PRIMGRP[5]:=
[ [ 1, 5, 3, "1", [ [ 1, 4 ] ], 1, "C(5)", [ "Z", 5, 1 ], [  ], 1 ], 
  [ 2, 10, 2, "1", [ [ 2, 2 ] ], 1, "D(2*5)", [ "Z", 5, 1 ], 
      [ [ [ Z(5)^2 ] ] ], 2 ], 
  [ 3, 20, 2, "1", [ [ 4, 1 ] ], 2, "AGL(1, 5)", [ "Z", 5, 1 ], 
      [ [ [ Z(5) ] ] ], 3 ], 
  [ 4, 60, 1, "2", [ [ 4, 1 ] ], 3, "Alt(5)", [ "A", 5, 1 ], "Alt", 4 ], 
  [ 5, 120, 0, "2", [ [ 4, 1 ] ], 5, "Sym(5)", [ "A", 5, 1 ], "Sym", 5 ] ];
PRIMGRP[6]:= 
[[ 1, 60, 1, "2", [ [ 5, 1 ] ], 2, "PSL(2, 5)", [ "L", [ 2, 5 ], 1 ], "psl", 1 
 ],
[ 2, 120, 0, "2", [ [ 5, 1 ] ], 3, "PGL(2, 5)", [ "L", [ 2, 5 ], 1 ], "pgl", 
  2 ],
[3, Factorial(6)/2,1,"2",[[5,1]],4, "Alt(6)", ["A",6, 1], "Alt", 3],
[4, Factorial(6),0,"2",[[5, 1]],6, "Sym(6)", ["A",6, 1], "Sym", 4]];
PRIMGRP[7]:= 
[[ 1, 7, 3, "1", [ [ 1, 6 ] ], 1, "C(7)", [ "Z", 7, 1 ], [  ], 1 ],
[ 2, 14, 2, "1", [ [ 2, 3 ] ], 1, "D(2*7)", [ "Z", 7, 1 ], [ [ [ Z(7)^3 ] ] ],
  2 ],
[ 3, 21, 2, "1", [ [ 3, 2 ] ], 1, "7:3", [ "Z", 7, 1 ], [ [ [ Z(7)^2 ] ] ], 3 
 ],
[ 4, 42, 2, "1", [ [ 6, 1 ] ], 2, "AGL(1, 7)", [ "Z", 7, 1 ], 
  [ [ [ Z(7) ] ] ], 4 ],
[ 5, 168, 1, "2", [ [ 6, 1 ] ], 2, "L(3, 2)", [ "L", [ 2, 7 ], 1 ], 
  [ (1,4)(6,7), (1,3,2)(4,7,5) ], 5 ],
[6, Factorial(7)/2,1,"2",[[6,1]],5, "Alt(7)", ["A",7, 1], "Alt", 6],
[7, Factorial(7),0,"2",[[6, 1]],7, "Sym(7)", ["A",7, 1], "Sym", 7]];
PRIMGRP[8]:= 
[[ 1, 56, 2, "1", [ [ 7, 1 ] ], 2, "AGL(1, 8)", [ "Z", 2, 3 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2) ] ] ], 1 ],
[ 2, 168, 2, "1", [ [ 7, 1 ] ], 2, "AGammaL(1, 8)", [ "Z", 2, 3 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0 ] ] ], 2 ],
[ 3, 1344, 0, "1", [ [ 7, 1 ] ], 3, "ASL(3, 2)", [ "Z", 2, 3 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2) ] ] ], 5 ],
[ 4, 168, 1, "2", [ [ 7, 1 ] ], 2, "PSL(2, 7)", [ "L", [ 2, 7 ], 1 ], 
  [ (1,2,3,4,5,6,7), (2,3,5)(4,7,6), (1,8)(2,7)(3,4)(5,6) ], 3 ],
[ 5, 336, 0, "2", [ [ 7, 1 ] ], 3, "PGL(2, 7)", [ "L", [ 2, 7 ], 1 ], 
  [ (1,2,3,4,5,6,7), (2,4,3,7,5,6), (1,8)(2,7)(3,4)(5,6) ], 4 ],
[6, Factorial(8)/2,1,"2",[[7,1]],6, "Alt(8)", ["A",8, 1], "Alt", 6],
[7, Factorial(8),0,"2",[[7, 1]],8, "Sym(8)", ["A",8, 1], "Sym", 7]];
PRIMGRP[9]:= 
[[ 1, 36, 2, "1", [ [ 4, 2 ] ], 1, "3^2:4", [ "Z", 3, 2 ], 
  [ [ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ] ], 1 ],
[ 2, 72, 2, "1", [ [ 4, 2 ] ], 1, "3^2:D(2*4)", [ "Z", 3, 2 ], 
  [ [ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ], 2 ],
[ 3, 72, 2, "1", [ [ 8, 1 ] ], 2, "3^2:Q(8)=M(9)", [ "Z", 3, 2 ], 
  [ [ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ], 
      [ [ Z(3), Z(3) ], [ Z(3), Z(3)^0 ] ] ], 4 ],
[ 4, 72, 2, "1", [ [ 8, 1 ] ], 2, "3^2:8=AGL(1,9)", [ "Z", 3, 2 ], 
  [ [ [ 0*Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0 ] ] ], 3 ],
[ 5, 144, 2, "1", [ [ 8, 1 ] ], 2, "AGammaL(1, 9)", [ "Z", 3, 2 ], 
  [ [ [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0 ] ] ], 5 ],
[ 6, 216, 2, "1", [ [ 8, 1 ] ], 2, "3^2:(2'A(4))", [ "Z", 3, 2 ], 
  [ [ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3)^0 ] ] ], 6 ],
[ 7, 432, 2, "1", [ [ 8, 1 ] ], 2, "AGL(2, 3)", [ "Z", 3, 2 ], 
  [ [ [ 0*Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0 ] ], 
      [ [ Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3)^0 ] ] ], 7 ],
[ 8, 504, 1, "2", [ [ 8, 1 ] ], 3, "PSL(2, 8)", [ "L", [ 2, 8 ], 1 ], 
  [ (1,2,3,4,5,6,7), (1,8)(2,4)(3,7)(5,6), (2,7)(3,6)(4,5)(8,9) ], 8 ],
[ 9, 1512, 0, "2", [ [ 8, 1 ] ], 3, "PGammaL(2, 8)", [ "L", [ 2, 8 ], 1 ], 
  [ (1,2,3,4,5,6,7), (2,3,5)(4,7,6), (1,8)(2,4)(3,7)(5,6), 
      (2,7)(3,6)(4,5)(8,9) ], 9 ],
[10, Factorial(9)/2,1,"2",[[8,1]],7, "Alt(9)", ["A",9, 1], "Alt", 10],
[11, Factorial(9),0,"2",[[8, 1]],9, "Sym(9)", ["A",9, 1], "Sym", 11]];
PRIMGRP[10]:= 
[[ 1, 60, 1, "2", [ [ 3, 1 ], [ 6, 1 ] ], 1, "A(5)", [ "A", 5, 1 ], 
  [ ( 1, 5, 7)( 2, 9, 4)( 3, 8,10), ( 2, 6)( 3, 5)( 4, 7)( 9,10) ], 1 ],
[ 2, 120, 0, "2", [ [ 3, 1 ], [ 6, 1 ] ], 1, "S(5)", [ "A", 5, 1 ], 
  [ ( 1, 5, 7)( 2, 9, 4)( 3, 8,10), ( 1, 8)( 2, 5, 6, 3)( 4, 9, 7,10) ], 2 ],
[ 3, 360, 1, "2", [ [ 9, 1 ] ], 2, "PSL(2, 9)", [ "A", 6, 1 ], 
  [ (1,2,3)(4,5,6)(7,8,9), (2,4,3,7)(5,6,9,8), ( 1,10)( 4, 7)( 5, 6)( 8, 9) ],
  3 ],
[ 4, 720, 0, "2", [ [ 9, 1 ] ], 3, "PGL(2, 9)", [ "A", 6, 1 ], 
  [ (1,2,3)(4,5,6)(7,8,9), (2,6,4,9,3,8,7,5), ( 1,10)( 4, 7)( 5, 6)( 8, 9) ], 
  5 ],
[ 5, 720, 0, "2", [ [ 9, 1 ] ], 2, "PSigmaL(2, 9)", [ "A", 6, 1 ], 
  [ (1,2,3)(4,5,6)(7,8,9), (2,4,3,7)(5,6,9,8), (4,7)(5,8)(6,9), 
      ( 1,10)( 4, 7)( 5, 6)( 8, 9) ], 4 ],
[ 6, 720, 0, "2", [ [ 9, 1 ] ], 3, "M(10)", [ "A", 6, 1 ], 
  [ (1,2,3)(4,5,6)(7,8,9), (2,4,3,7)(5,6,9,8), (2,9,3,5)(4,6,7,8), 
      ( 1,10)( 4, 7)( 5, 6)( 8, 9) ], 6 ],
[ 7, 1440, 0, "2", [ [ 9, 1 ] ], 3, "PGammaL(2, 9)", [ "A", 6, 1 ], 
  [ (1,2,3)(4,5,6)(7,8,9), (4,7)(5,8)(6,9), (2,6,4,9,3,8,7,5), 
      ( 1,10)( 4, 7)( 5, 6)( 8, 9) ], 7 ],
[8, Factorial(10)/2,1,"2",[[9,1]],8, "Alt(10)", ["A",10, 1], "Alt", 8],
[9, Factorial(10),0,"2",[[9, 1]],10, "Sym(10)", ["A",10, 1], "Sym", 9]];
PRIMGRP[11]:= 
[[ 1, 11, 3, "1", [ [ 1, 10 ] ], 1, "C(11)", [ "Z", 11, 1 ], [  ], 1 ],
[ 2, 22, 2, "1", [ [ 2, 5 ] ], 1, "D(2*11)", [ "Z", 11, 1 ], 
  [ [ [ Z(11)^5 ] ] ], 2 ],
[ 3, 55, 2, "1", [ [ 5, 2 ] ], 1, "11:5", [ "Z", 11, 1 ], [ [ [ Z(11)^2 ] ] ],
  3 ],
[ 4, 110, 2, "1", [ [ 10, 1 ] ], 2, "AGL(1, 11)", [ "Z", 11, 1 ], 
  [ [ [ Z(11) ] ] ], 4 ],
[ 5, 660, 1, "2", [ [ 10, 1 ] ], 2, "L(2, 11)", [ "L", [ 2, 11 ], 1 ], 
  [ ( 1, 5)( 2, 4)( 3,10)( 7,11), ( 3,11, 5)( 4, 7, 9)( 6, 8,10) ], 5 ],
[ 6, 7920, 1, "2", [ [ 10, 1 ] ], 4, "M(11)", [ "Spor", "M(11)", 1 ], 
  [ ( 1,10)( 2, 8)( 3,11)( 5, 7), ( 1, 4, 7, 6)( 2,11,10, 9) ], 6 ],
[7, Factorial(11)/2,1,"2",[[10,1]],9, "Alt(11)", ["A",11, 1], "Alt", 7],
[8, Factorial(11),0,"2",[[10, 1]],11, "Sym(11)", ["A",11, 1], "Sym", 8]];
PRIMGRP[12]:= 
[[ 1, 7920, 1, "2", [ [ 11, 1 ] ], 3, "M(11)", [ "Spor", "M(11)", 1 ], 
  [ ( 1, 5, 7)( 2, 9, 4)( 3, 8,10), ( 2, 6)( 3, 5)( 4, 7)( 9,10), 
      ( 1,11)( 2, 7)( 3, 5)( 4, 6), ( 2, 5)( 3, 6)( 4, 7)(11,12) ], 3 ],
[ 2, 95040, 1, "2", [ [ 11, 1 ] ], 5, "M(12)", [ "Spor", "M(12)", 1 ], 
  [ (1,2,3)(4,5,6)(7,8,9), (2,4,3,7)(5,6,9,8), (2,9,3,5)(4,6,7,8), 
      ( 1,10)( 4, 7)( 5, 6)( 8, 9), ( 4, 8)( 5, 9)( 6, 7)(10,11), 
      ( 4, 7)( 5, 8)( 6, 9)(11,12) ], 4 ],
[ 3, 660, 1, "2", [ [ 11, 1 ] ], 2, "PSL(2, 11)", [ "L", [ 2, 11 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11), ( 2, 5, 6,10, 4)( 3, 9,11, 8, 7), 
      ( 1,12)( 2,11)( 3, 6)( 4, 8)( 5, 9)( 7,10) ], 1 ],
[ 4, 1320, 0, "2", [ [ 11, 1 ] ], 3, "PGL(2, 11)", [ "L", [ 2, 11 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11), ( 2, 3, 5, 9, 6,11,10, 8, 4, 7), 
      ( 1,12)( 2,11)( 3, 6)( 4, 8)( 5, 9)( 7,10) ], 2 ],
[5, Factorial(12)/2,1,"2",[[11,1]],10, "Alt(12)", ["A",12, 1], "Alt", 5],
[6, Factorial(12),0,"2",[[11, 1]],12, "Sym(12)", ["A",12, 1], "Sym", 6]];
PRIMGRP[13]:= 
[[ 1, 13, 3, "1", [ [ 1, 12 ] ], 1, "C(13)", [ "Z", 13, 1 ], [  ], 1 ],
[ 2, 26, 2, "1", [ [ 2, 6 ] ], 1, "D(2*13)", [ "Z", 13, 1 ], 
  [ [ [ Z(13)^6 ] ] ], 2 ],
[ 3, 39, 2, "1", [ [ 3, 4 ] ], 1, "13:3", [ "Z", 13, 1 ], [ [ [ Z(13)^4 ] ] ],
  3 ],
[ 4, 52, 2, "1", [ [ 4, 3 ] ], 1, "13:4", [ "Z", 13, 1 ], [ [ [ Z(13)^3 ] ] ],
  4 ],
[ 5, 78, 2, "1", [ [ 6, 2 ] ], 1, "13:6", [ "Z", 13, 1 ], [ [ [ Z(13)^2 ] ] ],
  5 ],
[ 6, 156, 2, "1", [ [ 12, 1 ] ], 2, "AGL(1, 13)", [ "Z", 13, 1 ], 
  [ [ [ Z(13) ] ] ], 6 ],
[ 7, 5616, 1, "2", [ [ 12, 1 ] ], 2, "L(3, 3)", [ "L", [ 3, 3 ], 1 ], 
  [ ( 1,10, 4)( 6, 9, 7)( 8,12,13), ( 1, 3, 2)( 4, 9, 5)( 7, 8,12)(10,13,11) ]
    , 7 ],
[8, Factorial(13)/2,1,"2",[[12,1]],11, "Alt(13)", ["A",13, 1], "Alt", 8],
[9, Factorial(13),0,"2",[[12, 1]],13, "Sym(13)", ["A",13, 1], "Sym", 9]];
PRIMGRP[14]:= 
[[ 1, 1092, 1, "2", [ [ 13, 1 ] ], 2, "PSL(2, 13)", [ "L", [ 2, 13 ], 1 ], 
  "psl", 1 ],
[ 2, 2184, 0, "2", [ [ 13, 1 ] ], 3, "PGL(2, 13)", [ "L", [ 2, 13 ], 1 ], 
  "pgl", 2 ],
[3, Factorial(14)/2,1,"2",[[13,1]],12, "Alt(14)", ["A",14, 1], "Alt", 3],
[4, Factorial(14),0,"2",[[13, 1]],14, "Sym(14)", ["A",14, 1], "Sym", 4]];
PRIMGRP[15]:= 
[[ 1, 2520, 1, "2", [ [ 14, 1 ] ], 2, "A(7)", [ "A", 7, 1 ], 
  [ ( 1, 4, 5)( 2, 8,10)( 3,12,15)( 6,13,11)( 7, 9,14), 
      ( 1, 9, 5,14,13, 2, 6)( 3,15, 4, 7, 8,12,11) ], 3 ],
[ 2, 360, 1, "2", [ [ 6, 1 ], [ 8, 1 ] ], 1, "A(6)", [ "A", 6, 1 ], 
  [ ( 1,15, 7, 5,12)( 2, 9,13,14, 8)( 3, 6,10,11, 4), 
      ( 1, 4, 5)( 2, 8,10)( 3,12,15)( 6,13,11)( 7, 9,14) ], 1 ],
[ 3, 720, 0, "2", [ [ 6, 1 ], [ 8, 1 ] ], 1, "S(6)", [ "A", 6, 1 ], 
  [ ( 1,15, 7, 5,12)( 2, 9,13,14, 8)( 3, 6,10,11, 4), 
      ( 1, 7)( 2,11)( 3,12)( 4,13)( 5,10)( 8,14) ], 2 ],
[ 4, 20160, 1, "2", [ [ 14, 1 ] ], 2, "PSL(4, 2)", [ "A", 8, 1 ], 
  [ ( 1, 9, 5,14,13, 2, 6)( 3,15, 4, 7, 8,12,11), 
      ( 1, 3, 2)( 4, 8,12)( 5,11,14)( 6, 9,15)( 7,10,13) ], 4 ],
[5, Factorial(15)/2,1,"2",[[14,1]],13, "Alt(15)", ["A",15, 1], "Alt", 5],
[6, Factorial(15),0,"2",[[14, 1]],15, "Sym(15)", ["A",15, 1], "Sym", 6]];
PRIMGRP[16]:= 
[[ 1, 80, 2, "1", [ [ 5, 3 ] ], 1, "2^4:5", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ] ], 1 ],
[ 2, 160, 2, "1", [ [ 5, 3 ] ], 1, "2^4:D(2*5)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
            , [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] ], 2 ],
[ 3, 240, 2, "1", [ [ 15, 1 ] ], 2, "AGL(1, 16)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ] ], 3 ],
[ 4, 288, 2, "1", [ [ 6, 1 ], [ 9, 1 ] ], 1, "(A(4) x A(4)):2", 
  [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ] ], 4 ],
[ 5, 320, 2, "1", [ [ 5, 1 ], [ 10, 1 ] ], 1, "(2^4:5).4", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]
            , [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] ], 5 ],
[ 6, 480, 2, "1", [ [ 15, 1 ] ], 2, "AGL(1, 16):2", [ "Z", 2, 4 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
            , [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ] ] ], 6 ],
[ 7, 576, 2, "1", [ [ 6, 1 ], [ 9, 1 ] ], 1, "2^4.S(3) x S(3)", 
  [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ]
            , [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ] ], 8 ],
[ 8, 576, 2, "1", [ [ 6, 1 ], [ 9, 1 ] ], 1, "2^4.3^2:4", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]
            , [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ] ], 7 ],
[ 9, 960, 2, "1", [ [ 15, 1 ] ], 2, "AGammaL(1, 16)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]
            , [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ] ], 10 ],
[ 10, 1152, 2, "1", [ [ 6, 1 ], [ 9, 1 ] ], 1, "(S(4) x S(4)):2", 
  [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]
            , [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ] ], 12 ],
[ 11, 322560, 0, "1", [ [ 15, 1 ] ], 3, "2^4.PSL(4, 2)", [ "Z", 2, 4 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ]
            , [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ] ] ], 20 ],
[ 12, 5760, 0, "1", [ [ 15, 1 ] ], 2, "AGammaL(2, 4)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ] ], 16 ],
[ 13, 1920, 0, "1", [ [ 15, 1 ] ], 2, "ASL(2, 4):2", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] ], 14 ],
[ 14, 2880, 0, "1", [ [ 15, 1 ] ], 2, "AGL(2, 4)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ] ], 15 ],
[ 15, 960, 0, "1", [ [ 15, 1 ] ], 2, "ASL(2, 4)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ] ] ], 11 ],
[ 16, 11520, 0, "1", [ [ 15, 1 ] ], 2, "2^4.S(6)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
            , [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] ], 18 ],
[ 17, 5760, 0, "1", [ [ 15, 1 ] ], 2, "2^4.A(6)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] ] ], 17 ],
[ 18, 1920, 0, "1", [ [ 5, 1 ], [ 10, 1 ] ], 1, "2^4:S(5)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ]
            , [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ] ], 13 ],
[ 19, 960, 0, "1", [ [ 5, 1 ], [ 10, 1 ] ], 1, "2^4:A(5)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ]
            , [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] ], 9 ],
[ 20, 40320, 0, "1", [ [ 15, 1 ] ], 3, "2^4.A(7)", [ "Z", 2, 4 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]
            , [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] ], 19 ],
[21, Factorial(16)/2,1,"2",[[15,1]],14, "Alt(16)", ["A",16, 1], "Alt", 21],
[22, Factorial(16),0,"2",[[15, 1]],16, "Sym(16)", ["A",16, 1], "Sym", 22]];
PRIMGRP[17]:= 
[[ 1, 17, 3, "1", [ [ 1, 16 ] ], 1, "C(17)", [ "Z", 17, 1 ], [  ], 1 ],
[ 2, 34, 2, "1", [ [ 2, 8 ] ], 1, "D(2*17)", [ "Z", 17, 1 ], 
  [ [ [ Z(17)^8 ] ] ], 2 ],
[ 3, 68, 2, "1", [ [ 4, 4 ] ], 1, "17:4", [ "Z", 17, 1 ], [ [ [ Z(17)^4 ] ] ],
  3 ],
[ 4, 136, 2, "1", [ [ 8, 2 ] ], 1, "17:8", [ "Z", 17, 1 ], 
  [ [ [ Z(17)^2 ] ] ], 4 ],
[ 5, 272, 2, "1", [ [ 16, 1 ] ], 2, "AGL(1, 17)", [ "Z", 17, 1 ], 
  [ [ [ Z(17) ] ] ], 5 ],
[ 6, 4080, 1, "2", [ [ 16, 1 ] ], 3, "L(2, 2^4)", [ "L", [ 2, 16 ], 1 ], 
  [ ( 3,13, 9,10,11, 7,17, 5, 4,12,14, 6, 8,16,15), 
      ( 1, 9, 2)( 3,14, 6)( 4,12,11)( 7,16,10)(13,17,15) ], 6 ],
[ 7, 8160, 0, "2", [ [ 16, 1 ] ], 3, "L(2, 2^4):2", [ "L", [ 2, 16 ], 1 ], 
  [ ( 3,13, 9,10,11, 7,17, 5, 4,12,14, 6, 8,16,15), 
      ( 1, 9, 2)( 3,14, 6)( 4,12,11)( 7,16,10)(13,17,15), 
      ( 3,12)( 4, 6)( 7,15)(10,17)(11,14)(13,16) ], 7 ],
[ 8, 16320, 0, "2", [ [ 16, 1 ] ], 3, "L(2, 2^4):4 = PGammaL(2, 2^4)", 
  [ "L", [ 2, 16 ], 1 ], 
  [ ( 3,13, 9,10,11, 7,17, 5, 4,12,14, 6, 8,16,15), ( 1, 9, 2)( 3,14, 6)
        ( 4,12,11)( 7,16,10)(13,17,15), ( 3,16,12,13)( 4,15, 6, 7)( 5, 8)
        (10,11,17,14) ], 8 ],
[9, Factorial(17)/2,1,"2",[[16,1]],15, "Alt(17)", ["A",17, 1], "Alt", 9],
[10, Factorial(17),0,"2",[[16, 1]],17, "Sym(17)", ["A",17, 1], "Sym", 10]];
PRIMGRP[18]:= 
[[ 1, 2448, 1, "2", [ [ 17, 1 ] ], 2, "PSL(2, 17)", [ "L", [ 2, 17 ], 1 ], 
  "psl", 1 ],
[ 2, 4896, 0, "2", [ [ 17, 1 ] ], 3, "PGL(2, 17)", [ "L", [ 2, 17 ], 1 ], 
  "pgl", 2 ],
[3, Factorial(18)/2,1,"2",[[17,1]],16, "Alt(18)", ["A",18, 1], "Alt", 3],
[4, Factorial(18),0,"2",[[17, 1]],18, "Sym(18)", ["A",18, 1], "Sym", 4]];
PRIMGRP[19]:= 
[[ 1, 19, 3, "1", [ [ 1, 18 ] ], 1, "C(19)", [ "Z", 19, 1 ], [  ], 1 ],
[ 2, 38, 2, "1", [ [ 2, 9 ] ], 1, "D(2*19)", [ "Z", 19, 1 ], 
  [ [ [ Z(19)^9 ] ] ], 2 ],
[ 3, 57, 2, "1", [ [ 3, 6 ] ], 1, "19:3", [ "Z", 19, 1 ], [ [ [ Z(19)^6 ] ] ],
  3 ],
[ 4, 114, 2, "1", [ [ 6, 3 ] ], 1, "19:6", [ "Z", 19, 1 ], 
  [ [ [ Z(19)^3 ] ] ], 4 ],
[ 5, 171, 2, "1", [ [ 9, 2 ] ], 1, "19:9", [ "Z", 19, 1 ], 
  [ [ [ Z(19)^2 ] ] ], 5 ],
[ 6, 342, 2, "1", [ [ 18, 1 ] ], 2, "AGL(1, 19)", [ "Z", 19, 1 ], 
  [ [ [ Z(19) ] ] ], 6 ],
[7, Factorial(19)/2,1,"2",[[18,1]],17, "Alt(19)", ["A",19, 1], "Alt", 7],
[8, Factorial(19),0,"2",[[18, 1]],19, "Sym(19)", ["A",19, 1], "Sym", 8]];
PRIMGRP[20]:= 
[[ 1, 3420, 1, "2", [ [ 19, 1 ] ], 2, "PSL(2, 19)", [ "L", [ 2, 19 ], 1 ], 
  "psl", 1 ],
[ 2, 6840, 0, "2", [ [ 19, 1 ] ], 3, "PGL(2, 19)", [ "L", [ 2, 19 ], 1 ], 
  "pgl", 2 ],
[3, Factorial(20)/2,1,"2",[[19,1]],18, "Alt(20)", ["A",20, 1], "Alt", 3],
[4, Factorial(20),0,"2",[[19, 1]],20, "Sym(20)", ["A",20, 1], "Sym", 4]];
PRIMGRP[21]:= 
[[ 1, 336, 0, "2", [ [ 4, 1 ], [ 8, 2 ] ], 1, "PGL(2, 7)", 
  [ "L", [ 2, 7 ], 1 ], 
  [ ( 1, 2)( 3, 6)( 8,15)( 9,13)(10,14)(11,12)(16,20)(17,21), 
      ( 1,19)( 2,21)( 3,15)( 4,20)( 5,14)( 6,13)( 7,17)(11,16)(12,18), 
      ( 1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15) ], 1 
 ],
[ 2, 2520, 1, "2", [ [ 10, 2 ] ], 1, "A(7)", [ "A", 7, 1 ], 
  [ ( 1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15), 
      ( 4, 6, 5)( 9,11,10)(13,15,14)(16,18,17)(19,20,21) ], 2 ],
[ 3, 5040, 0, "2", [ [ 10, 2 ] ], 1, "S(7)", [ "A", 7, 1 ], 
  [ ( 1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15), 
      ( 2, 3)( 4, 5, 6)( 7, 8)( 9,10,11)(13,17,15,16,14,18)(19,21,20) ], 3 ],
[ 4, 20160, 1, "2", [ [ 20, 1 ] ], 2, "PSL(3, 4)=M(21)", [ "L", [ 3, 4 ], 1 ],
  [ ( 1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15), 
      ( 2,14,18,20, 8)( 3, 7,12,13,19)( 4,21,17,15,10)( 5,11,16, 6, 9) ], 4 ],
[ 5, 40320, 0, "2", [ [ 20, 1 ] ], 2, "PSigmaL(3, 4)", [ "L", [ 3, 4 ], 1 ], 
  [ ( 1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15), 
      ( 2,14,18,20, 8)( 3, 7,12,13,19)( 4,21,17,15,10)( 5,11,16, 6, 9), 
      ( 2,10)( 3,13)( 4,11)( 5,18)( 8,15)( 9,17)(14,20) ], 5 ],
[ 6, 60480, 0, "2", [ [ 20, 1 ] ], 2, "PGL(3, 4)", [ "L", [ 3, 4 ], 1 ], 
  [ ( 1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15), 
      ( 2,14,18,20, 8)( 3, 7,12,13,19)( 4,21,17,15,10)( 5,11,16, 6, 9), 
      ( 2,10, 6)( 3,19,13)( 4,20,18)( 5,14,11)( 9,17,21) ], 6 ],
[ 7, 120960, 0, "2", [ [ 20, 1 ] ], 2, "PGammaL(3, 4)", [ "L", [ 3, 4 ], 1 ], 
  [ ( 1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15), 
      ( 2,14,18,20, 8)( 3, 7,12,13,19)( 4,21,17,15,10)( 5,11,16, 6, 9), 
      ( 2,10)( 3,13)( 4,11)( 5,18)( 8,15)( 9,17)(14,20), 
      ( 2,10, 6)( 3,19,13)( 4,20,18)( 5,14,11)( 9,17,21) ], 7 ],
[8, Factorial(21)/2,1,"2",[[20,1]],19, "Alt(21)", ["A",21, 1], "Alt", 8],
[9, Factorial(21),0,"2",[[20, 1]],21, "Sym(21)", ["A",21, 1], "Sym", 9]];
PRIMGRP[22]:= 
[[ 1, 443520, 1, "2", [ [ 21, 1 ] ], 3, "M(22)", [ "Spor", "M(22)", 1 ], 
  [ ( 1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15), 
      ( 2,14,18,20, 8)( 3, 7,12,13,19)( 4,21,17,15,10)( 5,11,16, 6, 9), 
      ( 1,22)( 2,10)( 3,14)( 4,17)( 8,15)( 9,11)(13,20)(19,21) ], 1 ],
[ 2, 887040, 0, "2", [ [ 21, 1 ] ], 3, "M(22):2", [ "Spor", "M(22)", 1 ], 
  [ ( 1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15), 
      ( 2,14,18,20, 8)( 3, 7,12,13,19)( 4,21,17,15,10)( 5,11,16, 6, 9), 
      ( 2,10)( 3,13)( 4,11)( 5,18)( 8,15)( 9,17)(14,20), 
      ( 1,22)( 2,10)( 3,14)( 4,17)( 8,15)( 9,11)(13,20)(19,21) ], 2 ],
[3, Factorial(22)/2,1,"2",[[21,1]],20, "Alt(22)", ["A",22, 1], "Alt", 3],
[4, Factorial(22),0,"2",[[21, 1]],22, "Sym(22)", ["A",22, 1], "Sym", 4]];
PRIMGRP[23]:= 
[[ 1, 23, 3, "1", [ [ 1, 22 ] ], 1, "C(23)", [ "Z", 23, 1 ], [  ], 1 ],
[ 2, 46, 2, "1", [ [ 2, 11 ] ], 1, "D(2*23)", [ "Z", 23, 1 ], 
  [ [ [ Z(23)^11 ] ] ], 2 ],
[ 3, 253, 2, "1", [ [ 11, 2 ] ], 1, "23:11", [ "Z", 23, 1 ], 
  [ [ [ Z(23)^2 ] ] ], 3 ],
[ 4, 506, 2, "1", [ [ 22, 1 ] ], 2, "AGL(1, 23)", [ "Z", 23, 1 ], 
  [ [ [ Z(23) ] ] ], 4 ],
[ 5, 10200960, 1, "2", [ [ 22, 1 ] ], 4, "M(23)", [ "Spor", "M(23)", 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23), 
      ( 2,16, 9, 6, 8)( 3,12,13,18, 4)( 7,17,10,11,22)(14,19,21,20,15) ], 5 ],
[6, Factorial(23)/2,1,"2",[[22,1]],21, "Alt(23)", ["A",23, 1], "Alt", 6],
[7, Factorial(23),0,"2",[[22, 1]],23, "Sym(23)", ["A",23, 1], "Sym", 7]];
PRIMGRP[24]:= 
[[ 1, 244823040, 1, "2", [ [ 23, 1 ] ], 5, "M(24)", [ "Spor", "M(24)", 1 ], 
  [ ( 1, 7,12,16,19,21, 6)( 2, 8,13,17,20, 5,11)( 3, 9,14,18, 4,10,15), 
      ( 2,14,18,20, 8)( 3, 7,12,13,19)( 4,21,17,15,10)( 5,11,16, 6, 9), 
      ( 1,22)( 2,10)( 3,14)( 4,17)( 8,15)( 9,11)(13,20)(19,21), 
      ( 3,19)( 4,14)( 5,20)( 6,10)( 8,15)(11,18)(17,21)(22,23), 
      ( 2,10)( 3,13)( 4,11)( 5,18)( 8,15)( 9,17)(14,20)(23,24) ], 3 ],
[ 2, 6072, 1, "2", [ [ 23, 1 ] ], 2, "PSL(2, 23)", [ "L", [ 2, 23 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23), 
      ( 2, 3, 5, 9,17,10,19,14, 4, 7,13)( 6,11,21,18,12,23,22,20,16, 8,15), 
      ( 1,24)( 2,23)( 3,12)( 4,16)( 5,18)( 6,10)( 7,20)( 8,14)( 9,21)(11,17)
        (13,22)(15,19) ], 1 ],
[ 3, 12144, 0, "2", [ [ 23, 1 ] ], 3, "PGL(2, 23)", [ "L", [ 2, 23 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23), 
      ( 2, 6, 3,11, 5,21, 9,18,17,12,10,23,19,22,14,20, 4,16, 7, 8,13,15), 
      ( 1,24)( 2,23)( 3,12)( 4,16)( 5,18)( 6,10)( 7,20)( 8,14)( 9,21)(11,17)
        (13,22)(15,19) ], 2 ],
[4, Factorial(24)/2,1,"2",[[23,1]],22, "Alt(24)", ["A",24, 1], "Alt", 4],
[5, Factorial(24),0,"2",[[23, 1]],24, "Sym(24)", ["A",24, 1], "Sym", 5]];
PRIMGRP[25]:= 
[[ 1, 75, 2, "1", [ [ 3, 8 ] ], 1, "5^2:3", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ] ], 1 ],
[ 2, 150, 2, "1", [ [ 3, 4 ], [ 6, 2 ] ], 1, "5^2:S(3)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^0, 0*Z(5) ], [ Z(5)^2, Z(5)^2 ] ] ], 3 ],
[ 3, 150, 2, "1", [ [ 6, 4 ] ], 1, "5^2:6", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^2, 0*Z(5) ], [ 0*Z(5), Z(5)^2 ] ] ], 2 ],
[ 4, 200, 2, "1", [ [ 8, 3 ] ], 1, "5^2:Q(8)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, 0*Z(5) ] ], 
      [ [ 0*Z(5), Z(5) ], [ Z(5), 0*Z(5) ] ] ], 6 ],
[ 5, 200, 2, "1", [ [ 4, 4 ], [ 8, 1 ] ], 1, "5^2:D(2*4)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, 0*Z(5) ] ], 
      [ [ Z(5)^0, 0*Z(5) ], [ 0*Z(5), Z(5)^2 ] ] ], 4 ],
[ 6, 200, 2, "1", [ [ 8, 3 ] ], 1, "5^2:8", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^3, 0*Z(5) ] ] ], 5 ],
[ 7, 300, 2, "1", [ [ 6, 4 ] ], 1, "5^2:D(2*6)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^2, 0*Z(5) ], [ 0*Z(5), Z(5)^2 ] ], 
      [ [ Z(5)^0, 0*Z(5) ], [ Z(5)^2, Z(5)^2 ] ] ], 9 ],
[ 8, 300, 2, "1", [ [ 12, 2 ] ], 1, "5^2:Q(12)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5)^3 ], [ Z(5)^3, 0*Z(5) ] ] ], 8 ],
[ 9, 300, 2, "1", [ [ 12, 2 ] ], 1, "5^2:12", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^3, 0*Z(5) ], [ 0*Z(5), Z(5)^3 ] ] ], 7 ],
[ 10, 400, 2, "1", [ [ 16, 1 ], [ 8, 1 ] ], 1, "5^2:8:2", [ "Z", 5, 2 ], 
  [ [ [ Z(5)^0, 0*Z(5) ], [ 0*Z(5), Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^3, 0*Z(5) ] ] ], 10 ],
[ 11, 400, 2, "1", [ [ 8, 3 ] ], 1, "5^2:D(2*4):2", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^0, 0*Z(5) ] ], 
      [ [ Z(5)^0, 0*Z(5) ], [ 0*Z(5), Z(5)^2 ] ], 
      [ [ Z(5)^3, 0*Z(5) ], [ 0*Z(5), Z(5)^3 ] ] ], 11 ],
[ 12, 600, 2, "1", [ [ 24, 1 ] ], 2, "5^2:3:8", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^2, Z(5) ], [ Z(5)^3, Z(5)^0 ] ] ], 15 ],
[ 13, 600, 2, "1", [ [ 12, 2 ] ], 1, "5^2:4 x D(2*3)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^0, 0*Z(5) ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^3, 0*Z(5) ], [ 0*Z(5), Z(5)^3 ] ] ], 12 ],
[ 14, 600, 2, "1", [ [ 24, 1 ] ], 2, "AGL(1, 25)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5), Z(5)^2 ], [ Z(5)^0, Z(5)^3 ] ] ], 14 ],
[ 15, 600, 2, "1", [ [ 24, 1 ] ], 2, "5^2:(Q(8):3)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5) ], [ Z(5), Z(5)^2 ] ] ], 13 ],
[ 16, 800, 2, "1", [ [ 16, 1 ], [ 8, 1 ] ], 1, "5^2:O+(2, 5)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^3, 0*Z(5) ] ], 
      [ [ Z(5)^0, 0*Z(5) ], [ 0*Z(5), Z(5) ] ] ], 16 ],
[ 17, 1200, 2, "1", [ [ 24, 1 ] ], 2, "AGammaL(1, 25)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^0, 0*Z(5) ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5), Z(5)^2 ], [ Z(5)^0, Z(5)^3 ] ] ], 18 ],
[ 18, 1200, 2, "1", [ [ 24, 1 ] ], 2, "5^2:((Q(8):3)'2)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5) ], [ Z(5), Z(5)^2 ] ], 
      [ [ Z(5), 0*Z(5) ], [ 0*Z(5), Z(5) ] ] ], 17 ],
[ 19, 2400, 2, "1", [ [ 24, 1 ] ], 2, "5^2:((Q(8):3)'4)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5) ], [ Z(5), Z(5)^2 ] ], 
      [ [ Z(5)^0, Z(5)^3 ], [ Z(5), Z(5)^2 ] ] ], 19 ],
[ 20, 3000, 0, "1", [ [ 24, 1 ] ], 2, "ASL(2, 5)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5)^2 ], [ Z(5)^0, Z(5)^2 ] ] ], 20 ],
[ 21, 6000, 0, "1", [ [ 24, 1 ] ], 2, "ASL(2, 5):2", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^0, 0*Z(5) ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^3, Z(5) ], [ Z(5)^0, Z(5)^0 ] ] ], 21 ],
[ 22, 12000, 0, "1", [ [ 24, 1 ] ], 2, "AGL(2, 5)", [ "Z", 5, 2 ], 
  [ [ [ 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^0, 0*Z(5) ], [ Z(5)^3, Z(5) ] ], 
      [ [ Z(5)^3, Z(5) ], [ Z(5)^0, Z(5)^0 ] ] ], 23 ],
[ 23, 7200, 0, "4c", [ [ 16, 1 ], [ 8, 1 ] ], 1, "(A(5) x A(5)):2", 
  [ "A", 5, 2 ], 
  [ ( 2, 6)( 3,11)( 4,16)( 5,21)( 8,12)( 9,17)(10,22)(14,18)(15,23)(20,24), 
      ( 1, 6,11,16,21)( 2, 7,12,17,22)( 3, 9,15,18,24, 5, 8,14,20,23, 4,10,13,
         19,25), ( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,17,23,14,20,21,12,18,24,
         15,16,22,13,19,25) ], 22 ],
[ 24, 14400, 0, "4c", [ [ 16, 1 ], [ 8, 1 ] ], 1, "(A(5) x A(5)):2^2", 
  [ "A", 5, 2 ], 
  [ ( 2, 6)( 3,11)( 4,16)( 5,21)( 8,12)( 9,17)(10,22)(14,18)(15,23)(20,24), 
      ( 1, 6,11,16,21)( 2, 7,12,17,22)( 3, 9,15,18,24, 5, 8,14,20,23, 4,10,13,
         19,25), ( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,17,23,14,20,21,12,18,24,
         15,16,22,13,19,25), ( 4, 5)( 9,10)(14,15)(16,21)(17,22)(18,23)(19,25)
        (20,24) ], 24 ],
[ 25, 14400, 0, "4c", [ [ 16, 1 ], [ 8, 1 ] ], 1, "(A(5) x A(5)):4", 
  [ "A", 5, 2 ], 
  [ ( 1, 6,11,16,21)( 2, 7,12,17,22)( 3, 9,15,18,24, 5, 8,14,20,23, 4,10,13,
         19,25), ( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,17,23,14,20,21,12,18,24,
         15,16,22,13,19,25), ( 2, 6)( 3,11)( 4,21, 5,16)( 8,12)( 9,22,10,17)
        (14,23,15,18)(19,24,25,20) ], 25 ],
[ 26, 28800, 0, "4c", [ [ 16, 1 ], [ 8, 1 ] ], 1, "(S(5) x S(5)):2", 
  [ "A", 5, 2 ], 
  [ ( 2, 6)( 3,11)( 4,16)( 5,21)( 8,12)( 9,17)(10,22)(14,18)(15,23)(20,24), 
      ( 1, 6,11,16,21)( 2, 7,12,17,22)( 3, 9,15,18,24, 5, 8,14,20,23, 4,10,13,
         19,25), ( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,17,23,14,20,21,12,18,24,
         15,16,22,13,19,25), ( 2, 6)( 3,11)( 4,21, 5,16)( 8,12)( 9,22,10,17)
        (14,23,15,18)(19,24,25,20) ], 26 ],
[27, Factorial(25)/2,1,"2",[[24,1]],23, "Alt(25)", ["A",25, 1], "Alt", 27],
[28, Factorial(25),0,"2",[[24, 1]],25, "Sym(25)", ["A",25, 1], "Sym", 28]];
PRIMGRP[26]:= 
[[ 1, 7800, 1, "2", [ [ 25, 1 ] ], 2, "PSL(2, 25)", [ "L", [ 2, 25 ], 1 ], 
  [ ( 2, 6,25)( 3,11,19)( 4,16,13)( 5,21, 7)( 8,10,20)( 9,15,14)(12,24,22)
        (17,18,23), ( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)
        (16,17,18,19,20)(21,22,23,24,25), 
      ( 2, 4, 5, 3)( 6,16,21,11)( 7,19,25,13)( 8,17,24,15)( 9,20,23,12)
        (10,18,22,14), ( 1,26)( 2, 5)( 6, 7)( 8,14)( 9,20)(10,15)(11,19)
        (12,23)(13,16)(17,22)(18,24)(21,25) ], 1 ],
[ 2, 15600, 0, "2", [ [ 25, 1 ] ], 3, "PGL(2, 25)", [ "L", [ 2, 25 ], 1 ], 
  [ ( 2, 6,25)( 3,11,19)( 4,16,13)( 5,21, 7)( 8,10,20)( 9,15,14)(12,24,22)
        (17,18,23), ( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)
        (16,17,18,19,20)(21,22,23,24,25), 
      ( 2,23, 4,12, 5, 9, 3,20)( 6,17,16,24,21,15,11, 8)( 7,14,19,10,25,18,13,
         22), ( 1,26)( 2, 5)( 6, 7)( 8,14)( 9,20)(10,15)(11,19)(12,23)(13,16)
        (17,22)(18,24)(21,25) ], 3 ],
[ 3, 15600, 0, "2", [ [ 25, 1 ] ], 2, "PSigmaL(2, 25)", [ "L", [ 2, 25 ], 1 ],
  [ ( 2, 6,25)( 3,11,19)( 4,16,13)( 5,21, 7)( 8,10,20)( 9,15,14)(12,24,22)
        (17,18,23), ( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)
        (16,17,18,19,20)(21,22,23,24,25), ( 2, 6)( 3,11)( 4,16)( 5,21)( 8,12)
        ( 9,17)(10,22)(14,18)(15,23)(20,24), 
      ( 2, 4, 5, 3)( 6,16,21,11)( 7,19,25,13)( 8,17,24,15)( 9,20,23,12)
        (10,18,22,14), ( 1,26)( 2, 5)( 6, 7)( 8,14)( 9,20)(10,15)(11,19)
        (12,23)(13,16)(17,22)(18,24)(21,25) ], 2 ],
[ 4, 15600, 0, "2", [ [ 25, 1 ] ], 3, "PSL(2, 25).2_3", [ "L", [ 2, 25 ], 1 ], 
  [ ( 2, 6,25)( 3,11,19)( 4,16,13)( 5,21, 7)( 8,10,20)( 9,15,14)(12,24,22)
        (17,18,23), ( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)
        (16,17,18,19,20)(21,22,23,24,25), 
      ( 2,15, 3,24, 5,17, 4, 8)( 6, 9,11,12,21,23,16,20)( 7,18,13,10,25,14,19,
         22), ( 1,26)( 2, 5)( 6, 7)( 8,14)( 9,20)(10,15)(11,19)(12,23)(13,16)
        (17,22)(18,24)(21,25) ], 4 ],
[ 5, 31200, 0, "2", [ [ 25, 1 ] ], 3, "PGammaL(2, 25)", [ "L", [ 2, 25 ], 1 ],
  [ ( 2, 6,25)( 3,11,19)( 4,16,13)( 5,21, 7)( 8,10,20)( 9,15,14)(12,24,22)
        (17,18,23), ( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)
        (16,17,18,19,20)(21,22,23,24,25), ( 2, 6)( 3,11)( 4,16)( 5,21)( 8,12)
        ( 9,17)(10,22)(14,18)(15,23)(20,24), 
      ( 2,23, 4,12, 5, 9, 3,20)( 6,17,16,24,21,15,11, 8)( 7,14,19,10,25,18,13,
         22), ( 1,26)( 2, 5)( 6, 7)( 8,14)( 9,20)(10,15)(11,19)(12,23)(13,16)
        (17,22)(18,24)(21,25) ], 5 ],
[6, Factorial(26)/2,1,"2",[[25,1]],24, "Alt(26)", ["A",26, 1], "Alt", 6],
[7, Factorial(26),0,"2",[[25, 1]],26, "Sym(26)", ["A",26, 1], "Sym", 7]];
PRIMGRP[27]:= 
[[ 1, 324, 2, "1", [ [ 12, 1 ], [ 4, 2 ], [ 6, 1 ] ], 1, "3^3.A(4)", 
  [ "Z", 3, 3 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3), 
              Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3), Z(3), Z(3) ] ] ], 1 ],
[ 2, 351, 2, "1", [ [ 13, 2 ] ], 1, "3^3:13", [ "Z", 3, 3 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3) ] ] ], 2 ],
[ 3, 648, 2, "1", [ [ 12, 1 ], [ 6, 1 ], [ 8, 1 ] ], 1, "3^3(A(4) x 2)", 
  [ "Z", 3, 3 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3), 
              Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3) ] ] ], 3 ],
[ 4, 648, 2, "1", [ [ 12, 1 ], [ 6, 1 ], [ 8, 1 ] ], 1, "3^3.2.A(4)", 
  [ "Z", 3, 3 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3)^0, 
              0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0 ] ] ], 5 ],
[ 5, 648, 2, "1", [ [ 12, 1 ], [ 4, 2 ], [ 6, 1 ] ], 1, "3^3.S(4)", 
  [ "Z", 3, 3 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3), 
              Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3), Z(3) ] ] ], 4 ],
[ 6, 702, 2, "1", [ [ 26, 1 ] ], 2, "AGL(1, 27)", [ "Z", 3, 3 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3) ] ], 
      [ [ Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3) ] ] ], 6 ],
[ 7, 1053, 2, "1", [ [ 13, 2 ] ], 1, "3^3.13.3", [ "Z", 3, 3 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3) ] ] ], 7 ],
[ 8, 1296, 2, "1", [ [ 12, 1 ], [ 6, 1 ], [ 8, 1 ] ], 1, "3^3(S(4) x 2)", 
  [ "Z", 3, 3 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3)^0 ], [ 0*Z(3), Z(3), 
              0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0, Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3) ] ] ], 8 ],
[ 9, 2106, 2, "1", [ [ 26, 1 ] ], 2, "AGammaL(1, 27)", [ "Z", 3, 3 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3) ] ], 
      [ [ Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3)^0, Z(3), 0*Z(3) ] ] ], 9 ],
[ 10, 151632, 0, "1", [ [ 26, 1 ] ], 2, "ASL(3, 3)", [ "Z", 3, 3 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3) ] ] ], 12 ],
[ 11, 303264, 0, "1", [ [ 26, 1 ] ], 2, "AGL(3, 3)", [ "Z", 3, 3 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3), Z(3) ] ] ], 13 ],
[ 12, 25920, 1, "2", [ [ 16, 1 ], [ 10, 1 ] ], 1, "PSp(4, 3)", 
  [ "B", [ 2, 3 ], 1 ], 
  [ ( 2, 4, 6, 8,10)( 3, 5, 7, 9,11)(13,20,24,18,15)(14,21,16,22,17)
        (19,23,25,26,27), ( 1,12,13,14,15)( 3,19,18,17,16)( 5,23,22,21,20)
        ( 6,27,24, 7,10)( 8,26,11,25, 9) ], 10 ],
[ 13, 51840, 0, "2", [ [ 16, 1 ], [ 10, 1 ] ], 1, "PSp(4, 3):2", 
  [ "B", [ 2, 3 ], 1 ], 
  [ ( 2, 4, 6, 8,10)( 3, 5, 7, 9,11)(13,20,24,18,15)(14,21,16,22,17)
        (19,23,25,26,27), ( 1,12,13,14,15)( 3,19,18,17,16)( 5,23,22,21,20)
        ( 6,27,24, 7,10)( 8,26,11,25, 9), ( 8,10)( 9,11)(14,15)(16,17)(20,21)
        (26,27) ], 11 ],
[14, Factorial(27)/2,1,"2",[[26,1]],25, "Alt(27)", ["A",27, 1], "Alt", 14],
[15, Factorial(27),0,"2",[[26, 1]],27, "Sym(27)", ["A",27, 1], "Sym", 15]];
PRIMGRP[28]:= 
[[ 1, 336, 0, "2", [ [ 12, 1 ], [ 3, 1 ], [ 6, 2 ] ], 1, "PGL(2, 7)", 
  [ "L", [ 2, 7 ], 1 ], 
  [ ( 1, 8,14,19,23,26, 6)( 2, 9,15,20,24, 5,12)( 3,10,16,21, 4,11,17)
        ( 7,13,18,22,25,27,28), ( 1,28)( 2,22)( 3,18)( 4,27)( 5,25)( 6,13)
        ( 8,21)( 9,17)(10,26)(11,24)(15,20)(16,19), 
      ( 1, 6)( 2, 5)( 3, 4)( 8,26)( 9,24)(10,21)(11,17)(13,28)(14,23)(15,20)
        (18,27)(22,25) ], 1 ],
[ 2, 504, 1, "2", [ [ 9, 3 ] ], 1, "PSL(2, 8)", [ "L", [ 2, 8 ], 1 ], 
  [ ( 2, 8,15)( 3,22,10)( 4,28,20)( 5,21,26)( 6,11,25)( 7,19,13)( 9,27,12)
        (14,16,18)(17,23,24), ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)
        (15,16,17,18,19,20,21)(22,23,24,25,26,27,28) ], 2 ],
[ 3, 1512, 0, "2", [ [ 27, 1 ] ], 2, "PGammaL(2, 8)", [ "L", [ 2, 8 ], 1 ], 
  [ ( 2, 8,15)( 3,22,10)( 4,28,20)( 5,21,26)( 6,11,25)( 7,19,13)( 9,27,12)
        (14,16,18)(17,23,24), ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)
        (15,16,17,18,19,20,21)(22,23,24,25,26,27,28), 
      ( 2, 3, 5)( 4, 7, 6)( 8,22,21)( 9,24,18)(10,26,15)(11,28,19)(12,23,16)
        (13,25,20)(14,27,17) ], 3 ],
[ 4, 6048, 1, "2", [ [ 27, 1 ] ], 2, "PSU(3, 3)", [ "2A", [ 2, 3 ], 1 ], 
  [ ( 1, 4, 2, 3)( 5,21, 9,15)( 6,19,10,22)( 7,16,11,25)( 8,26,12,20)
        (14,27,17,24), ( 1, 7, 9)( 2, 8,10)( 3, 5,11)( 4, 6,12)(13,18,14)
        (15,23,22)(16,28,26)(19,24,25)(20,27,21) ], 4 ],
[ 5, 12096, 0, "2", [ [ 27, 1 ] ], 2, "PGammaU(3, 3)", [ "2A", [ 2, 3 ], 1 ], 
  [ ( 1, 4, 2, 3)( 5,21, 9,15)( 6,19,10,22)( 7,16,11,25)( 8,26,12,20)
        (14,27,17,24), ( 1, 7, 9)( 2, 8,10)( 3, 5,11)( 4, 6,12)(13,18,14)
        (15,23,22)(16,28,26)(19,24,25)(20,27,21), 
      ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(15,16)(19,20)(21,25)(22,26)
        (23,28)(24,27) ], 6 ],
[ 6, 1451520, 1, "2", [ [ 27, 1 ] ], 2, "PSp(6, 2)", [ "B", [ 3, 2 ], 1 ], 
  [ ( 2, 4, 6, 8,10)( 3, 5, 7, 9,11)(13,20,24,18,15)(14,21,16,22,17)
        (19,23,25,26,27), ( 1,12,13,14,15)( 3,19,18,17,16)( 5,23,22,21,20)
        ( 6,27,24, 7,10)( 8,26,11,25, 9), ( 8,10)( 9,11)(14,15)(16,17)(20,21)
        (26,27), ( 1,28)(10,11)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)
        (18,21)(19,20) ], 12 ],
[ 7, 20160, 1, "2", [ [ 12, 1 ], [ 15, 1 ] ], 1, "A(8)", [ "A", 8, 1 ], 
  [ ( 1, 8,14,19,23,26, 6)( 2, 9,15,20,24, 5,12)( 3,10,16,21, 4,11,17)
        ( 7,13,18,22,25,27,28), ( 5, 7, 6)(11,13,12)(16,18,17)(20,22,21)
        (23,25,24)(26,27,28) ], 8 ],
[ 8, 40320, 0, "2", [ [ 12, 1 ], [ 15, 1 ] ], 1, "S(8)", [ "A", 8, 1 ], 
  [ ( 1, 8,14,19,23,26, 6)( 2, 9,15,20,24, 5,12)( 3,10,16,21, 4,11,17)
        ( 7,13,18,22,25,27,28), ( 3, 4)( 5, 6, 7)( 9,10)(11,12,13)(14,15)
        (16,17,18)(20,24,22,23,21,25)(26,28,27) ], 10 ],
[ 9, 9828, 1, "2", [ [ 27, 1 ] ], 2, "PSL(2, 27)", [ "L", [ 2, 27 ], 1 ], 
  [ ( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)
        (22,23,24)(25,26,27), ( 2, 4,10,26, 9,25, 6,16,17,11,20,18,14)
        ( 3, 7,19,15, 5,13, 8,22,24,21,12,23,27), 
      ( 1,28)( 2, 3)( 4,27)( 5,11)( 6,22)( 7,14)( 8,16)( 9,21)(10,23)(12,26)
        (13,17)(15,20)(18,19)(24,25) ], 5 ],
[ 10, 19656, 0, "2", [ [ 27, 1 ] ], 3, "PGL(2, 27)", [ "L", [ 2, 27 ], 1 ], 
  [ ( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)
        (22,23,24)(25,26,27), ( 2, 4,10,26, 9,25, 6,16,17,11,20,18,14)
        ( 3, 7,19,15, 5,13, 8,22,24,21,12,23,27), 
      ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)
        (16,22)(17,24)(18,23), ( 1,28)( 2, 3)( 4,27)( 5,11)( 6,22)( 7,14)
        ( 8,16)( 9,21)(10,23)(12,26)(13,17)(15,20)(18,19)(24,25) ], 7 ],
[ 11, 29484, 0, "2", [ [ 27, 1 ] ], 2, "PSL(2, 27):3", [ "L", [ 2, 27 ], 1 ], 
  [ ( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)
        (22,23,24)(25,26,27), ( 2, 4,10,26, 9,25, 6,16,17,11,20,18,14)
        ( 3, 7,19,15, 5,13, 8,22,24,21,12,23,27), 
      ( 4,11,26)( 5,12,27)( 6,10,25)( 7,21,15)( 8,19,13)( 9,20,14)(16,18,17)
        (22,23,24), ( 1,28)( 2, 3)( 4,27)( 5,11)( 6,22)( 7,14)( 8,16)( 9,21)
        (10,23)(12,26)(13,17)(15,20)(18,19)(24,25) ], 9 ],
[ 12, 58968, 0, "2", [ [ 27, 1 ] ], 3, "PGammaL(2, 27)", 
  [ "L", [ 2, 27 ], 1 ], 
  [ ( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)
        (22,23,24)(25,26,27), ( 2, 4,10,26, 9,25, 6,16,17,11,20,18,14)
        ( 3, 7,19,15, 5,13, 8,22,24,21,12,23,27), 
      ( 2, 3)( 4,15,11, 7,26,21)( 5,14,12, 9,27,20)( 6,13,10, 8,25,19)
        (16,24,18,22,17,23), ( 1,28)( 2, 3)( 4,27)( 5,11)( 6,22)( 7,14)( 8,16)
        ( 9,21)(10,23)(12,26)(13,17)(15,20)(18,19)(24,25) ], 11 ],
[13, Factorial(28)/2,1,"2",[[27,1]],26, "Alt(28)", ["A",28, 1], "Alt", 13],
[14, Factorial(28),0,"2",[[27, 1]],28, "Sym(28)", ["A",28, 1], "Sym", 14]];
PRIMGRP[29]:= 
[[ 1, 29, 3, "1", [ [ 1, 28 ] ], 1, "C(29)", [ "Z", 29, 1 ], [  ], 1 ],
[ 2, 58, 2, "1", [ [ 2, 14 ] ], 1, "D(2*29)", [ "Z", 29, 1 ], 
  [ [ [ Z(29)^14 ] ] ], 2 ],
[ 3, 116, 2, "1", [ [ 4, 7 ] ], 1, "29:4", [ "Z", 29, 1 ], 
  [ [ [ Z(29)^7 ] ] ], 3 ],
[ 4, 203, 2, "1", [ [ 7, 4 ] ], 1, "29:7", [ "Z", 29, 1 ], 
  [ [ [ Z(29)^4 ] ] ], 4 ],
[ 5, 406, 2, "1", [ [ 14, 2 ] ], 1, "29:14", [ "Z", 29, 1 ], 
  [ [ [ Z(29)^2 ] ] ], 5 ],
[ 6, 812, 2, "1", [ [ 28, 1 ] ], 2, "AGL(1, 29)", [ "Z", 29, 1 ], 
  [ [ [ Z(29) ] ] ], 6 ],
[7, Factorial(29)/2,1,"2",[[28,1]],27, "Alt(29)", ["A",29, 1], "Alt", 7],
[8, Factorial(29),0,"2",[[28, 1]],29, "Sym(29)", ["A",29, 1], "Sym", 8]];
PRIMGRP[30]:= 
[[ 1, 12180, 1, "2", [ [ 29, 1 ] ], 2, "PSL(2, 29)", [ "L", [ 2, 29 ], 1 ], 
  "psl", 1 ],
[ 2, 24360, 0, "2", [ [ 29, 1 ] ], 3, "PGL(2, 29)", [ "L", [ 2, 29 ], 1 ], 
  "pgl", 2 ],
[3, Factorial(30)/2,1,"2",[[29,1]],28, "Alt(30)", ["A",30, 1], "Alt", 3],
[4, Factorial(30),0,"2",[[29, 1]],30, "Sym(30)", ["A",30, 1], "Sym", 4]];
PRIMGRP[31]:= 
[[ 1, 31, 3, "1", [ [ 1, 30 ] ], 1, "C(31)", [ "Z", 31, 1 ], [  ], 1 ],
[ 2, 62, 2, "1", [ [ 2, 15 ] ], 1, "D(2*31)", [ "Z", 31, 1 ], 
  [ [ [ Z(31)^15 ] ] ], 2 ],
[ 3, 93, 2, "1", [ [ 3, 10 ] ], 1, "31:3", [ "Z", 31, 1 ], 
  [ [ [ Z(31)^10 ] ] ], 3 ],
[ 4, 155, 2, "1", [ [ 5, 6 ] ], 1, "31:5", [ "Z", 31, 1 ], 
  [ [ [ Z(31)^6 ] ] ], 4 ],
[ 5, 186, 2, "1", [ [ 6, 5 ] ], 1, "31:6", [ "Z", 31, 1 ], 
  [ [ [ Z(31)^5 ] ] ], 5 ],
[ 6, 310, 2, "1", [ [ 10, 3 ] ], 1, "31:10", [ "Z", 31, 1 ], 
  [ [ [ Z(31)^3 ] ] ], 6 ],
[ 7, 465, 2, "1", [ [ 15, 2 ] ], 1, "31:15", [ "Z", 31, 1 ], 
  [ [ [ Z(31)^2 ] ] ], 7 ],
[ 8, 930, 2, "1", [ [ 30, 1 ] ], 2, "AGL(1, 31)", [ "Z", 31, 1 ], 
  [ [ [ Z(31) ] ] ], 8 ],
[ 9, 372000, 1, "2", [ [ 30, 1 ] ], 2, "L(3, 5)", [ "L", [ 3, 5 ], 1 ], 
  [ ( 4,11)( 5,28,12,16)( 6,22,13, 8)( 7,23,19,30)( 9,17,18,29)(10,26,14,31)
        (15,27)(20,25,21,24), 
      ( 1,14,22, 5, 4,31,19,23, 7,24, 6, 9,28,27,26,20,17,30,21, 8,12,11, 3, 2
         )(10,29,25,18,16,15) ], 9 ],
[ 10, 9999360, 1, "2", [ [ 30, 1 ] ], 2, "L(5, 2)", [ "L", [ 5, 2 ], 1 ], 
  [ ( 1,19)( 6,12)( 9,24)(11,18)(15,16)(17,26)(23,27)(28,30), 
      ( 1, 5, 4, 3, 2)( 6,31,30, 8, 7)( 9,29,28,23,10)(11,22,21,20,19)
        (12,18,26,14,13)(15,25,24,27,17) ], 10 ],
[11, Factorial(31)/2,1,"2",[[30,1]],29, "Alt(31)", ["A",31, 1], "Alt", 11],
[12, Factorial(31),0,"2",[[30, 1]],31, "Sym(31)", ["A",31, 1], "Sym", 12]];
PRIMGRP[32]:= 
[[ 1, 992, 2, "1", [ [ 31, 1 ] ], 2, "AGL(1, 32)", [ "Z", 2, 5 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] ], 1 ],
[ 2, 4960, 2, "1", [ [ 31, 1 ] ], 2, "AGammaL(1, 32)", [ "Z", 2, 5 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ] ], 2 ],
[ 3, 319979520, 0, "1", [ [ 31, 1 ] ], 3, "ASL(5, 2)", [ "Z", 2, 5 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ] ], 5 ],
[ 4, 14880, 1, "2", [ [ 31, 1 ] ], 2, "PSL(2, 31)", [ "L", [ 2, 31 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
         25,26,27,28,29,30,31), ( 2,10,20,17,21,26, 9,11,29, 5, 6,15, 3,19, 8)
        ( 4,28,27,18,30,14,25,31,23,13,16,12, 7,24,22), 
      ( 1,32)( 2,31)( 3,16)( 4,11)( 5,24)( 6, 7)( 8,23)( 9,28)(10,25)(12,15)
        (13,19)(14,20)(17,30)(18,21)(22,29)(26,27) ], 3 ],
[ 5, 29760, 0, "2", [ [ 31, 1 ] ], 3, "PGL(2, 31)", [ "L", [ 2, 31 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
         25,26,27,28,29,30,31), 
      ( 2, 4,10,28,20,27,17,18,21,30,26,14, 9,25,11,31,29,23, 5,13, 6,16,15,
         12, 3, 7,19,24, 8,22), ( 1,32)( 2,31)( 3,16)( 4,11)( 5,24)( 6, 7)
        ( 8,23)( 9,28)(10,25)(12,15)(13,19)(14,20)(17,30)(18,21)(22,29)
        (26,27) ], 4 ],
[6, Factorial(32)/2,1,"2",[[31,1]],30, "Alt(32)", ["A",32, 1], "Alt", 6],
[7, Factorial(32),0,"2",[[31, 1]],32, "Sym(32)", ["A",32, 1], "Sym", 7]];
PRIMGRP[33]:= 
[[ 1, 32736, 1, "2", [ [ 32, 1 ] ], 3, "PSL(2, 32)", [ "L", [ 2, 32 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
         25,26,27,28,29,30,31), ( 1,32)( 2,19)( 3, 6)( 4,30)( 5,11)( 7,28)
        ( 8,23)( 9,21)(10,17)(12,20)(13,24)(14,15)(16,25)(18,31)(22,26)(27,29)
        , ( 2,31)( 3,30)( 4,29)( 5,28)( 6,27)( 7,26)( 8,25)( 9,24)(10,23)
        (11,22)(12,21)(13,20)(14,19)(15,18)(16,17)(32,33) ], 1 ],
[ 2, 163680, 0, "2", [ [ 32, 1 ] ], 3, "PGammaL(2, 32)", 
  [ "L", [ 2, 32 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
         25,26,27,28,29,30,31), ( 2,17, 9, 5, 3)( 4,18,25,13, 7)
        ( 6,19,10,21,11)( 8,20,26,29,15)(12,22,27,14,23)(16,24,28,30,31), 
      ( 1,32)( 2,19)( 3, 6)( 4,30)( 5,11)( 7,28)( 8,23)( 9,21)(10,17)(12,20)
        (13,24)(14,15)(16,25)(18,31)(22,26)(27,29), 
      ( 2,31)( 3,30)( 4,29)( 5,28)( 6,27)( 7,26)( 8,25)( 9,24)(10,23)(11,22)
        (12,21)(13,20)(14,19)(15,18)(16,17)(32,33) ], 2 ],
[3, Factorial(33)/2,1,"2",[[32,1]],31, "Alt(33)", ["A",33, 1], "Alt", 3],
[4, Factorial(33),0,"2",[[32, 1]],33, "Sym(33)", ["A",33, 1], "Sym", 4]];
PRIMGRP[34]:= 
[[1, Factorial(34)/2,1,"2",[[33,1]],32, "Alt(34)", ["A",34, 1], "Alt", 1],
[2, Factorial(34),0,"2",[[33, 1]],34, "Sym(34)", ["A",34, 1], "Sym", 2]];
PRIMGRP[35]:= 
[[ 1, 20160, 1, "2", [ [ 16, 1 ], [ 18, 1 ] ], 1, "A(8)", [ "A", 8, 1 ], 
  [ ( 1, 2, 4, 8, 3, 6,12)( 5,10,15,19,25,29,22)( 7,14,18,24,28,34, 9)
        (11,16,20,27,23,13,17)(21,26,32,35,30,31,33), 
      ( 1, 3, 7)( 2, 6, 5)( 9,10,12)(11,14,13)(16,18,21)(17,22,23)(19,26,24)
        (25,31,28)(27,33,29)(30,35,32) ], 3 ],
[ 2, 40320, 0, "2", [ [ 16, 1 ], [ 18, 1 ] ], 1, "S(8)", [ "A", 8, 1 ], 
  [ ( 1, 2, 4, 8, 3, 6,12)( 5,10,15,19,25,29,22)( 7,14,18,24,28,34, 9)
        (11,16,20,27,23,13,17)(21,26,32,35,30,31,33), 
      ( 1, 3)( 5, 6)( 9,12)(11,14)(17,23)(18,21)(19,24)(25,31)(27,29)(32,35) ]
    , 4 ],
[ 3, 2520, 1, "2", [ [ 12, 1 ], [ 4, 1 ], [ 18, 1 ] ], 1, "A(7)", 
  [ "A", 7, 1 ], 
  [ ( 1, 2, 4, 8, 3, 6,12)( 5,10,15,19,25,29,22)( 7,14,18,24,28,34, 9)
        (11,16,20,27,23,13,17)(21,26,32,35,30,31,33), 
      ( 2, 5,11)( 3, 7,15)( 4, 9,10)( 6,13,14)(16,21,23)(17,18,22)(19,26,20)
        (25,30,32)(27,33,34)(28,31,35) ], 1 ],
[ 4, 5040, 0, "2", [ [ 12, 1 ], [ 4, 1 ], [ 18, 1 ] ], 1, "S(7)", 
  [ "A", 7, 1 ], 
  [ ( 1, 2, 4, 8, 3, 6,12)( 5,10,15,19,25,29,22)( 7,14,18,24,28,34, 9)
        (11,16,20,27,23,13,17)(21,26,32,35,30,31,33), 
      ( 2, 5)( 3, 7)( 9,10)(13,14)(16,21)(17,22)(19,26)(27,33)(28,31)(30,32) ]
    , 2 ],
[5, Factorial(35)/2,1,"2",[[34,1]],33, "Alt(35)", ["A",35, 1], "Alt", 5],
[6, Factorial(35),0,"2",[[34, 1]],35, "Sym(35)", ["A",35, 1], "Sym", 6]];
PRIMGRP[36]:= 
[[ 1, 504, 1, "2", [ [ 14, 1 ], [ 7, 3 ] ], 1, "PSL(2, 8)", 
  [ "L", [ 2, 8 ], 1 ], 
  [ ( 1, 3)( 2, 7)( 4,13)( 5,12)( 6,18)( 8, 9)(10,14)(11,26)(16,23)(17,31)
        (20,32)(21,22)(24,27)(25,29)(33,34)(35,36), 
      ( 1, 2, 6,17,19, 8, 4)( 3,10,23,12,28,25,13)( 5,15, 9,22,20,14,18)
        ( 7,16,31,30,29,21,32)(11,26,34,35,27,33,24), 
      ( 1, 4)( 2, 8)( 3,11)( 5,14)( 6,19)( 7,21)( 9,22)(10,24)(12,27)(13,26)
        (15,20)(16,29)(23,33)(25,34)(28,35)(30,31) ], 1 ],
[ 2, 1512, 0, "2", [ [ 14, 1 ], [ 21, 1 ] ], 1, "PGammaL(2, 8)", 
  [ "L", [ 2, 8 ], 1 ], 
  [ ( 1, 3)( 2, 7)( 4,13)( 5,12)( 6,18)( 8, 9)(10,14)(11,26)(16,23)(17,31)
        (20,32)(21,22)(24,27)(25,29)(33,34)(35,36), 
      ( 1, 2, 6,17,19, 8, 4)( 3,10,23,12,28,25,13)( 5,15, 9,22,20,14,18)
        ( 7,16,31,30,29,21,32)(11,26,34,35,27,33,24), 
      ( 1, 4)( 2, 8)( 3,11)( 5,14)( 6,19)( 7,21)( 9,22)(10,24)(12,27)(13,26)
        (15,20)(16,29)(23,33)(25,34)(28,35)(30,31), 
      ( 1, 5,16)( 2, 9,21)( 3,12,23)( 4,14,29)( 6,20,31)( 7, 8,22)(10,25,13)
        (11,27,33)(15,30,19)(17,18,32)(24,34,26) ], 5 ],
[ 3, 720, 0, "2", [ [ 5, 1 ], [ 20, 1 ], [ 10, 1 ] ], 1, "M(10)", 
  [ "A", 6, 1 ], 
  [ ( 1, 2, 8)( 3,11,16)( 4,14, 7)( 5,15,32)( 6,19,10)( 9,26,36)(12,25,24)
        (13,20,30)(17,23,18)(21,22,35)(27,29,34)(28,31,33), 
      ( 1, 4)( 2, 7)( 3,12)( 5,16)( 6,21)( 8,23)( 9,10)(11,27)(13,17)(14,30)
        (18,20)(19,28)(22,31)(25,29)(32,34)(33,36), 
      ( 1, 6,17,10)( 2, 5,18,12)( 3, 9,16,21)( 4, 7,13,20)( 8,25,23,32)
        (14,31,30,33)(15,34,24,29)(19,27)(22,35,36,26), 
      ( 1, 5,17,12)( 2,10,18, 6)( 3,13,16, 4)( 7,21,20, 9)( 8,24,23,15)(11,28)
        (14,26,30,35)(19,27)(22,31,36,33)(25,34,32,29) ], 3 ],
[ 4, 720, 0, "2", [ [ 5, 1 ], [ 10, 3 ] ], 1, "PGL(2, 9)", [ "A", 6, 1 ], 
  [ ( 1, 2, 8)( 3,11,16)( 4,14, 7)( 5,15,32)( 6,19,10)( 9,26,36)(12,25,24)
        (13,20,30)(17,23,18)(21,22,35)(27,29,34)(28,31,33), 
      ( 1, 4)( 2, 7)( 3,12)( 5,16)( 6,21)( 8,23)( 9,10)(11,27)(13,17)(14,30)
        (18,20)(19,28)(22,31)(25,29)(32,34)(33,36), 
      ( 1, 3, 5,13,17,16,12, 4)( 2, 9,10, 7,18,21, 6,20)( 8,22,24,31,23,36,15,
         33)(11,19,28,27)(14,29,26,25,30,34,35,32) ], 2 ],
[ 5, 1440, 0, "2", [ [ 5, 1 ], [ 20, 1 ], [ 10, 1 ] ], 1, "PGammaL(2, 9)", 
  [ "A", 6, 1 ], 
  [ ( 1, 2, 8)( 3,11,16)( 4,14, 7)( 5,15,32)( 6,19,10)( 9,26,36)(12,25,24)
        (13,20,30)(17,23,18)(21,22,35)(27,29,34)(28,31,33), 
      ( 1, 4)( 2, 7)( 3,12)( 5,16)( 6,21)( 8,23)( 9,10)(11,27)(13,17)(14,30)
        (18,20)(19,28)(22,31)(25,29)(32,34)(33,36), 
      ( 1, 3, 5,13,17,16,12, 4)( 2, 9,10, 7,18,21, 6,20)( 8,22,24,31,23,36,15,
         33)(11,19,28,27)(14,29,26,25,30,34,35,32), 
      ( 1, 7)( 2, 4)( 3, 6)( 5, 9)( 8,14)(10,16)(11,19)(12,21)(13,18)(15,26)
        (17,20)(22,25)(23,30)(24,35)(27,28)(29,31)(32,36)(33,34) ], 4 ],
[ 6, 6048, 1, "2", [ [ 7, 2 ], [ 21, 1 ] ], 1, "PSU(3, 3)", 
  [ "2A", [ 2, 3 ], 1 ], 
  [ ( 1, 2,22,15)( 3,17,26,11, 4,20,25, 8)( 5,18,36,10, 6,19,35, 9)
        ( 7,24,12,23)(13,16,14,21)(27,31,32,28,33,29,30,34), 
      ( 4, 5, 6)( 7, 8, 9)(10,12,11)(13,15,14)(16,17,18)(19,21,20)(22,23,24)
        (25,27,29)(26,28,30)(31,35,34)(32,36,33), 
      ( 5, 6)( 8, 9)(10,11)(13,14)(17,18)(19,20)(23,24)(27,29)(28,30)(31,33)
        (32,34)(35,36), ( 3, 5, 4, 6)( 7,12)( 8,10,11, 9)(13,14)(16,21)
        (17,19,20,18)(23,24)(25,35,26,36)(27,32,33,30)(28,31,34,29) ], 6 ],
[ 7, 12096, 0, "2", [ [ 14, 1 ], [ 21, 1 ] ], 1, "PGammaU(3, 3)", 
  [ "2A", [ 2, 3 ], 1 ], 
  [ ( 1, 2,22,15)( 3,17,26,11, 4,20,25, 8)( 5,18,36,10, 6,19,35, 9)
        ( 7,24,12,23)(13,16,14,21)(27,31,32,28,33,29,30,34), 
      ( 4, 5, 6)( 7, 8, 9)(10,12,11)(13,15,14)(16,17,18)(19,21,20)(22,23,24)
        (25,27,29)(26,28,30)(31,35,34)(32,36,33), 
      ( 5, 6)( 8, 9)(10,11)(13,14)(17,18)(19,20)(23,24)(27,29)(28,30)(31,33)
        (32,34)(35,36), ( 3, 5, 4, 6)( 7,12)( 8,10,11, 9)(13,14)(16,21)
        (17,19,20,18)(23,24)(25,35,26,36)(27,32,33,30)(28,31,34,29), 
      ( 2,15)( 3, 8)( 4,11)( 5, 9)( 6,10)( 7,13)(12,14)(16,23)(17,25)(18,35)
        (19,36)(20,26)(21,24)(27,32)(28,34)(30,33) ], 8 ],
[ 8, 25920, 1, "2", [ [ 15, 1 ], [ 20, 1 ] ], 1, "PSp(4, 3)", 
  [ "B", [ 2, 3 ], 1 ], 
  [ ( 2, 3, 5,10,18)( 4, 8,15,26,30)( 6,12,17,25,22)( 7,13,23,24,29)
        ( 9,14,19,27,31)(11,20,16,28,34)(21,32,35,33,36), 
      ( 1, 2, 4, 8,16)( 3, 6, 7,14,25)( 5,11,21,32,35)( 9,17,18,28,29)
        (10,19,30,22,33)(12,13,20,24,31)(15,27,34,36,23) ], 11 ],
[ 9, 51840, 0, "2", [ [ 15, 1 ], [ 20, 1 ] ], 1, "PSp(4, 3):2", 
  [ "B", [ 2, 3 ], 1 ], 
  [ ( 2, 3, 5,10,18)( 4, 8,15,26,30)( 6,12,17,25,22)( 7,13,23,24,29)
        ( 9,14,19,27,31)(11,20,16,28,34)(21,32,35,33,36), 
      ( 1, 2, 4, 8,16)( 3, 6, 7,14,25)( 5,11,21,32,35)( 9,17,18,28,29)
        (10,19,30,22,33)(12,13,20,24,31)(15,27,34,36,23), 
      ( 3, 7)( 4, 9)(12,22)(13,24)(14,15)(16,17)(18,29)(19,31)(25,34)(32,35) ]
    , 13 ],
[ 10, 1451520, 1, "2", [ [ 35, 1 ] ], 2, "PSp(6, 2)", [ "B", [ 3, 2 ], 1 ], 
  [ ( 1, 2, 4, 8, 3, 6,12)( 5,10,15,19,25,29,22)( 7,14,18,24,28,34, 9)
        (11,16,20,27,23,13,17)(21,26,32,35,30,31,33), 
      ( 1, 3)( 5, 6)( 9,12)(11,14)(17,23)(18,21)(19,24)(25,31)(27,29)(32,35), 
      ( 1,36)( 4,23)( 6,20)( 9,16)(10,21)(13,19)(14,26)(25,34)(27,30)(32,33) ]
    , 20 ],
[ 11, 181440, 1, "2", [ [ 14, 1 ], [ 21, 1 ] ], 1, "A(9)", [ "A", 9, 1 ], 
  [ ( 1, 2, 3, 5, 7,10,13)( 4, 6, 8,11,15,22,31)( 9,12,16,24,17,25,34)
        (14,20,18,19,28,33,23)(21,30,26,27,35,36,32), 
      (10,14,21)(13,18,26)(15,23,32)(19,27,31)(20,29,30)(24,33,36)(28,35,34) ]
    , 14 ],
[ 12, 362880, 0, "2", [ [ 14, 1 ], [ 21, 1 ] ], 1, "S(9)", [ "A", 9, 1 ], 
  [ ( 1, 2, 3, 5, 7,10,13)( 4, 6, 8,11,15,22,31)( 9,12,16,24,17,25,34)
        (14,20,18,19,28,33,23)(21,30,26,27,35,36,32), 
      ( 2, 4)( 6, 9)(10,14,21)(12,17)(13,19,26,31,18,27)(15,23,32)(20,29,30)
        (22,25)(24,33,36)(28,35,34) ], 16 ],
[ 13, 259200, 0, "4c", [ [ 25, 1 ], [ 10, 1 ] ], 1, "(A(6) x A(6)):2", 
  [ "A", 6, 2 ], 
  [ ( 1, 3, 8)( 2, 6,11,18,26, 7, 5,10,16,24, 4, 9,15,22,30)(12,17,23,32,13)
        (20,25,31,35,21)(27,29,33,34,36), 
      ( 1, 2, 5)( 3, 7,12,19,27, 6, 8,13,20,28, 4, 9,14,21,29)(10,11,17,25,33)
        (16,23,31,34,22)(26,30,32,35,36), ( 2, 3)( 5, 8)( 6, 7)(10,13)(11,12)
        (14,15)(16,20)(18,19)(21,22)(23,25)(24,28)(26,27)(29,30)(32,33)
        (34,35) ], 15 ],
[ 14, 518400, 0, "4c", [ [ 25, 1 ], [ 10, 1 ] ], 1, "(A(6) x A(6)):2^2", 
  [ "A", 6, 2 ], 
  [ ( 1, 3, 8)( 2, 6,11,18,26, 7, 5,10,16,24, 4, 9,15,22,30)(12,17,23,32,13)
        (20,25,31,35,21)(27,29,33,34,36), 
      ( 1, 2, 5)( 3, 7,12,19,27, 6, 8,13,20,28, 4, 9,14,21,29)(10,11,17,25,33)
        (16,23,31,34,22)(26,30,32,35,36), ( 2, 3)( 5, 8)( 6, 7)(10,13)(11,12)
        (14,15)(16,20)(18,19)(21,22)(23,25)(24,28)(26,27)(29,30)(32,33)(34,35)
        , ( 1, 4)( 2, 3)( 5, 6)( 7, 8)(10,15)(13,14)(18,22)(19,21)(24,26)
        (27,28) ], 18 ],
[ 15, 518400, 0, "4c", [ [ 25, 1 ], [ 10, 1 ] ], 1, "(A(6) x A(6)):4", 
  [ "A", 6, 2 ], 
  [ ( 1, 3, 8)( 2, 6,11,18,26, 7, 5,10,16,24, 4, 9,15,22,30)(12,17,23,32,13)
        (20,25,31,35,21)(27,29,33,34,36), 
      ( 1, 2, 5)( 3, 7,12,19,27, 6, 8,13,20,28, 4, 9,14,21,29)(10,11,17,25,33)
        (16,23,31,34,22)(26,30,32,35,36), 
      ( 1, 3, 4, 2)( 5, 8, 6, 7)(10,13,15,14)(11,12)(16,20)(18,19,22,21)
        (23,25)(24,28,26,27)(29,30)(32,33)(34,35) ], 17 ],
[ 16, 1036800, 0, "4c", [ [ 25, 1 ], [ 10, 1 ] ], 1, "(S(6) x S(6)):2", 
  [ "A", 6, 2 ], 
  [ ( 1, 3, 8)( 2, 6,11,18,26, 7, 5,10,16,24, 4, 9,15,22,30)(12,17,23,32,13)
        (20,25,31,35,21)(27,29,33,34,36), 
      ( 1, 2, 5)( 3, 7,12,19,27, 6, 8,13,20,28, 4, 9,14,21,29)(10,11,17,25,33)
        (16,23,31,34,22)(26,30,32,35,36), ( 2, 3)( 5, 8)( 6, 7)(10,13)(11,12)
        (14,15)(16,20)(18,19)(21,22)(23,25)(24,28)(26,27)(29,30)(32,33)(34,35)
        , ( 1, 3, 4, 2)( 5, 8, 6, 7)(10,13,15,14)(11,12)(16,20)(18,19,22,21)
        (23,25)(24,28,26,27)(29,30)(32,33)(34,35) ], 19 ],
[ 17, 7200, 0, "4c", [ [ 25, 1 ], [ 10, 1 ] ], 1, "(A(5) x A(5)):2", 
  [ "A", 5, 2 ], 
  [ ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(14,18)(15,23)(16,17)(19,21)(20,22)
        (24,26)(25,28)(27,34)(31,32)(35,36), 
      ( 1, 3)( 2, 4, 7,15,17,33,32, 9,14,22)( 5, 6,12,21,34)( 8,19,13,29,28,
         23,11,24,26,36)(10,18)(20,27,25,35,30), 
      ( 1, 2)( 3, 5,10,23,16,33,31, 8,18,20)( 4, 6,11,19,27)( 7,14)
        ( 9,21,13,29,25,15,12,26,24,35)(22,34,28,36,30) ], 7 ],
[ 18, 14400, 0, "4c", [ [ 25, 1 ], [ 10, 1 ] ], 1, "(A(5) x A(5)).4", 
  [ "A", 5, 2 ], 
  [ ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(14,18)(15,23)(16,17)(19,21)(20,22)
        (24,26)(25,28)(27,34)(31,32)(35,36), 
      ( 1, 3)( 2, 4, 7,15,17,33,32, 9,14,22)( 5, 6,12,21,34)( 8,19,13,29,28,
         23,11,24,26,36)(10,18)(20,27,25,35,30), 
      ( 1, 2)( 3, 5,10,23,16,33,31, 8,18,20)( 4, 6,11,19,27)( 7,14)
        ( 9,21,13,29,25,15,12,26,24,35)(22,34,28,36,30), 
      ( 4, 9,22,15)( 5, 8,20,23)( 6,13,30,29)( 7,17,14,32)(10,16,18,31)
        (11,25,36,21)(12,28,35,19)(24,34,26,27) ], 10 ],
[ 19, 14400, 0, "4c", [ [ 25, 1 ], [ 10, 1 ] ], 1, "((A(5) x A(5)):2)2", 
  [ "A", 5, 2 ], 
  [ ( 1, 3)( 2, 4, 7,15,17,33,32, 9,14,22)( 5, 6,12,21,34)( 8,19,13,29,28,23,
         11,24,26,36)(10,18)(20,27,25,35,30), 
      ( 1, 2)( 3, 5,10,23,16,33,31, 8,18,20)( 4, 6,11,19,27)( 7,14)
        ( 9,21,13,29,25,15,12,26,24,35)(22,34,28,36,30), 
      ( 2, 3)( 4, 8, 9,20,22,23,15, 5)( 6,11,13,25,30,36,29,21)
        ( 7,16,17,18,14,31,32,10)(12,27,28,24,35,34,19,26) ], 9 ],
[ 20, 28800, 0, "4c", [ [ 25, 1 ], [ 10, 1 ] ], 1, "(S(5) x S(5)):2", 
  [ "A", 5, 2 ], 
  [ ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(14,18)(15,23)(16,17)(19,21)(20,22)
        (24,26)(25,28)(27,34)(31,32)(35,36), 
      ( 1, 3)( 2, 4, 7,15,17,33,32, 9,14,22)( 5, 6,12,21,34)( 8,19,13,29,28,
         23,11,24,26,36)(10,18)(20,27,25,35,30), 
      ( 1, 2)( 3, 5,10,23,16,33,31, 8,18,20)( 4, 6,11,19,27)( 7,14)
        ( 9,21,13,29,25,15,12,26,24,35)(22,34,28,36,30), 
      ( 2, 3)( 4, 8, 9,20,22,23,15, 5)( 6,11,13,25,30,36,29,21)
        ( 7,16,17,18,14,31,32,10)(12,27,28,24,35,34,19,26) ], 12 ],
[21, Factorial(36)/2,1,"2",[[35,1]],34, "Alt(36)", ["A",36, 1], "Alt", 21],
[22, Factorial(36),0,"2",[[35, 1]],36, "Sym(36)", ["A",36, 1], "Sym", 22]];
PRIMGRP[37]:= 
[[ 1, 37, 3, "1", [ [ 1, 36 ] ], 1, "C(37)", [ "Z", 37, 1 ], [  ], 1 ],
[ 2, 74, 2, "1", [ [ 2, 18 ] ], 1, "D(2*37)", [ "Z", 37, 1 ], 
  [ [ [ Z(37)^18 ] ] ], 2 ],
[ 3, 111, 2, "1", [ [ 3, 12 ] ], 1, "37:3", [ "Z", 37, 1 ], 
  [ [ [ Z(37)^12 ] ] ], 3 ],
[ 4, 148, 2, "1", [ [ 4, 9 ] ], 1, "37:4", [ "Z", 37, 1 ], 
  [ [ [ Z(37)^9 ] ] ], 4 ],
[ 5, 222, 2, "1", [ [ 6, 6 ] ], 1, "37:6", [ "Z", 37, 1 ], 
  [ [ [ Z(37)^6 ] ] ], 5 ],
[ 6, 333, 2, "1", [ [ 9, 4 ] ], 1, "37:9", [ "Z", 37, 1 ], 
  [ [ [ Z(37)^4 ] ] ], 6 ],
[ 7, 444, 2, "1", [ [ 12, 3 ] ], 1, "37:12", [ "Z", 37, 1 ], 
  [ [ [ Z(37)^3 ] ] ], 7 ],
[ 8, 666, 2, "1", [ [ 18, 2 ] ], 1, "37:18", [ "Z", 37, 1 ], 
  [ [ [ Z(37)^2 ] ] ], 8 ],
[ 9, 1332, 2, "1", [ [ 36, 1 ] ], 2, "AGL(1, 37)", [ "Z", 37, 1 ], 
  [ [ [ Z(37) ] ] ], 9 ],
[10, Factorial(37)/2,1,"2",[[36,1]],35, "Alt(37)", ["A",37, 1], "Alt", 10],
[11, Factorial(37),0,"2",[[36, 1]],37, "Sym(37)", ["A",37, 1], "Sym", 11]];
PRIMGRP[38]:= 
[[ 1, 25308, 1, "2", [ [ 37, 1 ] ], 2, "PSL(2, 37)", [ "L", [ 2, 37 ], 1 ], 
  "psl", 1 ],
[ 2, 50616, 0, "2", [ [ 37, 1 ] ], 3, "PGL(2, 37)", [ "L", [ 2, 37 ], 1 ], 
  "pgl", 2 ],
[3, Factorial(38)/2,1,"2",[[37,1]],36, "Alt(38)", ["A",38, 1], "Alt", 3],
[4, Factorial(38),0,"2",[[37, 1]],38, "Sym(38)", ["A",38, 1], "Sym", 4]];
PRIMGRP[39]:= 
[[1, Factorial(39)/2,1,"2",[[38,1]],37, "Alt(39)", ["A",39, 1], "Alt", 1],
[2, Factorial(39),0,"2",[[38, 1]],39, "Sym(39)", ["A",39, 1], "Sym", 2]];
PRIMGRP[40]:= 
[[ 1, 25920, 1, "2", [ [ 12, 1 ], [ 27, 1 ] ], 1, "PSp(4, 3)", 
  [ "B", [ 2, 3 ], 1 ], 
  [ ( 1, 2, 5,10,19)( 3, 4, 7,15,28)( 6,12,21,13,25)( 8,16,29,38,14)
        ( 9,18,31,20,27)(11,22,33,37,34)(17,30,23,35,32)(24,26,39,40,36), 
      ( 1, 3, 8,16, 7)( 2, 6,13,19,17)( 4, 9, 5,10,20)(11,23,36,26,35)
        (12,21,31,25,18)(14,27,29,22,34)(15,28,30,38,32)(24,37,40,39,33) ], 1 
 ],
[ 2, 51840, 0, "2", [ [ 12, 1 ], [ 27, 1 ] ], 1, "PSp(4, 3):2", 
  [ "B", [ 2, 3 ], 1 ], 
  [ ( 1, 2, 5,10,19)( 3, 4, 7,15,28)( 6,12,21,13,25)( 8,16,29,38,14)
        ( 9,18,31,20,27)(11,22,33,37,34)(17,30,23,35,32)(24,26,39,40,36), 
      ( 1, 3, 8,16, 7)( 2, 6,13,19,17)( 4, 9, 5,10,20)(11,23,36,26,35)
        (12,21,31,25,18)(14,27,29,22,34)(15,28,30,38,32)(24,37,40,39,33), 
      ( 1, 4)( 2, 7)( 3, 9)( 5,11)( 6,14)( 8,17)(10,21)(12,24)(13,26)(15,27)
        (16,28)(18,32)(19,22)(20,23)(25,38)(29,30)(31,37)(33,36)(34,39)
        (35,40) ], 3 ],
[ 3, 25920, 1, "2", [ [ 12, 1 ], [ 27, 1 ] ], 1, "PSp(4, 3)", 
  [ "B", [ 2, 3 ], 1 ], 
  [ ( 1, 2, 4, 7,10)( 3, 6,12,21,20)( 5, 9,16,27,38)( 8,14,24,32,34)
        (11,19,23,31,17)(13,22,30,40,37)(15,25,28,18,29)(26,33,39,36,35), 
      ( 1, 3, 4, 7,12)( 2, 5,10,18,22)( 6, 9,16,27,38)( 8,15,26,36,37)
        (11,20,30,40,34)(13,23,19,29,17)(14,25,28,21,31)(24,33,39,32,35) ], 2 
 ],
[ 4, 51840, 0, "2", [ [ 12, 1 ], [ 27, 1 ] ], 1, "PSp(4, 3):2", 
  [ "B", [ 2, 3 ], 1 ], 
  [ ( 1, 2, 4, 7,10)( 3, 6,12,21,20)( 5, 9,16,27,38)( 8,14,24,32,34)
        (11,19,23,31,17)(13,22,30,40,37)(15,25,28,18,29)(26,33,39,36,35), 
      ( 1, 3, 4, 7,12)( 2, 5,10,18,22)( 6, 9,16,27,38)( 8,15,26,36,37)
        (11,20,30,40,34)(13,23,19,29,17)(14,25,28,21,31)(24,33,39,32,35), 
      ( 4, 8)( 5,11)( 6,13)( 9,17)(10,14)(12,15)(16,28)(19,22)(20,23)(24,34)
        (25,35)(26,37)(27,39)(29,31)(38,40) ], 4 ],
[ 5, 6065280, 1, "2", [ [ 39, 1 ] ], 2, "PSL(4, 3)", [ "L", [ 4, 3 ], 1 ], 
  [ ( 1,17,25,21,36,12,34,22, 7,18,13, 9, 8,29,27,11,30,37,40, 5)
        ( 2,31, 6,19,39,35,24,16,20,28,38,26,23, 3,10,32, 4,33,15,14), 
      ( 1, 4, 9, 6, 3, 7, 2,11,12,10, 8,13, 5)(15,21,27,34,18,33,20,29,30,28,
         38,31,23)(16,19,40,24,22,25,17,35,37,39,26,36,32) ], 5 ],
[ 6, 12130560, 0, "2", [ [ 39, 1 ] ], 2, "PGL(4, 3)", [ "L", [ 4, 3 ], 1 ], 
  [ ( 1,17,25,21,36,12,34,22, 7,18,13, 9, 8,29,27,11,30,37,40, 5)
        ( 2,31, 6,19,39,35,24,16,20,28,38,26,23, 3,10,32, 4,33,15,14), 
      ( 1, 4, 9, 6, 3, 7, 2,11,12,10, 8,13, 5)(15,21,27,34,18,33,20,29,30,28,
         38,31,23)(16,19,40,24,22,25,17,35,37,39,26,36,32), 
      ( 1,31,17, 6,25,19,21,39,36,35,12,24,34,16,22,20, 7,28,18,38,13,26, 9,
         23, 8, 3,29,10,27,32,11, 4,30,33,37,15,40,14, 5, 2) ], 6 ],
[7, Factorial(40)/2,1,"2",[[39,1]],38, "Alt(40)", ["A",40, 1], "Alt", 7],
[8, Factorial(40),0,"2",[[39, 1]],40, "Sym(40)", ["A",40, 1], "Sym", 8]];
PRIMGRP[41]:= 
[[ 1, 41, 3, "1", [ [ 1, 40 ] ], 1, "C(41)", [ "Z", 41, 1 ], [  ], 1 ],
[ 2, 82, 2, "1", [ [ 2, 20 ] ], 1, "D(2*41)", [ "Z", 41, 1 ], 
  [ [ [ Z(41)^20 ] ] ], 2 ],
[ 3, 164, 2, "1", [ [ 4, 10 ] ], 1, "41:4", [ "Z", 41, 1 ], 
  [ [ [ Z(41)^10 ] ] ], 3 ],
[ 4, 205, 2, "1", [ [ 5, 8 ] ], 1, "41:5", [ "Z", 41, 1 ], 
  [ [ [ Z(41)^8 ] ] ], 4 ],
[ 5, 328, 2, "1", [ [ 8, 5 ] ], 1, "41:8", [ "Z", 41, 1 ], 
  [ [ [ Z(41)^5 ] ] ], 5 ],
[ 6, 410, 2, "1", [ [ 10, 4 ] ], 1, "41:10", [ "Z", 41, 1 ], 
  [ [ [ Z(41)^4 ] ] ], 6 ],
[ 7, 820, 2, "1", [ [ 20, 2 ] ], 1, "41:20", [ "Z", 41, 1 ], 
  [ [ [ Z(41)^2 ] ] ], 7 ],
[ 8, 1640, 2, "1", [ [ 40, 1 ] ], 2, "AGL(1, 41)", [ "Z", 41, 1 ], 
  [ [ [ Z(41) ] ] ], 8 ],
[9, Factorial(41)/2,1,"2",[[40,1]],39, "Alt(41)", ["A",41, 1], "Alt", 9],
[10, Factorial(41),0,"2",[[40, 1]],41, "Sym(41)", ["A",41, 1], "Sym", 10]];
PRIMGRP[42]:= 
[[ 1, 34440, 1, "2", [ [ 41, 1 ] ], 2, "PSL(2, 41)", [ "L", [ 2, 41 ], 1 ], 
  "psl", 1 ],
[ 2, 68880, 0, "2", [ [ 41, 1 ] ], 3, "PGL(2, 41)", [ "L", [ 2, 41 ], 1 ], 
  "pgl", 2 ],
[3, Factorial(42)/2,1,"2",[[41,1]],40, "Alt(42)", ["A",42, 1], "Alt", 3],
[4, Factorial(42),0,"2",[[41, 1]],42, "Sym(42)", ["A",42, 1], "Sym", 4]];
PRIMGRP[43]:= 
[[ 1, 43, 3, "1", [ [ 1, 42 ] ], 1, "C(43)", [ "Z", 43, 1 ], [  ], 1 ],
[ 2, 86, 2, "1", [ [ 2, 21 ] ], 1, "D(2*43)", [ "Z", 43, 1 ], 
  [ [ [ Z(43)^21 ] ] ], 2 ],
[ 3, 129, 2, "1", [ [ 3, 14 ] ], 1, "43:3", [ "Z", 43, 1 ], 
  [ [ [ Z(43)^14 ] ] ], 3 ],
[ 4, 258, 2, "1", [ [ 6, 7 ] ], 1, "43:6", [ "Z", 43, 1 ], 
  [ [ [ Z(43)^7 ] ] ], 4 ],
[ 5, 301, 2, "1", [ [ 7, 6 ] ], 1, "43:7", [ "Z", 43, 1 ], 
  [ [ [ Z(43)^6 ] ] ], 5 ],
[ 6, 602, 2, "1", [ [ 14, 3 ] ], 1, "43:14", [ "Z", 43, 1 ], 
  [ [ [ Z(43)^3 ] ] ], 6 ],
[ 7, 903, 2, "1", [ [ 21, 2 ] ], 1, "43:21", [ "Z", 43, 1 ], 
  [ [ [ Z(43)^2 ] ] ], 7 ],
[ 8, 1806, 2, "1", [ [ 42, 1 ] ], 2, "AGL(1, 43)", [ "Z", 43, 1 ], 
  [ [ [ Z(43) ] ] ], 8 ],
[9, Factorial(43)/2,1,"2",[[42,1]],41, "Alt(43)", ["A",43, 1], "Alt", 9],
[10, Factorial(43),0,"2",[[42, 1]],43, "Sym(43)", ["A",43, 1], "Sym", 10]];
PRIMGRP[44]:= 
[[ 1, 39732, 1, "2", [ [ 43, 1 ] ], 2, "PSL(2, 43)", [ "L", [ 2, 43 ], 1 ], 
  "psl", 1 ],
[ 2, 79464, 0, "2", [ [ 43, 1 ] ], 3, "PGL(2, 43)", [ "L", [ 2, 43 ], 1 ], 
  "pgl", 2 ],
[3, Factorial(44)/2,1,"2",[[43,1]],42, "Alt(44)", ["A",44, 1], "Alt", 3],
[4, Factorial(44),0,"2",[[43, 1]],44, "Sym(44)", ["A",44, 1], "Sym", 4]];
PRIMGRP[45]:= 
[[ 1, 720, 0, "2", [ [ 4, 1 ], [ 16, 1 ], [ 8, 3 ] ], 1, "PGL(2, 9)", 
  [ "A", 6, 1 ], 
  [ ( 1, 2, 7)( 3,11,27)( 4,14,31)( 5,18,32)( 6,20,36)( 8,24,39)( 9,25,28)
        (10,26,42)(12,15,16)(13,30,40)(17,19,21)(22,35,44)(23,33,29)(34,43,37)
        (38,45,41), ( 1, 3, 5, 6, 7,22,13,23)( 2, 8, 9,10)( 4,15,16,17,14,21,
         19,12)(11,28,29,38,44,25,20,37)(18,33,34,24,40,36,41,39)
        (26,43,35,32,42,45,27,30), ( 1, 4)( 3,12)( 5,19)( 6,21)( 7,14)( 8,10)
        (11,20)(13,16)(15,23)(17,22)(18,33)(24,41)(25,28)(26,43)(27,32)(29,44)
        (30,35)(34,39)(36,40)(42,45) ], 1 ],
[ 2, 720, 0, "2", [ [ 4, 1 ], [ 16, 2 ], [ 8, 1 ] ], 1, "M(10)", 
  [ "A", 6, 1 ], 
  [ ( 1, 2, 7)( 3,11,27)( 4,14,31)( 5,18,32)( 6,20,36)( 8,24,39)( 9,25,28)
        (10,26,42)(12,15,16)(13,30,40)(17,19,21)(22,35,44)(23,33,29)(34,43,37)
        (38,45,41), ( 1, 4)( 3,12)( 5,19)( 6,21)( 7,14)( 8,10)(11,20)(13,16)
        (15,23)(17,22)(18,33)(24,41)(25,28)(26,43)(27,32)(29,44)(30,35)(34,39)
        (36,40)(42,45), ( 1, 6, 7,23)( 2,10)( 3,13,22, 5)( 4,17,14,12)( 8, 9)
        (11,28,44,25)(15,19,21,16)(18,35,40,27)(20,38,29,37)(24,32,39,30)
        (26,41,42,34)(33,45,36,43), ( 1, 5, 7,13)( 2, 9)( 3, 6,22,23)
        ( 4,16,14,19)( 8,10)(11,29,44,20)(12,15,17,21)(18,34,40,41)
        (24,36,39,33)(25,37,28,38)(26,35,42,27)(30,43,32,45) ], 2 ],
[ 3, 1440, 0, "2", [ [ 4, 1 ], [ 16, 2 ], [ 8, 1 ] ], 1, "PGammaL(2, 9)", 
  [ "A", 6, 1 ], 
  [ ( 1, 2, 7)( 3,11,27)( 4,14,31)( 5,18,32)( 6,20,36)( 8,24,39)( 9,25,28)
        (10,26,42)(12,15,16)(13,30,40)(17,19,21)(22,35,44)(23,33,29)(34,43,37)
        (38,45,41), ( 1, 3, 5, 6, 7,22,13,23)( 2, 8, 9,10)( 4,15,16,17,14,21,
         19,12)(11,28,29,38,44,25,20,37)(18,33,34,24,40,36,41,39)
        (26,43,35,32,42,45,27,30), ( 1, 4)( 3,12)( 5,19)( 6,21)( 7,14)( 8,10)
        (11,20)(13,16)(15,23)(17,22)(18,33)(24,41)(25,28)(26,43)(27,32)(29,44)
        (30,35)(34,39)(36,40)(42,45), ( 3, 6)( 5,13)( 8,10)(11,20)(12,21)
        (15,17)(16,19)(18,30)(22,23)(24,26)(27,36)(29,44)(32,40)(33,35)(34,45)
        (37,38)(39,42)(41,43) ], 3 ],
[ 4, 25920, 1, "2", [ [ 12, 1 ], [ 32, 1 ] ], 1, "PSp(4, 3)", 
  [ "B", [ 2, 3 ], 1 ], 
  [ ( 1, 3, 6,12,19)( 2, 5,10,18,11)( 4, 8,15,22,29)( 7,14,20,28,40)
        ( 9,16,24,33,13)(17,25,34,36,31)(21,30,41,45,32)(23,35,42,37,39)
        (26,27,38,44,43), ( 1, 2, 4, 7,13)( 3, 5, 9,14, 8)( 6,11,15,21,29)
        (10,17,24,31,19)(12,18,26,37,43)(16,23,34,35,33)(20,27,38,44,40)
        (22,32,41,45,30)(25,36,42,28,39) ], 4 ],
[ 5, 51840, 0, "2", [ [ 12, 1 ], [ 32, 1 ] ], 1, "PSp(4, 3):2", 
  [ "B", [ 2, 3 ], 1 ], 
  [ ( 1, 3, 6,12,19)( 2, 5,10,18,11)( 4, 8,15,22,29)( 7,14,20,28,40)
        ( 9,16,24,33,13)(17,25,34,36,31)(21,30,41,45,32)(23,35,42,37,39)
        (26,27,38,44,43), ( 1, 2, 4, 7,13)( 3, 5, 9,14, 8)( 6,11,15,21,29)
        (10,17,24,31,19)(12,18,26,37,43)(16,23,34,35,33)(20,27,38,44,40)
        (22,32,41,45,30)(25,36,42,28,39), ( 7,13)( 8,14)(11,18)(12,19)(16,20)
        (17,26)(21,31)(22,33)(23,32)(24,29)(25,30)(27,39)(28,40)(37,43)
        (41,42) ], 5 ],
[ 6, 1814400, 1, "2", [ [ 16, 1 ], [ 28, 1 ] ], 1, "A(10)", [ "A", 10, 1 ], 
  [ ( 1, 2, 3, 6, 9,14,19)( 4, 7,10,15,12,17,23)( 5, 8,13,18,24,11,16)
        (20,26,33,21,28,36,31,38,40,25,32,39,43,45,44,22,29,37,30,35,42)
        (27,34,41), ( 2, 4)( 5, 8)( 6,10,15,21,28,13,18,23,30,32)
        ( 7,11,16,22,29,12,17,19,25,26)( 9,14,20,27,35)(24,31,38,43,45)(33,40)
        (34,36,42,44,41)(37,39) ], 6 ],
[ 7, 3628800, 0, "2", [ [ 16, 1 ], [ 28, 1 ] ], 1, "S(10)", [ "A", 10, 1 ], 
  [ ( 1, 2, 3, 6, 9,14,19)( 4, 7,10,15,12,17,23)( 5, 8,13,18,24,11,16)
        (20,26,33,21,28,36,31,38,40,25,32,39,43,45,44,22,29,37,30,35,42)
        (27,34,41), ( 2, 4)( 5, 8)( 6,10,15,21,28,13,18,23,30,32)
        ( 7,11,16,22,29,12,17,19,25,26)( 9,14,20,27,35)(24,31,38,43,45)(33,40)
        (34,36,42,44,41)(37,39), ( 2, 5)( 4, 8)( 7,12)(11,17)(16,19)(22,25)
        (26,29)(33,40) ], 7 ],
[8, Factorial(45)/2,1,"2",[[44,1]],43, "Alt(45)", ["A",45, 1], "Alt", 8],
[9, Factorial(45),0,"2",[[44, 1]],45, "Sym(45)", ["A",45, 1], "Sym", 9]];
PRIMGRP[46]:= 
[[1, Factorial(46)/2,1,"2",[[45,1]],44, "Alt(46)", ["A",46, 1], "Alt", 1],
[2, Factorial(46),0,"2",[[45, 1]],46, "Sym(46)", ["A",46, 1], "Sym", 2]];
PRIMGRP[47]:= 
[[ 1, 47, 3, "1", [ [ 1, 46 ] ], 1, "C(47)", [ "Z", 47, 1 ], [  ], 1 ],
[ 2, 94, 2, "1", [ [ 2, 23 ] ], 1, "D(2*47)", [ "Z", 47, 1 ], 
  [ [ [ Z(47)^23 ] ] ], 2 ],
[ 3, 1081, 2, "1", [ [ 23, 2 ] ], 1, "47:23", [ "Z", 47, 1 ], 
  [ [ [ Z(47)^2 ] ] ], 3 ],
[ 4, 2162, 2, "1", [ [ 46, 1 ] ], 2, "AGL(1, 47)", [ "Z", 47, 1 ], 
  [ [ [ Z(47) ] ] ], 4 ],
[5, Factorial(47)/2,1,"2",[[46,1]],45, "Alt(47)", ["A",47, 1], "Alt", 5],
[6, Factorial(47),0,"2",[[46, 1]],47, "Sym(47)", ["A",47, 1], "Sym", 6]];
PRIMGRP[48]:= 
[[ 1, 51888, 1, "2", [ [ 47, 1 ] ], 2, "PSL(2, 47)", [ "L", [ 2, 47 ], 1 ], 
  "psl", 1 ],
[ 2, 103776, 0, "2", [ [ 47, 1 ] ], 3, "PGL(2, 47)", [ "L", [ 2, 47 ], 1 ], 
  "pgl", 2 ],
[3, Factorial(48)/2,1,"2",[[47,1]],46, "Alt(48)", ["A",48, 1], "Alt", 3],
[4, Factorial(48),0,"2",[[47, 1]],48, "Sym(48)", ["A",48, 1], "Sym", 4]];
PRIMGRP[49]:= 
[[ 1, 196, 2, "1", [ [ 4, 12 ] ], 1, "7^2:4", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ] ], 1 ],
[ 2, 294, 2, "1", [ [ 3, 6 ], [ 6, 5 ] ], 1, "7^2:S(3)", [ "Z", 7, 2 ], 
  [ [ [ Z(7)^0, 0*Z(7) ], [ Z(7)^3, Z(7)^3 ] ], 
      [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, Z(7)^3 ] ] ], 2 ],
[ 3, 392, 2, "1", [ [ 4, 6 ], [ 8, 3 ] ], 1, "7^2:D(2*4)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^0, 0*Z(7) ], [ 0*Z(7), Z(7)^3 ] ] ], 5 ],
[ 4, 392, 2, "1", [ [ 8, 6 ] ], 1, "7^2:Q(8)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^4, Z(7)^5 ], [ Z(7)^5, Z(7) ] ] ], 4 ],
[ 5, 392, 2, "1", [ [ 8, 6 ] ], 1, "7^2:8", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, Z(7) ] ] ], 3 ],
[ 6, 588, 2, "1", [ [ 12, 4 ] ], 1, "7^2:Q(12)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^4, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ] ], 6 ],
[ 7, 588, 2, "1", [ [ 12, 1 ], [ 6, 6 ] ], 1, "7^2:D(2*6)", [ "Z", 7, 2 ], 
  [ [ [ Z(7)^0, 0*Z(7) ], [ Z(7)^3, Z(7)^3 ] ], 
      [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, Z(7)^3 ] ], 
      [ [ Z(7)^3, 0*Z(7) ], [ 0*Z(7), Z(7)^3 ] ] ], 8 ],
[ 8, 588, 2, "1", [ [ 12, 4 ] ], 1, "7^2:12", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ] ], 7 ],
[ 9, 784, 2, "1", [ [ 8, 6 ] ], 1, "7^2:D(2*8)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, Z(7) ] ], 
      [ [ Z(7)^0, 0*Z(7) ], [ Z(7), Z(7)^3 ] ] ], 11 ],
[ 10, 784, 2, "1", [ [ 16, 3 ] ], 1, "7^2:16", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^0, Z(7)^3 ] ] ], 10 ],
[ 11, 784, 2, "1", [ [ 16, 3 ] ], 1, "7^2:Q(16)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, Z(7) ] ], 
      [ [ Z(7)^3, Z(7)^0 ], [ Z(7)^5, Z(7)^0 ] ] ], 9 ],
[ 12, 882, 2, "1", [ [ 6, 2 ], [ 18, 1 ], [ 9, 2 ] ], 1, "7^2:3 x D(2*3)", 
  [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^0, 0*Z(7) ] ], [ [ Z(7)^0, 0*Z(7) ], 
          [ 0*Z(7), Z(7)^2 ] ] ], 12 ],
[ 13, 1176, 2, "1", [ [ 12, 4 ] ], 1, "7^2:3:D(2*4)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^0, 0*Z(7) ] ], 
      [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^4 ] ], 
      [ [ Z(7)^0, 0*Z(7) ], [ 0*Z(7), Z(7)^3 ] ] ], 17 ],
[ 14, 1176, 2, "1", [ [ 12, 2 ], [ 24, 1 ] ], 1, "7^2:3 x D(2*4)", 
  [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], [ [ Z(7)^0, 0*Z(7) ], 
          [ 0*Z(7), Z(7)^3 ] ], [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ] ], 
  18 ],
[ 15, 1176, 2, "1", [ [ 24, 2 ] ], 1, "7^2:24", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, Z(7) ] ], 
      [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ] ], 13 ],
[ 16, 1176, 2, "1", [ [ 24, 2 ] ], 1, "7^2:3 x Q(8)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^4, Z(7)^5 ], [ Z(7)^5, Z(7) ] ], 
      [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ] ], 14 ],
[ 17, 1176, 2, "1", [ [ 24, 1 ], [ 8, 3 ] ], 1, "7^2:Q(8):3", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^5, Z(7)^4 ], [ Z(7)^4, Z(7)^2 ] ], 
      [ [ Z(7)^0, 0*Z(7) ], [ Z(7)^5, Z(7)^4 ] ] ], 16 ],
[ 18, 1176, 2, "1", [ [ 24, 2 ] ], 1, "7^2:Q(8):3", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^4, Z(7)^5 ], [ Z(7)^5, Z(7) ] ], 
      [ [ Z(7)^4, Z(7)^0 ], [ 0*Z(7), Z(7)^2 ] ] ], 15 ],
[ 19, 1568, 2, "1", [ [ 16, 3 ] ], 1, "7^2:Q(16):2", [ "Z", 7, 2 ], 
  [ [ [ Z(7)^0, 0*Z(7) ], [ Z(7)^3, Z(7)^3 ] ], 
      [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^0, Z(7)^3 ] ] ], 19 ],
[ 20, 1764, 2, "1", [ [ 12, 1 ], [ 36, 1 ] ], 1, "7^2:3 x Q(12)", 
  [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], [ [ Z(7)^0, 0*Z(7) ], 
          [ 0*Z(7), Z(7)^2 ] ] ], 20 ],
[ 21, 1764, 2, "1", [ [ 12, 1 ], [ 18, 2 ] ], 1, "7^2:3 x D(2*6)", 
  [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^0, 0*Z(7) ] ], [ [ Z(7)^3, 0*Z(7) ], 
          [ 0*Z(7), Z(7)^3 ] ], [ [ Z(7)^0, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ] ], 
  21 ],
[ 22, 2352, 2, "1", [ [ 48, 1 ] ], 2, "7^2:(3 x Q(16))", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, Z(7) ] ], 
      [ [ Z(7)^3, Z(7)^0 ], [ Z(7)^5, Z(7)^0 ] ], 
      [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ] ], 23 ],
[ 23, 2352, 2, "1", [ [ 48, 1 ] ], 2, "AGL(1, 49)=7^2:48", [ "Z", 7, 2 ], 
  [ [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ], 
      [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^0, Z(7)^3 ] ] ], 24 ],
[ 24, 2352, 2, "1", [ [ 24, 2 ] ], 1, "7^2:3 x D(2*8)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, Z(7) ] ], 
      [ [ Z(7)^0, 0*Z(7) ], [ Z(7), Z(7)^3 ] ], 
      [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ] ], 25 ],
[ 25, 2352, 2, "1", [ [ 48, 1 ] ], 2, "7^2:(Q(8)'D(2*3))", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, Z(7) ] ], 
      [ [ Z(7)^3, Z(7)^0 ], [ Z(7)^5, Z(7)^0 ] ], 
      [ [ Z(7), Z(7) ], [ Z(7)^5, Z(7) ] ] ], 22 ],
[ 26, 3528, 2, "1", [ [ 12, 1 ], [ 36, 1 ] ], 1, "(AGL(1, 7) x AGL(1, 7)):2", 
  [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^0, 0*Z(7) ] ], [ [ Z(7)^0, 0*Z(7) ], 
          [ 0*Z(7), Z(7)^3 ] ], [ [ Z(7)^0, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ] ], 
  27 ],
[ 27, 3528, 2, "1", [ [ 24, 2 ] ], 1, "7^2:3 x (Q(8):3)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^4, Z(7)^5 ], [ Z(7)^5, Z(7) ] ], 
      [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ], 
      [ [ Z(7)^4, Z(7)^0 ], [ 0*Z(7), Z(7)^2 ] ] ], 26 ],
[ 28, 4704, 2, "1", [ [ 48, 1 ] ], 2, "AGammaL(1, 49)", [ "Z", 7, 2 ], 
  [ [ [ Z(7)^0, 0*Z(7) ], [ Z(7)^3, Z(7)^3 ] ], 
      [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ], 
      [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^0, Z(7)^3 ] ] ], 28 ],
[ 29, 7056, 2, "1", [ [ 48, 1 ] ], 2, "7^2:((Q(8)'D(2*3)) x 3)", 
  [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, Z(7) ] ], [ [ Z(7)^3, Z(7)^0 ], 
          [ Z(7)^5, Z(7)^0 ] ], [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ], 
      [ [ Z(7), Z(7) ], [ Z(7)^5, Z(7) ] ] ], 29 ],
[ 30, 16464, 0, "1", [ [ 48, 1 ] ], 2, "ASL(2, 7)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^0, 0*Z(7) ], [ Z(7)^3, Z(7)^0 ] ] ], 30 ],
[ 31, 32928, 0, "1", [ [ 48, 1 ] ], 2, "ASL(2, 7):2", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ 0*Z(7), Z(7)^3 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^0, 0*Z(7) ], [ Z(7)^3, Z(7)^0 ] ] ], 31 ],
[ 32, 49392, 0, "1", [ [ 48, 1 ] ], 2, "ASL(2, 7):3", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ], 
      [ [ Z(7)^0, 0*Z(7) ], [ Z(7)^3, Z(7)^0 ] ] ], 32 ],
[ 33, 98784, 0, "1", [ [ 48, 1 ] ], 2, "AGL(2, 7)", [ "Z", 7, 2 ], 
  [ [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ 0*Z(7), Z(7)^3 ], [ Z(7)^3, 0*Z(7) ] ], 
      [ [ Z(7)^2, 0*Z(7) ], [ 0*Z(7), Z(7)^2 ] ], 
      [ [ Z(7)^0, 0*Z(7) ], [ Z(7)^3, Z(7)^0 ] ] ], 34 ],
[ 34, 56448, 0, "4c", [ [ 12, 1 ], [ 36, 1 ] ], 1, 
  "(PSL(3, 2) x PSL(3, 2)):2", [ "L", [ 2, 7 ], 2 ], 
  [ ( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)(13,37)
        (14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)
        (42,48), ( 1, 8,15,22,29,36,43)( 2,10,16,24,30,38,44, 3, 9,17,23,31,
         37,45)( 4,14,18,28,32,42,46, 7,11,21,25,35,39,49)( 5,12,19,26,33,40,
         47)( 6,13,20,27,34,41,48), 
      ( 1, 2, 3, 4, 5, 6, 7)( 8,16,10,18,12,20,14,15, 9,17,11,19,13,21)
        (22,44,24,46,26,48,28,43,23,45,25,47,27,49)(29,30,31,32,33,34,35)
        (36,37,38,39,40,41,42) ], 33 ],
[ 35, 12700800, 0, "4c", [ [ 12, 1 ], [ 36, 1 ] ], 1, "(A(7) x A(7)):2", 
  [ "A", 7, 2 ], 
  [ ( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)(13,37)
        (14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)
        (42,48), ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,16,17,18,19,
         20,21)(22,23,24,25,26,27,28)(29,37,45,32,40,48,35,36,44,31,39,47,34,
         42,43,30,38,46,33,41,49), 
      ( 1, 8,15,22,29,36,43)( 2, 9,16,23,30,37,44)( 3,10,17,24,31,38,45)
        ( 4,11,18,25,32,39,46)( 5,13,21,26,34,42,47, 6,14,19,27,35,40,48, 7,
         12,20,28,33,41,49) ], 35 ],
[ 36, 25401600, 0, "4c", [ [ 12, 1 ], [ 36, 1 ] ], 1, "(A(7) x A(7)):2^2", 
  [ "A", 7, 2 ], 
  [ ( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)(13,37)
        (14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)
        (42,48), ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,16,17,18,19,
         20,21)(22,23,24,25,26,27,28)(29,37,45,32,40,48,35,36,44,31,39,47,34,
         42,43,30,38,46,33,41,49), 
      ( 1, 8,15,22,29,36,43)( 2, 9,16,23,30,37,44)( 3,10,17,24,31,38,45)
        ( 4,11,18,25,32,39,46)( 5,13,21,26,34,42,47, 6,14,19,27,35,40,48, 7,
         12,20,28,33,41,49), ( 6, 7)(13,14)(20,21)(27,28)(34,35)(36,43)(37,44)
        (38,45)(39,46)(40,47)(41,49)(42,48) ], 36 ],
[ 37, 25401600, 0, "4c", [ [ 12, 1 ], [ 36, 1 ] ], 1, "(A(7) x A(7)):4", 
  [ "A", 7, 2 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,16,17,18,19,20,21)
        (22,23,24,25,26,27,28)(29,37,45,32,40,48,35,36,44,31,39,47,34,42,43,
         30,38,46,33,41,49), ( 1, 8,15,22,29,36,43)( 2, 9,16,23,30,37,44)
        ( 3,10,17,24,31,38,45)( 4,11,18,25,32,39,46)( 5,13,21,26,34,42,47, 6,
         14,19,27,35,40,48, 7,12,20,28,33,41,49), 
      ( 2, 8)( 3,15)( 4,22)( 5,29)( 6,43, 7,36)(10,16)(11,23)(12,30)
        (13,44,14,37)(18,24)(19,31)(20,45,21,38)(26,32)(27,46,28,39)
        (34,47,35,40)(41,48,49,42) ], 37 ],
[ 38, 50803200, 0, "4c", [ [ 12, 1 ], [ 36, 1 ] ], 1, "(S(7) x S(7)):2", 
  [ "A", 7, 2 ], 
  [ ( 2, 8)( 3,15)( 4,22)( 5,29)( 6,36)( 7,43)(10,16)(11,23)(12,30)(13,37)
        (14,44)(18,24)(19,31)(20,38)(21,45)(26,32)(27,39)(28,46)(34,40)(35,47)
        (42,48), ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,16,17,18,19,
         20,21)(22,23,24,25,26,27,28)(29,37,45,32,40,48,35,36,44,31,39,47,34,
         42,43,30,38,46,33,41,49), 
      ( 1, 8,15,22,29,36,43)( 2, 9,16,23,30,37,44)( 3,10,17,24,31,38,45)
        ( 4,11,18,25,32,39,46)( 5,13,21,26,34,42,47, 6,14,19,27,35,40,48, 7,
         12,20,28,33,41,49), ( 6, 7)(13,14)(20,21)(27,28)(34,35)(41,42)
        (48,49) ], 38 ],
[39, Factorial(49)/2,1,"2",[[48,1]],47, "Alt(49)", ["A",49, 1], "Alt", 39],
[40, Factorial(49),0,"2",[[48, 1]],49, "Sym(49)", ["A",49, 1], "Sym", 40]];
PRIMGRP[50]:= 
[[ 1, 126000, 1, "2", [ [ 7, 1 ], [ 42, 1 ] ], 1, "PSU(3, 5)", 
  [ "2A", [ 2, 5 ], 1 ], 
  [ ( 3, 4, 5, 6, 7)(10,12,18,16,27)(11,15,25,32,39)(13,21,22,33,38)
        (14,23,35,40,19)(17,20,30,36,41)(24,37,43,49,29)(26,28,31,34,42)
        (44,48,47,45,46), ( 2, 3)( 5, 6)(10,13)(11,16)(12,19)(14,15)(17,27)
        (18,26)(20,21)(22,32)(23,36)(24,37)(25,35)(30,34)(31,33)(38,40)(41,42)
        (44,45)(46,47)(49,50), ( 2, 3, 4, 5, 6, 7, 8)( 9,10,11,14,22,32,38)
        (12,17,28,23,34,41,46)(13,20,25,36,43,48,27)(15,24,35,39,44,50,49)
        (16,26,21,31,37,42,47)(18,19,29,30,33,40,45), 
      ( 1,13,31,30,18,26,27)( 2, 3,34, 5,41,28,44)( 4,14,16,17,45,22,20)
        ( 6,25,47,33,32,12,11)( 7,48,38,10,19,42,23)( 8,50,49,29,24,37,43)
        (15,35,46,21,40,39,36) ], 5 ],
[ 2, 252000, 0, "2", [ [ 7, 1 ], [ 42, 1 ] ], 1, "PSU(3, 5):2", 
  [ "2A", [ 2, 5 ], 1 ], 
  [ ( 3, 4, 5, 6, 7)(10,12,18,16,27)(11,15,25,32,39)(13,21,22,33,38)
        (14,23,35,40,19)(17,20,30,36,41)(24,37,43,49,29)(26,28,31,34,42)
        (44,48,47,45,46), ( 2, 3)( 5, 6)(10,13)(11,16)(12,19)(14,15)(17,27)
        (18,26)(20,21)(22,32)(23,36)(24,37)(25,35)(30,34)(31,33)(38,40)(41,42)
        (44,45)(46,47)(49,50), ( 2, 3, 4, 5, 6, 7, 8)( 9,10,11,14,22,32,38)
        (12,17,28,23,34,41,46)(13,20,25,36,43,48,27)(15,24,35,39,44,50,49)
        (16,26,21,31,37,42,47)(18,19,29,30,33,40,45), 
      ( 1, 9)( 2,50)( 3,49)( 4,29)( 5,24)( 6,37)( 7,43)(10,13)(11,31)(12,21)
        (14,30)(15,34)(16,33)(17,40)(18,22)(19,20)(23,36)(25,42)(26,32)(27,38)
        (28,39)(35,41) ], 7 ],
[ 3, 58800, 1, "2", [ [ 49, 1 ] ], 2, "PSL(2, 49)", [ "L", [ 2, 49 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,16,17,18,19,20,21)
        (22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)
        (43,44,45,46,47,48,49), 
      ( 2,41, 8,38, 7,17,43,20)( 3,25,15,26, 6,33,36,32)( 4, 9,22,14, 5,49,29,
         44)(10,13,21,42,48,45,37,16)(11,46,28,23,47,12,30,35)(18,34,27,39,40,
         24,31,19), ( 2, 3, 5)( 4, 7, 6)( 8,15,29)( 9,17,33)(10,19,30)
        (11,21,34)(12,16,31)(13,18,35)(14,20,32)(22,43,36)(23,45,40)(24,47,37)
        (25,49,41)(26,44,38)(27,46,42)(28,48,39), 
      ( 1,50)( 2, 7)( 3, 4)( 5, 6)( 9,32)(10,23)(11,42)(12,37)(13,28)(14,33)
        (15,29)(16,47)(17,20)(18,39)(19,40)(21,46)(22,36)(24,31)(25,44)(26,49)
        (27,34)(30,45)(35,48)(38,41) ], 1 ],
[ 4, 117600, 0, "2", [ [ 49, 1 ] ], 3, "PGL(2, 49)", [ "L", [ 2, 49 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,16,17,18,19,20,21)
        (22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)
        (43,44,45,46,47,48,49), ( 2, 3, 5)( 4, 7, 6)( 8,15,29)( 9,17,33)
        (10,19,30)(11,21,34)(12,16,31)(13,18,35)(14,20,32)(22,43,36)(23,45,40)
        (24,47,37)(25,49,41)(26,44,38)(27,46,42)(28,48,39), 
      ( 2,18,41,34, 8,27,38,39, 7,40,17,24,43,31,20,19)( 3,35,25,11,15,46,26,
         28, 6,23,33,47,36,12,32,30)( 4,45, 9,37,22,16,14,10, 5,13,49,21,29,
         42,44,48), ( 1,50)( 2, 7)( 3, 4)( 5, 6)( 9,32)(10,23)(11,42)(12,37)
        (13,28)(14,33)(15,29)(16,47)(17,20)(18,39)(19,40)(21,46)(22,36)(24,31)
        (25,44)(26,49)(27,34)(30,45)(35,48)(38,41) ], 3 ],
[ 5, 117600, 0, "2", [ [ 49, 1 ] ], 2, "PSigmaL(2, 49)", [ "L", [ 2, 49 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,16,17,18,19,20,21)
        (22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)
        (43,44,45,46,47,48,49), 
      ( 2,41, 8,38, 7,17,43,20)( 3,25,15,26, 6,33,36,32)( 4, 9,22,14, 5,49,29,
         44)(10,13,21,42,48,45,37,16)(11,46,28,23,47,12,30,35)(18,34,27,39,40,
         24,31,19), ( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)
        (18,19)(23,28)(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)
        (44,49)(45,48)(46,47), ( 2, 3, 5)( 4, 7, 6)( 8,15,29)( 9,17,33)
        (10,19,30)(11,21,34)(12,16,31)(13,18,35)(14,20,32)(22,43,36)(23,45,40)
        (24,47,37)(25,49,41)(26,44,38)(27,46,42)(28,48,39), 
      ( 1,50)( 2, 7)( 3, 4)( 5, 6)( 9,32)(10,23)(11,42)(12,37)(13,28)(14,33)
        (15,29)(16,47)(17,20)(18,39)(19,40)(21,46)(22,36)(24,31)(25,44)(26,49)
        (27,34)(30,45)(35,48)(38,41) ], 4 ],
[ 6, 117600, 0, "2", [ [ 49, 1 ] ], 3, "PSL(2, 49).2_3", [ "L", [ 2, 49 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,16,17,18,19,20,21)
        (22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)
        (43,44,45,46,47,48,49), 
      ( 2,41, 8,38, 7,17,43,20)( 3,25,15,26, 6,33,36,32)( 4, 9,22,14, 5,49,29,
         44)(10,13,21,42,48,45,37,16)(11,46,28,23,47,12,30,35)(18,34,27,39,40,
         24,31,19), ( 2,40, 7,18)( 3,23, 6,35)( 4,13, 5,45)( 8,27,43,31)
        ( 9,10,49,48)(11,32,47,26)(12,15,46,36)(14,37,44,21)(16,29,42,22)
        (17,19,41,39)(20,24,38,34)(25,28,33,30), 
      ( 2, 3, 5)( 4, 7, 6)( 8,15,29)( 9,17,33)(10,19,30)(11,21,34)(12,16,31)
        (13,18,35)(14,20,32)(22,43,36)(23,45,40)(24,47,37)(25,49,41)(26,44,38)
        (27,46,42)(28,48,39), ( 1,50)( 2, 7)( 3, 4)( 5, 6)( 9,32)(10,23)
        (11,42)(12,37)(13,28)(14,33)(15,29)(16,47)(17,20)(18,39)(19,40)(21,46)
        (22,36)(24,31)(25,44)(26,49)(27,34)(30,45)(35,48)(38,41) ], 2 ],
[ 7, 235200, 0, "2", [ [ 49, 1 ] ], 3, "PGammaL(2, 49)", 
  [ "L", [ 2, 49 ], 1 ], 
  [ ( 1, 2, 3, 4, 5, 6, 7)( 8, 9,10,11,12,13,14)(15,16,17,18,19,20,21)
        (22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)
        (43,44,45,46,47,48,49), ( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)
        (16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)
        (38,41)(39,40)(44,49)(45,48)(46,47), 
      ( 2, 3, 5)( 4, 7, 6)( 8,15,29)( 9,17,33)(10,19,30)(11,21,34)(12,16,31)
        (13,18,35)(14,20,32)(22,43,36)(23,45,40)(24,47,37)(25,49,41)(26,44,38)
        (27,46,42)(28,48,39), ( 2,18,41,34, 8,27,38,39, 7,40,17,24,43,31,20,19
         )( 3,35,25,11,15,46,26,28, 6,23,33,47,36,12,32,30)( 4,45, 9,37,22,16,
         14,10, 5,13,49,21,29,42,44,48), ( 1,50)( 2, 7)( 3, 4)( 5, 6)( 9,32)
        (10,23)(11,42)(12,37)(13,28)(14,33)(15,29)(16,47)(17,20)(18,39)(19,40)
        (21,46)(22,36)(24,31)(25,44)(26,49)(27,34)(30,45)(35,48)(38,41) ], 6 
 ],
[8, Factorial(50)/2,1,"2",[[49,1]],48, "Alt(50)", ["A",50, 1], "Alt", 8],
[9, Factorial(50),0,"2",[[49, 1]],50, "Sym(50)", ["A",50, 1], "Sym", 9]];
PRIMGRP[51]:= 
[[1, Factorial(51)/2,1,"2",[[50,1]],49, "Alt(51)", ["A",51, 1], "Alt"],
[2, Factorial(51),0,"2",[[50, 1]],51, "Sym(51)", ["A",51, 1], "Sym"]];
PRIMGRP[52]:= 
[[ 1, 11232, 0, "2", [ [ 27, 1 ], [ 6, 1 ], [ 18, 1 ] ], 1, "PSL(3, 3).2", 
  [ "L", [ 3, 3 ], 1 ], 
  [ ( 2, 4)( 3, 6)( 5, 9)( 7,11)( 8,13)(10,16)(12,17)(15,20)(18,24)(19,25)
        (21,27)(23,29)(26,34)(28,37)(30,38)(31,40)(33,41)(35,44)(36,45)(39,47)
        (42,49)(43,50)(46,51)(48,52), ( 1, 2, 5, 3)( 4, 7,12, 8)( 6,10)
        ( 9,14,19,15)(13,18)(16,21,26,20)(17,22,28,23)(24,30,39,31)
        (25,32,29,33)(27,35,41,36)(34,42,45,43)(37,44)(38,40,48,46)(47,49) ] 
 ],
[2, Factorial(52)/2,1,"2",[[51,1]],50, "Alt(52)", ["A",52, 1], "Alt"],
[3, Factorial(52),0,"2",[[51, 1]],52, "Sym(52)", ["A",52, 1], "Sym"]];
PRIMGRP[53]:= 
[[ 1, 53, 3, "1", [ [ 1, 52 ] ], 1, "C(53)", [ "Z", 53, 1 ], [  ] ],
[ 2, 106, 2, "1", [ [ 2, 26 ] ], 1, "D(2*53)", [ "Z", 53, 1 ], 
  [ [ [ Z(53)^26 ] ] ] ],
[ 3, 212, 2, "1", [ [ 4, 13 ] ], 1, "53:4", [ "Z", 53, 1 ], 
  [ [ [ Z(53)^13 ] ] ] ],
[ 4, 689, 2, "1", [ [ 13, 4 ] ], 1, "53:13", [ "Z", 53, 1 ], 
  [ [ [ Z(53)^4 ] ] ] ],
[ 5, 1378, 2, "1", [ [ 26, 2 ] ], 1, "53:26", [ "Z", 53, 1 ], 
  [ [ [ Z(53)^2 ] ] ] ],
[ 6, 2756, 2, "1", [ [ 52, 1 ] ], 2, "AGL(1, 53)", [ "Z", 53, 1 ], 
  [ [ [ Z(53) ] ] ] ],
[7, Factorial(53)/2,1,"2",[[52,1]],51, "Alt(53)", ["A",53, 1], "Alt"],
[8, Factorial(53),0,"2",[[52, 1]],53, "Sym(53)", ["A",53, 1], "Sym"]];
PRIMGRP[54]:= 
[[ 1, 74412, 1, "2", [ [ 53, 1 ] ], 2, "PSL(2, 53)", [ "L", [ 2, 53 ], 1 ], 
  "psl" ],
[ 2, 148824, 0, "2", [ [ 53, 1 ] ], 3, "PGL(2, 53)", [ "L", [ 2, 53 ], 1 ], 
  "pgl" ],
[3, Factorial(54)/2,1,"2",[[53,1]],52, "Alt(54)", ["A",54, 1], "Alt"],
[4, Factorial(54),0,"2",[[53, 1]],54, "Sym(54)", ["A",54, 1], "Sym"]];
PRIMGRP[55]:= 
[[ 1, 660, 1, "2", [ [ 12, 2 ], [ 3, 2 ], [ 6, 4 ] ], 1, "PSL(2, 11)", 
  [ "L", [ 2, 11 ], 1 ], 
  [ ( 1,25, 7,32,10,35)( 2,23,18,41,31,39)( 3, 5,54)( 4,20,45,26,14,44)
        ( 6,15,42,36, 8,17)( 9,33,55,43,49,53)(11,50,30,24,38,27)
        (12,21,16,48,52,28)(13,37,46,47,34,19)(29,51,40), 
      ( 1, 2,52)( 3,18,34,50, 7,14)( 4,35,42,54,51,37)( 5,33,40,46,22,15)
        ( 6,21,31,55,19,10)( 8, 9,23,28,47,20)(11,13,48,36,24,49)(16,39,44)
        (17,41,29,25,26,30)(27,38,53,45,32,43) ] ],
[ 2, 1320, 0, "2", [ [ 12, 4 ], [ 6, 1 ] ], 1, "PGL(2, 11)", 
  [ "L", [ 2, 11 ], 1 ], 
  [ ( 1, 2, 4, 8,15,26,41,32,47,13)( 3, 6,12,21,34,51,37,52,48,36)
        ( 5,10,18,31,45,29,44,23,39,25)( 7,14,24,40,11,20,35,38,54,50)
        ( 9,16,28,43,22)(17,30,19,33,49,46,27,42,53,55), 
      ( 1, 3, 7)( 2, 5,11)( 4, 9,17)( 6,13,23)(10,19,34)(12,22,38)(14,25,26)
        (15,27,28)(16,29,45)(18,32,48)(20,36,41)(21,37,53)(24,31,46)(30,44,40)
        (33,50,35)(39,51,49)(42,55,47)(43,52,54) ] ],
[ 3, 1320, 0, "2", [ [ 12, 1 ], [ 24, 1 ], [ 4, 1 ], [ 6, 1 ], [ 8, 1 ] ], 1, 
  "PGL(2, 11)", [ "L", [ 2, 11 ], 1 ], 
  [ ( 1, 2, 4, 8,14,22,34,39,42,44)( 3, 6,12,18,28,41,52,24,37,48)
        ( 5,10,16,25,38,50,27,33,46,31)( 7,13,20,30,36)( 9,15,23,35,47,54,49,
         11,17,26)(19,29,43,51,21,32,45,53,55,40), 
      ( 1, 3, 7)( 2, 5,11)( 4, 9, 8)(10,15,24)(12,19,30)(13,21,33)(14,16,18)
        (17,27,40)(20,31,34)(23,36,35)(25,39,51)(26,28,42)(29,44,52)(37,49,43)
        (38,45,48)(41,47,50)(53,54,55) ] ],
[ 4, 7920, 1, "2", [ [ 36, 1 ], [ 18, 1 ] ], 1, "M_11", 
  [ "Spor", "M(11)", 1 ], 
  [ ( 1, 2)( 3, 4)( 6, 8)( 9,11)(10,13)(12,16)(14,18)(15,20)(17,23)(19,26)
        (22,29)(24,32)(27,35)(28,37)(30,39)(31,40)(33,42)(34,43)(41,46)(44,45)
        (47,51)(48,52)(50,53)(54,55), ( 2, 3, 5, 7)( 4, 6, 9,12)( 8,10,14,19)
        (11,15,21,28)(13,17,24,33)(16,22,30,40)(18,25,34,37)(20,27,36,45)
        (23,31,41,47)(29,38)(35,44,42,48)(39,46,50,52)(43,49,53,55)(51,54) ] 
 ],
[ 5, 19958400, 1, "2", [ [ 36, 1 ], [ 18, 1 ] ], 1, "Alt(11)", 
  [ "A", 11, 1 ], 
  [ ( 1, 2, 3, 5, 8,11,15,20,26)( 4, 6, 9,12,16,21,27,33,39)( 7,10,13,17,22,
         28,34,41,47)(14,19,25,32,38,46,29,35,43)(18,24,31,37,45,23,30,36,44)
        (42,48,49,50,51,52,53,54,55), ( 2, 4, 7)( 6,10,14)( 9,13,18)(12,17,23)
        (16,22,29)(21,28,26)(27,34,42)(33,40,41)(39,47,48) ] ],
[ 6, 39916800, 0, "2", [ [ 36, 1 ], [ 18, 1 ] ], 1, "Sym(11)", 
  [ "A", 11, 1 ], 
  [ ( 1, 2, 3, 5, 8,11,15, 4, 7,10,14)( 6, 9,12,16,19,18,22,26,31,36,40)
        (13,17,20,24,23,27,32,37,41,44,47)(21,25,29,28,33,38,42,45,48,50,52)
        (30,35,34,39,43,46,49,51,53,54,55), 
      ( 2, 4)( 3, 6)( 9,13)(15,18)(17,21)(19,23)(24,28)(25,30)(29,34) ] ],
[7, Factorial(55)/2,1,"2",[[54,1]],53, "Alt(55)", ["A",55, 1], "Alt"],
[8, Factorial(55),0,"2",[[54, 1]],55, "Sym(55)", ["A",55, 1], "Sym"]];
PRIMGRP[56]:= 
[[ 1, 20160, 1, "2", [ [ 45, 1 ], [ 10, 1 ] ], 1, "PSL(3, 4)", 
  [ "L", [ 3, 4 ], 1 ], 
  [ ( 1,18)( 2,19)( 3,53)( 5,48)( 6,30)( 7,27)( 8,33)(10,15)(11,28)(12,21)
        (13,32)(16,40)(17,29)(22,34)(23,44)(24,46)(26,37)(31,54)(35,45)(36,49)
        (39,41)(43,52)(47,50)(51,55), ( 2, 3,38,28)( 4,42,34,16)( 5,13,21,25)
        ( 6, 9,51,45)( 7,55,40,12)( 8,52,46,19)(10,22,30,18)(11,17,37,32)
        (14,15,23,48)(20,54)(26,31,49,35)(29,47)(33,39,56,53)(36,50,41,44) ] 
 ],
[ 2, 40320, 0, "2", [ [ 45, 1 ], [ 10, 1 ] ], 1, "PSL(3, 4).2_3", 
  [ "L", [ 3, 4 ], 1 ], 
  [ ( 1, 2)( 4, 6)( 7,10)( 8,12)( 9,13)(14,19)(15,21)(16,22)(17,24)(18,25)
        (20,28)(23,31)(27,34)(29,37)(33,40)(39,45)(41,48)(42,50)(43,51)(44,53)
        (49,55), ( 1,33,23, 3)( 2,42,52,27)( 4,48,50,29)( 5,35,37,19)
        ( 6,20,39,40)( 7,47)( 8,22,32,44)( 9,14)(10,34,56,18)(11,12,41,24)
        (13,31,53,38)(15,54)(16,55)(17,43,26,45)(21,25,36,51)(28,46,30,49) ] 
 ],
[ 3, 40320, 0, "2", [ [ 45, 1 ], [ 10, 1 ] ], 1, "PSL(3, 4).2_1", 
  [ "L", [ 3, 4 ], 1 ], 
  [ ( 1, 4)( 2,35)( 3,24)( 5,36)( 6,20)( 7,13)( 8,53)( 9,25)(10,55)(11,15)
        (12,42)(14,22)(16,27)(17,38)(19,46)(21,29)(23,45)(26,51)(28,52)(30,34)
        (31,56)(33,44)(37,41)(39,43)(47,48), ( 1,49)( 2,40,56,17)( 3,24,48,52)
        ( 4,42,21,10)( 6,25,39,28)( 7,37)( 8,47,38,34)(11,14,55,41)
        (12,35,27,13)(15,44,18,45)(16,23,54,46)(19,33,26,36)(20,29,53,50)
        (22,43,31,32) ] ],
[ 4, 40320, 0, "2", [ [ 45, 1 ], [ 10, 1 ] ], 1, "PSL(3, 4).2_2", 
  [ "L", [ 3, 4 ], 1 ], 
  [ ( 1,37)( 2,50)( 3,52)( 4, 5)( 6,33)( 7,44)( 8,11)( 9,19)(10,31)(12,45)
        (13,30)(14,36)(15,51)(16,32)(17,25)(18,35)(20,34)(21,26)(22,41)(23,42)
        (24,56)(27,49)(28,55)(29,53)(38,43)(39,46)(40,54)(47,48), 
      ( 1,40,51, 9,30,27)( 2,39,35,10, 7,26)( 3,21,46,23,33,29)
        ( 4,15,25,34,36,32)( 5,41,12,22,17,14)( 6,38,24,43,53,45)
        ( 8,44,55,47,18,11)(13,50,37,48,56,28)(16,54,52,42,19,20)(31,49) ] ],
[ 5, 80640, 0, "2", [ [ 45, 1 ], [ 10, 1 ] ], 1, "PSL(3, 4).2^2", 
  [ "L", [ 3, 4 ], 1 ], 
  [ ( 1, 2)( 4, 6)( 7,10)( 8,12)( 9,13)(14,19)(15,21)(16,22)(17,24)(18,25)
        (20,28)(23,31)(27,34)(29,37)(33,40)(39,45)(41,48)(42,50)(43,51)(44,53)
        (49,55), ( 1, 3, 5, 8,10,15)( 2, 4, 7,11,16,23)( 6, 9,14,20,29,38)
        (12,17,22,30,21,25)(13,18,26,33,41,49)(19,27,35,43,52,31)
        (24,32,39,46,50,55)(28,36,44,53,56,48)(34,42)(37,45,51,40,47,54) ] ],
[ 6, 20160, 1, "2", [ [ 15, 1 ], [ 30, 1 ], [ 10, 1 ] ], 1, "Alt(8)", 
  [ "A", 8, 1 ], 
  [ ( 1, 2, 4, 8,13,19)( 3, 6,12,18,25,34)( 5,10,16,20,27, 7)( 9,15,22,29,39,
         48)(11,17,24,32,42,51)(14,21,28,38,47,53)(23,30,40,49,26,36)
        (31,41,50,55,37,46)(33,43,35,44,52,45)(54,56), 
      ( 1, 3, 7)( 2, 5,11)( 4, 9,10)( 8,14,16)(13,20,28)(15,23,31)(18,26,37)
        (19,27,22)(24,33,44)(25,35,45)(30,41,38)(32,40,50)(36,46,53)(43,52,47)
        (49,54,55) ] ],
[ 7, 40320, 0, "2", [ [ 15, 1 ], [ 30, 1 ], [ 10, 1 ] ], 1, "Sym(8)", 
  [ "A", 8, 1 ], 
  [ ( 1, 2, 3, 5, 7,11,17,23)( 4, 6, 9,14,21,27,34,42)( 8,13,20,26,33,41,48,54
         )(10,16,18,24,30,38,46,52)(12,19,25,32,40,49,55,56)(15,22,29,36,44,
         31,39,47)(28,35,43,50,53,37,45,51), 
      ( 2, 4)( 5, 8)( 6,10)( 7,12)( 9,15)(11,18)(14,20)(21,28)(24,31)(29,37)
        (35,42)(39,48)(45,50)(46,53)(49,54) ] ],
[8, Factorial(56)/2,1,"2",[[55,1]],54, "Alt(56)", ["A",56, 1], "Alt"],
[9, Factorial(56),0,"2",[[55, 1]],56, "Sym(56)", ["A",56, 1], "Sym"]];
PRIMGRP[57]:= 
[[ 1, 3420, 1, "2", [ [ 6, 1 ], [ 30, 1 ], [ 20, 1 ] ], 1, "PSL(2, 19)", 
  [ "L", [ 2, 19 ], 1 ], 
  [ ( 1, 2)( 3, 5)( 4, 7)( 6,10)( 8,13)( 9,15)(11,18)(12,20)(14,23)(16,25)
        (17,27)(22,32)(24,35)(26,31)(28,39)(29,41)(30,42)(33,34)(36,47)(37,49)
        (43,53)(44,51)(45,50)(46,54)(48,56)(52,55), 
      ( 1, 3, 6,11,19,30,43,49,15,20,27,38,35,46,55,42,23,34,45)
        ( 2, 4, 8,14,24,36,48,47,41,52,57,13,22,33,32,18,29,39,51)
        ( 5, 9,16,26,25,37,50,54, 7,12,21,31,44,53,56,10,17,28,40) ] ],
[ 2, 1876896, 1, "2", [ [ 56, 1 ] ], 2, "PSL(3, 7)", [ "L", [ 3, 7 ], 1 ], 
  [ ( 1, 6,50,57, 4,52, 3,43, 8,16,53, 9,47,28,14,42,21,38,33)( 2,25,36,55,32,
         49,39,30,56,13,51,31,10,24,35,29, 7,17,40)( 5,27,12,34,23,44,54,48,
         18,41,37,45,46,20,26,11,15,19,22), 
      ( 1, 4,39, 8,41,19, 2,25,17,21,46,11,14, 5,44,54)( 3,32, 6,12,47,40,16,
         57,55,28,37,18,56,42,38,23)( 7,53,33,30,20,31,24, 9)(13,34,27,50,26,
         22,29,52,43,49,48,45,35,36,51,15) ] ],
[ 3, 5630688, 0, "2", [ [ 56, 1 ] ], 2, "PSL(3, 7).3", [ "L", [ 3, 7 ], 1 ], 
  [ ( 1,10,35,47)( 2,30,24, 8,53,37,12,13,34,38,18,31,42,28,25,16,23,22,50,49,
         3,57,54,21)( 4,15,52,19,33,43,41,36,14,48,44,11, 6,39,29,55,46,20,32,
         27, 5,40, 7,51)( 9,56,17,26), 
      ( 1,39,10,14,33, 9,49,57,34,29,13, 5,31,18,50,35,27,11,37)
        ( 2,32,19,17,22, 8,16,43, 4,20,42,44,48,21,47,26,23,52,12)
        ( 3,45, 7,38,55,46,30, 6,53,41,56,24,15,40,36,54,28,25,51) ] ],
[4, Factorial(57)/2,1,"2",[[56,1]],55, "Alt(57)", ["A",57, 1], "Alt"],
[5, Factorial(57),0,"2",[[56, 1]],57, "Sym(57)", ["A",57, 1], "Sym"]];
PRIMGRP[58]:= 
[[1, Factorial(58)/2,1,"2",[[57,1]],56, "Alt(58)", ["A",58, 1], "Alt"],
[2, Factorial(58),0,"2",[[57, 1]],58, "Sym(58)", ["A",58, 1], "Sym"]];
PRIMGRP[59]:= 
[[ 1, 59, 3, "1", [ [ 1, 58 ] ], 1, "C(59)", [ "Z", 59, 1 ], [  ] ],
[ 2, 118, 2, "1", [ [ 2, 29 ] ], 1, "D(2*59)", [ "Z", 59, 1 ], 
  [ [ [ Z(59)^29 ] ] ] ],
[ 3, 1711, 2, "1", [ [ 29, 2 ] ], 1, "59:29", [ "Z", 59, 1 ], 
  [ [ [ Z(59)^2 ] ] ] ],
[ 4, 3422, 2, "1", [ [ 58, 1 ] ], 2, "AGL(1, 59)", [ "Z", 59, 1 ], 
  [ [ [ Z(59) ] ] ] ],
[5, Factorial(59)/2,1,"2",[[58,1]],57, "Alt(59)", ["A",59, 1], "Alt"],
[6, Factorial(59),0,"2",[[58, 1]],59, "Sym(59)", ["A",59, 1], "Sym"]];
PRIMGRP[60]:= 
[[ 1, 3600, 0, "3a", [ [ 12, 2 ], [ 15, 1 ], [ 20, 1 ] ], 1, "Alt(5)^2", 
  [ "A", 5, 2 ], 
  [ ( 1, 2,37,31, 6,17,60,28,12,29,36,11,27,18,45)( 3,34,58,38,26,32,39,25,41,
         44,43,30,35,24,22)( 4,21,46,14,10,20,52,19,55,49,57, 5,16,23,51)
        ( 7,59,42,15, 9,48,50,33,54,53,13,56, 8,40,47), 
      ( 1,18,59,27,32,40, 8,58, 2,53)( 3, 6,21,31,16, 9,34,41,42, 7)
        ( 4, 5,26,20,48,51,38,55,10,46)(11,30,37,15,12,28,45,60,17,33)
        (13,54,22,39,50,19,36,14,29,25)(23,43,49,56,24,44,47,57,35,52) ] ],
[ 2, 7200, 0, "3a", [ [ 24, 1 ], [ 15, 1 ], [ 20, 1 ] ], 1, "Alt(5)^2.2", 
  [ "A", 5, 2 ], 
  [ ( 1, 5,33,58,20, 7,23,13,53,60,22,21)( 2, 6,11,38,48,54,35,16,25,43,52,37)
        ( 3,51,19,46,49,15,41,50,45,29,59,27)( 4,47,12,55,17,34,44, 8,39,36,
         14,31)( 9,40,18,24,57,10,42,28,30,32,26,56), 
      ( 1,12,58,19, 3)( 2, 9,49,21,60)( 4,51,17,34,31)( 5,44,45,15,40)
        ( 6,52,47,50,55)( 7,16,27,43,38)( 8,35,26,57,18)(10,24,32,54,36)
        (11,46,48,22,25)(13,53,30,39,56)(14,33,42,29,41)(20,59,28,37,23) ] ],
[ 3, 7200, 0, "3b", [ [ 24, 1 ], [ 15, 1 ], [ 20, 1 ] ], 1, 
  "Alt(5) wreath Sym(2)", [ "A", 5, 2 ], 
  [ ( 1, 7, 6,30,16,42)( 2,19,18, 5,32,49)( 3,46,26,41,14,40)( 4,39,58)
        ( 8,17,28)( 9,11,35,34,10,45)(12,54,27,22,52,37)(13,56,31,24,55,21)
        (15,48,60,51,50,44)(23,38)(25,53,59,33,36,43)(29,57,47), 
      ( 1,51,38, 3)( 2,33,10,24)( 4,60, 8,47)( 5,31,16,45)( 6,40,17,53)
        ( 7,55,11,42)( 9,35,12,28)(13,22,29,36)(14,39,19,25)(15,52,23,43)
        (18,59,27,48)(20,32,21,26)(30,37,49,41)(34,56,46,57)(44,58) ] ],
[ 4, 7200, 0, "3b", [ [ 12, 2 ], [ 15, 1 ], [ 20, 1 ] ], 1, 
  "Alt(5) wreath Sym(2)", [ "A", 5, 2 ], 
  [ ( 1,30,42,14)( 2,19,28,21)( 3,15)( 4, 7,22,50)( 5,53,59, 8)( 6,10)
        ( 9,27,55,48)(11,46,24,13)(12,33,34,20)(16,56,58,60)(17,52,26,41)
        (18,57,36,23)(25,44,37,39)(29,40,54,51)(31,35,47,38)(32,43,49,45), 
      ( 1,30,10,28,19,22,25, 5,17,51,43,27,44, 8,35)( 2,40,13,15,23,45,14, 4,
         18,20,50,47,56,11,38)( 3,32,55,42,33,57,34,39,59,16,46,60,21,52,54)
        ( 6,48,36,31,29,37, 9,12,58,41,53,49, 7,24,26) ] ],
[ 5, 14400, 0, "3b", [ [ 24, 1 ], [ 15, 1 ], [ 20, 1 ] ], 1, "Alt(5)^2.2^2", 
  [ "A", 5, 2 ], 
  [ ( 1, 3,56,42)( 2,60,44, 5)( 4,15,17,51)( 6,55,41,30)( 7,16)( 8,18,57,49)
        ( 9,40,31,35)(10,58,11,47)(12,33,48,46)(13,19,36,54)(14,50,25,22)
        (20,43,28,59)(21,26,34,45)(23,37,27,38)(24,52,53,32)(29,39), 
      ( 1,42,40,58)( 2,53,19,46)( 3,13,37,27)( 4,41,25,54)( 5,20,15, 8)
        ( 6,24,57,52)( 7,43,55,14)( 9,26,60,16)(10,39,18,12)(11,22,44,47)
        (17,35,38,45)(21,33,36,29)(23,32,28,48)(30,51,56,50)(31,34,59,49) ] ],
[ 6, 102660, 1, "2", [ [ 59, 1 ] ], 2, "PSL(2, 59)", [ "L", [ 2, 59 ], 1 ], 
  "psl" ],
[ 7, 205320, 0, "2", [ [ 59, 1 ] ], 3, "PGL(2, 59)", [ "L", [ 2, 59 ], 1 ], 
  "pgl" ],
[8, Factorial(60)/2,1,"2",[[59,1]],58, "Alt(60)", ["A",60, 1], "Alt"],
[9, Factorial(60),0,"2",[[59, 1]],60, "Sym(60)", ["A",60, 1], "Sym"]];
PRIMGRP[61]:= 
[[ 1, 61, 3, "1", [ [ 1, 60 ] ], 1, "C(61)", [ "Z", 61, 1 ], [  ] ],
[ 2, 122, 2, "1", [ [ 2, 30 ] ], 1, "D(2*61)", [ "Z", 61, 1 ], 
  [ [ [ Z(61)^30 ] ] ] ],
[ 3, 183, 2, "1", [ [ 3, 20 ] ], 1, "61:3", [ "Z", 61, 1 ], 
  [ [ [ Z(61)^20 ] ] ] ],
[ 4, 244, 2, "1", [ [ 4, 15 ] ], 1, "61:4", [ "Z", 61, 1 ], 
  [ [ [ Z(61)^15 ] ] ] ],
[ 5, 305, 2, "1", [ [ 5, 12 ] ], 1, "61:5", [ "Z", 61, 1 ], 
  [ [ [ Z(61)^12 ] ] ] ],
[ 6, 366, 2, "1", [ [ 6, 10 ] ], 1, "61:6", [ "Z", 61, 1 ], 
  [ [ [ Z(61)^10 ] ] ] ],
[ 7, 610, 2, "1", [ [ 10, 6 ] ], 1, "61:10", [ "Z", 61, 1 ], 
  [ [ [ Z(61)^6 ] ] ] ],
[ 8, 732, 2, "1", [ [ 12, 5 ] ], 1, "61:12", [ "Z", 61, 1 ], 
  [ [ [ Z(61)^5 ] ] ] ],
[ 9, 915, 2, "1", [ [ 15, 4 ] ], 1, "61:15", [ "Z", 61, 1 ], 
  [ [ [ Z(61)^4 ] ] ] ],
[ 10, 1220, 2, "1", [ [ 20, 3 ] ], 1, "61:20", [ "Z", 61, 1 ], 
  [ [ [ Z(61)^3 ] ] ] ],
[ 11, 1830, 2, "1", [ [ 30, 2 ] ], 1, "61:30", [ "Z", 61, 1 ], 
  [ [ [ Z(61)^2 ] ] ] ],
[ 12, 3660, 2, "1", [ [ 60, 1 ] ], 2, "AGL(1, 61)", [ "Z", 61, 1 ], 
  [ [ [ Z(61) ] ] ] ],
[13, Factorial(61)/2,1,"2",[[60,1]],59, "Alt(61)", ["A",61, 1], "Alt"],
[14, Factorial(61),0,"2",[[60, 1]],61, "Sym(61)", ["A",61, 1], "Sym"]];
PRIMGRP[62]:= 
[[ 1, 113460, 1, "2", [ [ 61, 1 ] ], 2, "PSL(2, 61)", [ "L", [ 2, 61 ], 1 ], 
  "psl" ],
[ 2, 226920, 0, "2", [ [ 61, 1 ] ], 3, "PGL(2, 61)", [ "L", [ 2, 61 ], 1 ], 
  "pgl" ],
[3, Factorial(62)/2,1,"2",[[61,1]],60, "Alt(62)", ["A",62, 1], "Alt"],
[4, Factorial(62),0,"2",[[61, 1]],62, "Sym(62)", ["A",62, 1], "Sym"]];
PRIMGRP[63]:= 
[[ 1, 6048, 1, "2", [ [ 24, 1 ], [ 6, 1 ], [ 32, 1 ] ], 1, "PSU(3, 3)", 
  [ "2A", [ 2, 3 ], 1 ], 
  [ ( 1,15,20)( 2,10, 6)( 3,48, 9)( 4, 8,29)( 5,40,27)(11,63,39)(12,22,13)
        (16,50,23)(17,25,59)(19,44,28)(21,26,62)(24,38,42)(30,32,43)(33,46,56)
        (34,55,37)(35,53,61)(36,60,51)(52,57,58), 
      ( 1,49,38,60)( 2,18,51,29)( 3, 8,20,40)( 4,25,43,16)( 5,30,41,47)
        ( 6,36,35,44)( 7,58,53,33)( 9,59)(10,24,31,23)(11,13,50,55)
        (12,52,37,15)(14,28,26,61)(17,32,57,21)(19,63,54,56)(22,45)
        (27,48,62,39) ] ],
[ 2, 12096, 0, "2", [ [ 24, 1 ], [ 6, 1 ], [ 32, 1 ] ], 1, "PSU(3, 3).2", 
  [ "2A", [ 2, 3 ], 1 ], 
  [ ( 1,47, 8)( 2,50,23)( 3,11,26)( 4,49,15)( 5,36, 9)( 6,16,10)( 7,30,57)
        (12,48,33)(13,51,21)(14,55,19)(17,31,42)(18,58,43)(22,27,53)(25,38,45)
        (34,41,44)(35,62,56)(39,61,60)(40,63,46), 
      ( 1,22,41,24)( 2,61,33,30)( 3,42,37, 4)( 5,35, 7,50)( 6,20,54,57)
        ( 8, 9,51,10)(11,59,19,36)(12,52,17,14)(13,23)(15,40,62,58)
        (16,49,60,21)(18,47,46,48)(25,56,32,34)(26,45,27,55)(28,38,39,53)
        (29,43)(31,44) ] ],
[ 3, 6048, 1, "2", [ [ 24, 1 ], [ 16, 2 ], [ 6, 1 ] ], 1, "PSU(3, 3)", 
  [ "2A", [ 2, 3 ], 1 ], 
  [ ( 1,26,29)( 2,17,51)( 3,62,60)( 4,37,59)( 5,19,45)( 6, 8,28)( 7,50,14)
        ( 9,30,10)(11,40,56)(12,32,20)(13,52,22)(15,33,54)(16,49,25)(18,47,34)
        (21,58,63)(23,61,55)(24,42,36)(27,41,35)(31,57,39)(38,44,53)(43,46,48)
        , ( 1,55,31, 6)( 2,43,18,13)( 3, 4,42,21)( 5,23,11,26)( 7,32)( 8,41)
        ( 9,33,48,12)(10,57)(14,34,38,35)(15,53,28,39)(17,52)(19,25)
        (20,27,29,60)(22,51,62,36)(24,61,30,50)(44,56,54,63)(45,46,59,47)
        (49,58) ] ],
[ 4, 12096, 0, "2", [ [ 24, 1 ], [ 6, 1 ], [ 32, 1 ] ], 1, "PSU(3, 3).2", 
  [ "2A", [ 2, 3 ], 1 ], 
  [ ( 1,17,62)( 2,27, 5)( 3,23,19)( 4,11,25)( 6,21,12)( 7,37,52)( 8,46,63)
        ( 9,56,39)(10,59,54)(13,31,16)(14,30,49)(15,40,22)(18,61,26)(20,58,48)
        (24,51,47)(28,32,43)(29,36,45)(33,57,50)(34,41,60)(35,55,42)(38,44,53)
        , ( 1,58,52,39)( 2,41)( 3,59,10,25)( 4,35,51,40)( 5,19,22, 9)
        ( 6,36,38,61)( 7,54)( 8,12,27,17)(11,18,20,57)(13,56,24,16)
        (14,28,47,37)(21,23,50,30)(26,46,43,55)(29,44,62,32)(31,33)(42,60)
        (45,53)(48,49) ] ],
[ 5, 1451520, 1, "2", [ [ 30, 1 ], [ 32, 1 ] ], 1, "PSp(6, 2)", 
  [ "B", [ 3, 2 ], 1 ], 
  [ ( 1,35)( 4,53)( 7,38)( 9,17)(10,36)(11,41)(12,30)(13,63)(14,26)(19,29)
        (20,22)(21,46)(23,45)(24,60)(25,49)(27,48)(31,50)(32,47)(34,62)(39,44)
        (40,57)(42,51)(43,54)(56,59), ( 1, 4, 5, 6, 3, 2)( 7,12,45, 8,40,43)
        ( 9,49,38,62,30,39)(10,20,19,25,47,48)(11,56,55,46,26,27)
        (13,23,33,35,22,17)(14,60,61,16,58,57)(15,31,59)(18,21,54,32,24,28)
        (29,63,44)(36,53,52,37,50,51)(41,42) ] ],
[ 6, 20158709760, 1, "2", [ [ 62, 1 ] ], 2, "PSL(6, 2)", [ "L", [ 6, 2 ], 1 ],
  [ ( 1,57)( 7,32)( 9,10)(11,29)(12,62)(13,25)(14,54)(17,36)(19,41)(21,50)
        (26,43)(30,34)(31,46)(35,40)(38,47)(49,63), 
      ( 1, 6, 5, 4, 3, 2)( 7,63, 8)( 9,62,30,39,38,49)(10,48,47,20,19,25)
        (11,24,23,22,21,46)(12,45,44,43,40,29)(13,28,27,26,18,17)(14,16,15)
        (31,61,60,59,58,57)(32,56,55,54,35,33)(36,53,52,51,50,37)(41,42) ] ],
[7, Factorial(63)/2,1,"2",[[62,1]],61, "Alt(63)", ["A",63, 1], "Alt"],
[8, Factorial(63),0,"2",[[62, 1]],63, "Sym(63)", ["A",63, 1], "Sym"]];
PRIMGRP[64]:= 
[[ 1, 576, 2, "1", [ [ 9, 7 ] ], 1, "2^6:9", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ] ] ],
[ 2, 896, 2, "1", [ [ 14, 1 ], [ 7, 7 ] ], 1, "2^6:D_14", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 3, 1152, 2, "1", [ [ 9, 7 ] ], 1, "2^6:D_18", [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ] ] ],
[ 4, 1344, 2, "1", [ [ 21, 3 ] ], 1, "2^6:21", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ] ] ] ],
[ 5, 1728, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, "2^6:9:3", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ] ] ] ],
[ 6, 1728, 2, "1", [ [ 27, 1 ], [ 9, 4 ] ], 1, "2^6:3^2:3", [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 7, 2688, 2, "1", [ [ 14, 1 ], [ 7, 1 ], [ 21, 2 ] ], 1, "2^6:7:6", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ] ] ],
[ 8, 2688, 2, "1", [ [ 42, 1 ], [ 21, 1 ] ], 1, "2^6:(7 x Sym(3))", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 9, 3456, 2, "1", [ [ 27, 1 ], [ 9, 4 ] ], 1, "2^6:3^2:Sym(3)", 
  [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 10, 3456, 2, "1", [ [ 27, 1 ], [ 18, 1 ], [ 9, 2 ] ], 1, "2^6:3^2:Sym(3)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 11, 3456, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, "2^6:9:6", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 12, 4032, 2, "1", [ [ 63, 1 ] ], 2, "AGL(1, 2^6)", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ] ] ] ],
[ 13, 4032, 2, "1", [ [ 21, 3 ] ], 1, "2^6:(3 x 7:3)", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 14, 4032, 2, "1", [ [ 63, 1 ] ], 2, "2^6:7:9", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ] ] ] ],
[ 15, 5184, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, "2^6:(3 wreath Alt(3))", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 16, 6272, 2, "1", [ [ 14, 1 ], [ 49, 1 ] ], 1, "2^6:(7 x D_14)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 17, 6912, 2, "1", [ [ 27, 1 ], [ 18, 1 ], [ 9, 2 ] ], 1, "2^6:3^2:D_12", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ] ] ],
[ 18, 6912, 2, "1", [ [ 27, 1 ], [ 18, 2 ] ], 1, "2^6:(3^2:3):4", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ] ] ] ],
[ 19, 8064, 2, "1", [ [ 42, 1 ], [ 21, 1 ] ], 1, "2^6:(Sym(3) x 7:3)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ] ] ] ],
[ 20, 8064, 2, "1", [ [ 63, 1 ] ], 2, "2^6:(7 x D_18)", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 21, 10368, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, "2^6:(3 wreath Sym(3))", 
  [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 22, 10368, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, "2^6:(3 wreath Alt(3)):2", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ] ] ],
[ 23, 10368, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, "2^6:(3 wreath Alt(3)):2", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2), 
              0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 24, 12096, 2, "1", [ [ 63, 1 ] ], 2, "2^6:7:9:3", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 25, 13824, 2, "1", [ [ 36, 1 ], [ 27, 1 ] ], 1, "2^6:(3^2:3):Q_8", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ] ] ] ],
[ 26, 13824, 2, "1", [ [ 36, 1 ], [ 27, 1 ] ], 1, "2^6:(3^2:3):8", 
  [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ] ] ],
[ 27, 13824, 2, "1", [ [ 27, 1 ], [ 18, 2 ] ], 1, "2^6:(3^2:3):D_8", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ] ] ] ],
[ 28, 18816, 2, "1", [ [ 14, 1 ], [ 49, 1 ] ], 1, "2^6:7:7:6", [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ] ] ] ],
[ 29, 18816, 2, "1", [ [ 14, 1 ], [ 49, 1 ] ], 1, "2^6:7^2:Sym(3)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ] ] ] ],
[ 30, 20736, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, "2^6:3^3:D_12", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ Z(2)^0, Z(2)^0, 
              0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ] ] ] ],
[ 31, 20736, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, "2^6:3^3:Alt(4)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 32, 24192, 2, "1", [ [ 63, 1 ] ], 2, "2^6:7:9:6", [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 33, 27648, 2, "1", [ [ 36, 1 ], [ 27, 1 ] ], 1, "2^6:(3^2:3):SD_16", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 34, 41472, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, 
  "2^6:(GL(2, 2) wreath Alt(3))", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ] ] ],
[ 35, 41472, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, "2^6:3^3:Sym(4)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ] ] ],
[ 36, 41472, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, "2^6:3^3:Sym(4)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 37, 41472, 2, "1", [ [ 36, 1 ], [ 27, 1 ] ], 1, "2^6:(3^2:3):Q_8:3", 
  [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] ] ] ],
[ 38, 56448, 2, "1", [ [ 14, 1 ], [ 49, 1 ] ], 1, "2^6:7^2:(3 x Sym(3))",
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 39, 82944, 2, "1", [ [ 27, 2 ], [ 9, 1 ] ], 1, 
  "2^6:(GL(2, 2) wreath Sym(3))", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ] ] ],
[ 40, 82944, 2, "1", [ [ 36, 1 ], [ 27, 1 ] ], 1, "2^6:(3^2:3):Q_8:Sym(3)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ Z(2)^0, Z(2)^0, 
              0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ] ] ] ],
[ 41, 1290157424640, 0, "1", [ [ 63, 1 ] ], 3, "AGL(6, 2)", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ] ] ] ],
[ 42, 3612672, 0, "1", [ [ 14, 1 ], [ 49, 1 ] ], 1, "2^6:(GL(3, 2) wreath 2)",
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ] ] ],
[ 43, 23224320, 0, "1", [ [ 63, 1 ] ], 2, "AGammaL(3, 4)", [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ] ] ],
[ 44, 7741440, 0, "1", [ [ 63, 1 ] ], 2, "ASigmaL(3, 4)", [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 45, 11612160, 0, "1", [ [ 63, 1 ] ], 2, "AGL(3, 4)", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 46, 3870720, 0, "1", [ [ 63, 1 ] ], 2, "ASL(3, 4)", [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 47, 138240, 0, "1", [ [ 45, 1 ], [ 18, 1 ] ], 1, "2^6:3.Sym(6)", 
  [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ] ] ],
[ 48, 69120, 0, "1", [ [ 45, 1 ], [ 18, 1 ] ], 1, "2^6:3.Alt(6)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ] ] ],
[ 49, 677376, 0, "1", [ [ 63, 1 ] ], 2, "AGammaL(2, 8)", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ] ] ],
[ 50, 96768, 0, "1", [ [ 63, 1 ] ], 2, "ASigmaL(2, 8)", [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ] ] ] ],
[ 51, 225792, 0, "1", [ [ 63, 1 ] ], 2, "AGL(2, 8)", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ] ] ] ],
[ 52, 32256, 0, "1", [ [ 63, 1 ] ], 2, "2^6:PSL(2, 8)", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ] ] ] ],
[ 53, 64512, 0, "1", [ [ 42, 1 ], [ 21, 1 ] ], 1, "2^6:(S3 x GL(3, 2))", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 54, 32256, 0, "1", [ [ 42, 1 ], [ 21, 1 ] ], 1, "2^6:(3 x GL(3, 2))", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 55, 92897280, 0, "1", [ [ 63, 1 ] ], 2, "2^6:Sp(6, 2)", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ] ] ],
[ 56, 3317760, 0, "1", [ [ 36, 1 ], [ 27, 1 ] ], 1, "2^6:GO-(6, 2)", 
  [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 57, 1658880, 0, "1", [ [ 36, 1 ], [ 27, 1 ] ], 1, "2^6:O-(6, 2)", 
  [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ] ] ] ],
[ 58, 2580480, 0, "1", [ [ 35, 1 ], [ 28, 1 ] ], 1, "2^6:Sym(8)", 
  [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ] ] ] ],
[ 59, 1290240, 0, "1", [ [ 35, 1 ], [ 28, 1 ] ], 1, "2^6:Alt(8)", 
  [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ] ] ],
[ 60, 322560, 0, "1", [ [ 35, 1 ], [ 7, 1 ], [ 21, 1 ] ], 1, "2^6:Sym(7)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ] ] ] ],
[ 61, 161280, 0, "1", [ [ 35, 1 ], [ 7, 1 ], [ 21, 1 ] ], 1, "2^6:Alt(7)", 
  [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ] ] ] ],
[ 62, 774144, 0, "1", [ [ 63, 1 ] ], 2, "2^6:SigmaU(3, 3)", [ "Z", 2, 6 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ] ] ],
[ 63, 387072, 0, "1", [ [ 63, 1 ] ], 2, "2^6:SU(3, 3)", [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ] ] ] ],
[ 64, 21504, 0, "1", [ [ 14, 1 ], [ 28, 1 ], [ 21, 1 ] ], 1, "2^6:PGL(2, 7)", 
  [ "Z", 2, 6 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], [ 0*Z(2), 0*Z(2), 
              Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ] ] ],
[ 65, 812851200, 0, "4c", [ [ 14, 1 ], [ 49, 1 ] ], 1, "Alt(8) wreath Sym(2)",
  [ "A", 8, 2 ], 
  [ ( 1,26,12,39,43, 5,32, 9,34,44, 7,27,13,40,41, 2,28,15,35,45, 8,25,10,36,
         47, 3,29,16,33,42, 4,31,11,37,48)( 6,30,14,38,46)(17,50,60,23,51,61,
         24,49,58,20,55,59,21,56,57,18,52,63,19,53,64)(22,54,62), 
      ( 1,46,59,37, 7,54,64,29, 2,14,60,21)( 3,38,63,53, 8,30,58,13, 4,22,57,
         45)( 5, 6,62,61)( 9,44,19,33,47,51,40,31,50,16,28,18)(10,12,20,17,41,
         43,35,39,55,56,32,26)(11,36,23,49,48,27,34,15,52,24,25,42) ] ],
[ 66, 1625702400, 0, "4c", [ [ 14, 1 ], [ 49, 1 ] ], 1, "Alt(8)^2.2^2", 
  [ "A", 8, 2 ], 
  [ ( 1,53,19,41,56,11,42,32,14, 2,29,22)( 3,45,24, 9,50,27,46, 8,13,18,25,54)
        ( 4,61,23,33,52,59,47,40,12,58,31,38)( 5,21,17,49,51,43,48,16,10,26,
         30, 6)( 7,37,20,57,55,35,44,64,15,34,28,62)(36,60,63,39), 
      ( 1,64,42,29,38,23,12,51)( 2,61,46,31,36,19, 9,56)( 3,57,48,26,37,22,15,
         52)( 4,59,41,32,34,21,14,55)( 5,62,47,28,35,17,16,50)( 6,63,44,27,33,
         24,10,53)( 7,60,43,25,40,18,13,54)( 8,58,45,30,39,20,11,49) ] ],
[ 67, 1625702400, 0, "4c", [ [ 14, 1 ], [ 49, 1 ] ], 1, "Alt(8)^2.4", 
  [ "A", 8, 2 ], 
  [ ( 1,11,44,38,58,55)( 2,51,41,14,60,39)( 3,43,46,62,63, 7)( 4,35,42,54,57,
         15)( 5,19,48,30,61,23, 8,27,45,22,64,31)( 6,59,47)( 9,12,36,34,50,49)
        (10,52,33)(13,20,40,26,53,17,16,28,37,18,56,25)(21,24,32,29), 
      ( 1,49,25,33,41,57, 9)( 2,55,32,35,42,63,16, 3,50,31,40,43,58,15, 8,51,
         26,39,48,59,10, 7,56,27,34,47,64,11)( 4,53,28,37,44,61,12, 5,52,29,
         36,45,60,13)( 6,54,30,38,46,62,14)(18,23,24,19)(20,21) ] ],
[ 68, 3251404800, 0, "4c", [ [ 14, 1 ], [ 49, 1 ] ], 1, 
  "Sym(8) wreath Sym(2)", [ "A", 8, 2 ], 
  [ ( 1,10,21,48,59, 4,26,22,56,57,12,29,46,51)( 2,18,24,64,60,28,30,54,49, 9,
         13,45,43, 3)( 5,42,19, 8,58,20,32,62,52,25,14,53,41,11)
        ( 6,50,17,16,61,44,27)( 7,34,23,40,63,36,31,38,55,33,15,37,47,35), 
      ( 1,44,63,32,22,33,12, 7,48,62,25,20,39,16, 6,41,60,31,24,38, 9, 4,47,
         64,30,17,36,15, 8,46,57,28,23,40,14)( 2,43,58,27,18,35,10, 3,42,59,
         26,19,34,11)( 5,45,61,29,21,37,13)(49,52,55,56,54)(50,51) ] ],
[ 69, 56448, 0, "4c", [ [ 14, 1 ], [ 49, 1 ] ], 1, "PSL(2, 7) wreath Sym(2)", 
  [ "L", [ 2, 7 ], 2 ], 
  [ ( 1,46,51,61)( 2,22,52,13)( 3,62,49,45)( 4,14,50,21)( 5, 6,54,53)
        ( 7,38,56,29)( 8,30,55,37)( 9,42,19,60)(10,18,20,12)(11,58,17,44)
        (15,34,24,28)(16,26,23,36)(25,47,35,64)(27,63,33,48)(31,39,40,32)
        (41,43,59,57), ( 1,47,25,42, 9,45)( 2,15,29)( 3,23,27,18,11,21)
        ( 4,63,32,50,14,37)( 5, 7,31,26,10,13)( 6,39,28,58,16,53)
        ( 8,55,30,34,12,61)(17,43)(20,59,24,51,22,35)(33,44,57,48,49,46)
        (36,60,64,56,54,38)(40,52,62) ] ],
[ 70, 112896, 0, "4c", [ [ 14, 1 ], [ 49, 1 ] ], 1, "PSL(2, 7)^2.2^2", 
  [ "L", [ 2, 7 ], 2 ], 
  [ ( 1,40,11,53,23,42)( 2, 8,16,13,21,18)( 3,56,15,45,17,34)( 4,32,12,29,20,
         26)( 5,24,10)( 6,64,14,61,22,58)( 7,48, 9,37,19,50)(25,36,27,52,31,44
         )(30,60)(33,35,51,55,47,41)(38,59,54,63,46,57)(39,43,49), 
      ( 1,13,63,24,42,30,36,51)( 2,14,60,19,41,29,39,56)( 3, 9,61,23,48,26,38,
         52)( 4,11,57,21,47,32,34,54)( 5,15,64,18,46,28,35,49)( 6,12,59,17,45,
         31,40,50)( 7,16,58,22,44,27,33,53)( 8,10,62,20,43,25,37,55) ] ],
[ 71, 112896, 0, "4c", [ [ 14, 1 ], [ 49, 1 ] ], 1, "PSL(2, 7)^2.4", 
  [ "L", [ 2, 7 ], 2 ], 
  [ ( 1,11,58,33,13,50,36,45,55,20,48,31,22, 8,27,62)( 2,35,61,49,12,42,39,21,
         56,28,46, 7,19,64,25,14)( 3,59,57, 9,10,34,37,53,52,44,47,23,24,32,
         30, 6)( 4,43,63,17,16,26,38, 5,51,60,41,15,18,40,29,54), 
      ( 1,40, 2,24)( 3,64, 7,48)( 4,56, 5,32)( 6,16)( 9,38,10,22)(11,62,15,46)
        (12,54,13,30)(17,33,34,18)(19,57,39,42)(20,49,37,26)(21,25,36,50)
        (23,41,35,58)(27,60,55,45)(28,52,53,29)(31,44,51,61)(43,59,63,47) ] ],
[ 72, 225792, 0, "4c", [ [ 14, 1 ], [ 49, 1 ] ], 1, "PGL(2, 7) wreath Sym(2)",
  [ "L", [ 2, 7 ], 2 ], 
  [ ( 1,23,43,50,12,30,61,33, 7,19,42,52,14,29,57,39, 3,18,44,54,13,25,63,35,
          2,20,46,53, 9,31,59,34, 4,22,45,49,15,27,58,36, 6,21,41,55,11,26,60,
         38, 5,17,47,51,10,28,62,37)( 8,24,48,56,16,32,64,40), 
      ( 1,40, 9,37,57,39,49,35,25,34,17,38)( 2,24,14, 5,64,15,53,59,31,50,19,
         30)( 3,32,10,21,62, 7,56,11,29,58,23,54)( 4,48,12,45,60,47,52,43,28,
         42,20,46)( 6, 8,16,13,61,63,55,51,27,26,18,22)(36,41) ] ],
[73, Factorial(64)/2,1,"2",[[63,1]],62, "Alt(64)", ["A",64, 1], "Alt"],
[74, Factorial(64),0,"2",[[63, 1]],64, "Sym(64)", ["A",64, 1], "Sym"]];
PRIMGRP[65]:= 
[[ 1, 7800, 1, "2", [ [ 24, 1 ], [ 30, 1 ], [ 10, 1 ] ], 1, "PSL(2, 5^2)", 
  [ "L", [ 2, 25 ], 1 ], 
  [ ( 1,51)( 2,36)( 3,19)( 4,54)( 5,56)( 6,38)( 7,13)( 8,46)( 9,65)(10,53)
        (11,12)(14,17)(15,43)(16,40)(18,60)(20,28)(22,25)(24,63)(26,50)(27,34)
        (29,49)(30,42)(31,37)(32,35)(33,52)(39,57)(41,61)(44,47)(45,58)(48,59)
        , ( 1,62,16,23, 8)( 2,38,53,52,59)( 3,55,43,28,48)( 4,51,25,32,61)
        ( 6,46, 9,56,15)( 7,64,27,21,41)(11,40,17,36,34)(12,65,60,47,49)
        (13,57,19,42,29)(14,20,37,45,39)(18,33,26,24,22)(31,44,35,63,50) ] ],
[ 2, 15600, 0, "2", [ [ 24, 1 ], [ 30, 1 ], [ 10, 1 ] ], 1, "PSigmaL(2, 5^2)",
  [ "L", [ 2, 25 ], 1 ], 
  [ ( 1,43,28,27,52,14)( 2,38,51,13,58,44)( 3,63,33)( 4, 5,65,21,19,31)
        ( 6,46,17,41,47,39)( 7,50,18,16,53,20)( 8,60,30,32,22, 9)
        (10,15,25,37,45,24)(11,62,54,64,36,61)(12,23,40,42,29,59)
        (34,57,48,49,55,56), ( 1,44,55,37)( 2,63,45,52)( 3,50,49,53)
        ( 4,57,30,28)( 5,35,24,47)( 6,48,23,33)( 7,31,12,25)( 8,13,22,54)
        ( 9,29,64,20)(10,36,62,51)(11,41,21,18)(14,17,27,42)(15,19,61,65)
        (16,58,39,60)(26,32,59,38)(34,43)(40,46) ] ],
[ 3, 62400, 1, "2", [ [ 64, 1 ] ], 2, "PSU(3, 4)", [ "2A", [ 2, 4 ], 1 ], 
  [ ( 1,58)( 2,44)( 3,40)( 4,29)( 5,14)( 6,11)( 7,65)( 8,63)( 9,25)(10,23)
        (12,21)(13,60)(15,42)(16,47)(18,53)(19,41)(20,39)(22,27)(24,50)(26,30)
        (28,35)(31,37)(32,54)(33,46)(34,49)(36,56)(38,48)(43,59)(45,55)(51,62)
        (52,64)(57,61), ( 1,15,12,14)( 2,29,25,42)( 3, 8,31,64)( 4,24,55,21)
        ( 5,30,48,43)( 6,32,34,19)( 9,40,22,20)(10,47,59,51)(11,54,44,62)
        (13,56,26,57)(16,63,33,39)(17,52,18,37)(23,50,35,61)(27,45,49,38)
        (28,41,60,46)(36,65,58,53) ] ],
[ 4, 124800, 0, "2", [ [ 64, 1 ] ], 2, "PSU(3, 4).2", [ "2A", [ 2, 4 ], 1 ], 
  [ ( 1,65)( 2,59)( 3,19)( 4,40)( 5,63)( 6,10)( 7,57)( 8,32)( 9,20)(11,33)
        (12,24)(13,52)(14,54)(15,30)(16,47)(17,36)(18,50)(21,53)(22,55)(23,46)
        (25,34)(26,28)(27,48)(29,41)(31,64)(35,42)(37,60)(38,45)(39,49)(43,62)
        (44,51)(58,61), ( 1,17,16,63,33,48,31,15)( 2,64,21,19, 8,20,13,52)
        ( 3,57,55,58,36,45,28,54)( 4,40,44,24,18,65,42,23)( 5,32,37,27,47,46,
         14,53)( 6,39,43,26,50,41,59,34)( 7,62,25,22,56,12,49,29)
        ( 9,11,60,35,30,10,51,61) ] ],
[ 5, 249600, 0, "2", [ [ 64, 1 ] ], 2, "PGammaU(3, 4)", [ "2A", [ 2, 4 ], 1 ],
  [ ( 1,47)( 2,54)( 3,50)( 4,61)( 5,27)( 6,28)( 7,30)( 8,64)( 9,53)(10,49)
        (11,62)(12,37)(13,18)(14,42)(15,40)(16,41)(17,38)(19,34)(20,29)(21,65)
        (22,24)(23,58)(25,44)(26,45)(31,55)(32,60)(33,56)(35,63)(36,39)(46,57)
        (48,59)(51,52), ( 1,31,40,19)( 2,33,63,26)( 3,10,62,45)( 4, 5,25,18)
        ( 6,55,20,27)( 7,57, 8,54)( 9,35,38,53)(11,46,58,17)(12,15,23,56)
        (13,24,21,36)(14,59,32,50)(16,64,44,43)(22,37,60,48)(28,52,61,42)
        (29,39,41,51)(34,49,65,47), ( 2, 5,13,28)( 3, 8,19,43)( 4,10,24,42)
        ( 6,16,35,51)( 7,14,30,54)( 9,21,46,25)(11,26,49,63)(12,18,40,60)
        (15,32,57,62)(17,38,22,41)(20,44,23,47)(27,33,58,39)(29,52,45,59)
        (34,50,53,37)(36,61,55,48)(56,64) ] ],
[ 6, 29120, 1, "2", [ [ 64, 1 ] ], 2, "PSz(8)", [ "2B", 8, 1 ], 
  [ ( 1,30)( 2,58)( 3, 6)( 4,61)( 5,50)( 7, 8)( 9,40)(10,56)(11,20)(12,16)
        (13,27)(14,53)(15,17)(18,51)(19,24)(21,34)(22,55)(23,28)(25,64)(26,60)
        (29,32)(31,45)(33,42)(35,54)(36,59)(37,62)(38,39)(41,43)(44,63)(46,65)
        (47,52)(48,49), ( 1,56,36,50)( 2,21,39, 8)( 3,64,58, 6)( 4,31,22,25)
        ( 5,13,53,61)( 7,55,20,30)( 9,45,15,29)(10,40,49,60)(12,63,14,44)
        (16,24,52,38)(17,27,18,35)(19,43,32,48)(23,33,54,26)(28,42,59,62)
        (34,47,57,41)(37,46,65,51) ] ],
[ 7, 87360, 0, "2", [ [ 64, 1 ] ], 2, "PSz(8).3", [ "2B", 8, 1 ], 
  [ ( 1,23)( 2,38)( 3,29)( 4,11)( 5,30)( 6,10)( 7,27)( 8,17)( 9,49)(12,28)
        (13,51)(14,63)(15,40)(16,45)(18,44)(19,20)(21,59)(22,26)(24,35)(25,61)
        (31,37)(32,39)(34,60)(36,50)(41,65)(42,54)(43,62)(46,47)(48,56)(52,55)
        (53,58)(57,64), ( 1, 9,32)( 3,33,10)( 4,13,12)( 5,59,47)( 6, 8,21)
        ( 7,65,56)(11,64,46)(14,34,49)(15,38,62)(17,28,23)(18,54,44)(19,43,60)
        (20,57,36)(22,27,40)(24,61,31)(25,29,50)(26,42,30)(35,55,37)(39,53,63)
        (45,48,58) ] ],
[ 8, 262080, 1, "2", [ [ 64, 1 ] ], 3, "PSL(2, 2^6)", [ "L", [ 2, 64 ], 1 ], 
  [ ( 3,54,34,14,65,22,12,23,15,18, 7,36,31,62,13,39,35,44,41,20,26,10,17,38,
         11, 9,43,28,16,21,60, 5, 4,19,49,64,63, 8,47,52,40,25,59,57,30,51,58,
         42,48,27,24,33,29,55, 6,37,32,61,50,53,45,56,46), 
      ( 1,19, 2)( 3,15,16)( 4,43,25)( 5,20,27)( 7,30,51)( 8,54,56)( 9,40,49)
        (10,17,32)(11,45,39)(12,59,33)(13,41,65)(14,47,50)(18,36,35)(21,22,34)
        (23,52,55)(24,37,61)(26,63,57)(28,53,62)(29,46,48)(38,60,58)
        (42,64,44) ] ],
[ 9, 524160, 0, "2", [ [ 64, 1 ] ], 3, "PSL(2, 2^6).2", [ "L", [ 2, 64 ], 1 ],
  [ ( 1,33,56, 2,15, 3,36,63,35,21,28,24,32,46,17,26,19,62,47,27,25)
        ( 4,22,23, 6,12,58,45,39,65,16,38,60,11,37,31,18,64, 5,53,54, 7)
        ( 8,61, 9,20,43,10,51,49,29,14,57,50,59,30,44,52,48,55,41,13,40), 
      ( 1,10,26,31, 2,28)( 3,24,13,50,58,39)( 4, 6,45,54, 5,22)
        ( 7,47,44,32,19,21)( 8,36,59,42,30,34)( 9,55,51)(11,48,33)
        (12,20,63,62,41,16)(14,64,53,52,56,27)(15,57,18)(17,37,65,29,49,35)
        (23,61,38,43,60,40)(25,46) ] ],
[ 10, 786240, 0, "2", [ [ 64, 1 ] ], 3, "PSL(2, 2^6).3", 
  [ "L", [ 2, 64 ], 1 ], 
  [ ( 1,27,48,54,29)( 2,64,38,52,47)( 3,23,18,32, 6)( 4,41,16,22,43)
        ( 5,39,44,11,19)( 7,45,36,49,60)( 8,15, 9,57,42)(10,21,34,25,63)
        (12,37,56,20,53)(13,61,55,62,28)(14,33,58,17,50)(24,40,30,46,35)
        (26,31,65,51,59), ( 1,57,50,14,28,41,27,58,25)( 2,65,20,24,36,13,19,
         35,42)( 3,34,32,52,54,55,43,31,18)( 4,15,17,26, 8,44, 9,51,29)
        ( 5,48,23,56,21,33,60,30,37)( 6,11,61,46,64,10,16,49,38)
        ( 7,59,12,45,62,47,63,39,22) ] ],
[ 11, 1572480, 0, "2", [ [ 64, 1 ] ], 3, "PGammaL(2, 2^6)", 
  [ "L", [ 2, 64 ], 1 ], 
  [ ( 1,61, 4,54, 3,21)( 2,18,22)( 5,27,35,31,30,47)( 6,38,13, 9,56,41)
        ( 7,36,29,58,59,43)( 8,33,11,37,40,49)(10,52,51,26,25,50)
        (12,20,65,55,16,42)(14,44,19)(15,32)(23,53,64,60,62,28)
        (24,45,39,46,63,48), ( 2,22,59,30,55, 8,61,19,31,50,57,53,26,60,64,34,
         32,54,17,39,37, 7,11,45,18,14,21,40,52,10,63,16,41,12,49, 4,62,51,46,
         48,35,38,29,13,44,65,43,56,24, 3,47,15,28, 6,27,58,42,33,36,23,25,20,
         9) ] ],
[12, Factorial(65)/2,1,"2",[[64,1]],63, "Alt(65)", ["A",65, 1], "Alt"],
[13, Factorial(65),0,"2",[[64, 1]],65, "Sym(65)", ["A",65, 1], "Sym"]];
PRIMGRP[66]:= 
[[ 1, 1320, 0, "2", [ [ 5, 1 ], [ 20, 1 ], [ 10, 4 ] ], 1, "PGL(2, 11)", 
  [ "L", [ 2, 11 ], 1 ], 
  [ ( 1, 2, 4, 8,14,23,35,53,17,12)( 3, 6,11,19, 5, 7,13,22,34,51)
        ( 9,16,27,40,52,56,44,60,41,57)(10,18,29,43,59,21,15,25,38,55)
        (20,32,48,63,31,46,61,30,24,36)(26,39,28,42,58)(33,50,64,37,47,45,49,
         54,65,66), ( 1, 3, 7)( 2, 5,10)( 4, 9,17)( 6,12,21)( 8,15,26)
        (11,20,33)(13,16,28)(14,24,37)(18,30,45)(19,31,47)(22,29,44)(23,27,41)
        (25,38,56)(32,49,35)(34,52,43)(36,54,59)(39,57,51)(40,48,50)(42,55,53)
        (46,62,66)(58,61,65)(60,63,64) ] ],
[ 2, 7920, 1, "2", [ [ 15, 1 ], [ 30, 1 ], [ 20, 1 ] ], 1, "M_11", 
  [ "Spor", "M(11)", 1 ], 
  [ ( 1, 2)( 3, 5)( 4, 7)( 8,11)( 9,13)(10,14)(12,17)(15,21)(16,23)(18,26)
        (19,27)(20,29)(24,32)(25,34)(28,38)(30,41)(31,37)(33,44)(35,42)(36,46)
        (40,50)(45,54)(47,56)(48,58)(49,59)(52,62)(53,63)(60,65), 
      ( 1, 3, 6, 9)( 2, 4)( 5, 8,12,18)( 7,10,15,22)(11,16,24,33)(13,19,28,39)
        (14,20,30,42)(17,25,35,21)(23,31,43,52)(26,36,47,57)(27,37,48,32)
        (29,40,38,49)(34,45)(41,51,61,58)(44,53,64,59)(46,55)(50,60)
        (54,62,66,56) ] ],
[ 3, 95040, 1, "2", [ [ 45, 1 ], [ 20, 1 ] ], 1, "M_12", 
  [ "Spor", "M(12)", 1 ], 
  [ ( 1, 2)( 4, 6)( 5, 8)( 7,10)( 9,12)(11,15)(13,18)(14,19)(16,22)(17,23)
        (21,26)(24,29)(25,31)(28,34)(30,37)(33,39)(35,42)(36,43)(38,46)(40,47)
        (41,48)(44,52)(45,50)(49,56)(51,58)(53,54)(55,57)(59,62)(61,63)(64,66)
        , ( 1, 3, 5)( 2, 4, 7)( 6, 9,13)( 8,11,16)(10,14,20)(12,17,22)
        (15,21,27)(18,24,30)(19,25,32)(23,28,35)(26,33,40)(29,36,44)(31,38,39)
        (34,41,49)(37,45,53)(42,50,57)(43,51,59)(47,54,61)(48,55,62)(52,60,64)
        (58,63,65) ] ],
[ 4, 239500800, 1, "2", [ [ 45, 1 ], [ 20, 1 ] ], 1, "Alt(12)", 
  [ "A", 12, 1 ], 
  [ ( 1, 8,50, 9)( 2,51,22,60)( 3,19)( 4,45,27,43)( 5,49,61,13)( 6,57,55,20)
        ( 7,15,30,46)(10,24,11,26)(12,36)(14,63,42,39)(16,58,29,56)
        (17,33,34,59)(18,41,52,25)(21,47,66,31)(23,32,40,64)(28,65,37,35)
        (44,48)(54,62), ( 1, 8,12,17,39,22,28,29, 9)( 2,47,19,14,16,61,65,25,
         10)( 3,31,24,13,58,63,37,18,20)( 4,33,53,60, 6,27,44,62,59)
        ( 5, 7,23,32,43,26,35,34,49)(11,36,50,48,52,42,46,54,56)
        (15,30,45,57,21,41,40,38,64) ] ],
[ 5, 479001600, 0, "2", [ [ 45, 1 ], [ 20, 1 ] ], 1, "Sym(12)", 
  [ "A", 12, 1 ], 
  [ ( 1, 2, 3, 4, 5, 7,10,13,17,21,27,32)( 6, 9,12,16,20,26)( 8,11,14,18,23,
         22,28,33,38,43,47,51)(15,19,24,30,29,34,39,44,48,52,55,58)
        (25,31,36,35,40,45,49,53,56,59,61,63)(37,42,41,46,50,54,57,60,62,64,
         65,66), ( 4, 6)( 5, 8)(11,15)(17,22)(19,25)(21,26)(23,29)(30,35)
        (31,37)(36,41) ] ],
[6, Factorial(66)/2,1,"2",[[65,1]],64, "Alt(66)", ["A",66, 1], "Alt"],
[7, Factorial(66),0,"2",[[65, 1]],66, "Sym(66)", ["A",66, 1], "Sym"]];
PRIMGRP[67]:= 
[[ 1, 67, 3, "1", [ [ 1, 66 ] ], 1, "C(67)", [ "Z", 67, 1 ], [  ] ],
[ 2, 134, 2, "1", [ [ 2, 33 ] ], 1, "D(2*67)", [ "Z", 67, 1 ], 
  [ [ [ Z(67)^33 ] ] ] ],
[ 3, 201, 2, "1", [ [ 3, 22 ] ], 1, "67:3", [ "Z", 67, 1 ], 
  [ [ [ Z(67)^22 ] ] ] ],
[ 4, 402, 2, "1", [ [ 6, 11 ] ], 1, "67:6", [ "Z", 67, 1 ], 
  [ [ [ Z(67)^11 ] ] ] ],
[ 5, 737, 2, "1", [ [ 11, 6 ] ], 1, "67:11", [ "Z", 67, 1 ], 
  [ [ [ Z(67)^6 ] ] ] ],
[ 6, 1474, 2, "1", [ [ 22, 3 ] ], 1, "67:22", [ "Z", 67, 1 ], 
  [ [ [ Z(67)^3 ] ] ] ],
[ 7, 2211, 2, "1", [ [ 33, 2 ] ], 1, "67:33", [ "Z", 67, 1 ], 
  [ [ [ Z(67)^2 ] ] ] ],
[ 8, 4422, 2, "1", [ [ 66, 1 ] ], 2, "AGL(1, 67)", [ "Z", 67, 1 ], 
  [ [ [ Z(67) ] ] ] ],
[9, Factorial(67)/2,1,"2",[[66,1]],65, "Alt(67)", ["A",67, 1], "Alt"],
[10, Factorial(67),0,"2",[[66, 1]],67, "Sym(67)", ["A",67, 1], "Sym"]];
PRIMGRP[68]:= 
[[ 1, 4080, 1, "2", [ [ 12, 1 ], [ 15, 1 ], [ 20, 2 ] ], 1, "PSL(2, 16)", 
  [ "L", [ 2, 16 ], 1 ], 
  [ ( 1,31)( 2,11)( 3,62)( 4,43)( 5,58)( 6,14)( 7,37)( 8,67)( 9,55)(12,15)
        (13,18)(16,64)(17,57)(19,27)(20,29)(21,38)(22,28)(23,26)(25,48)(30,42)
        (32,41)(35,66)(36,49)(39,45)(40,44)(46,63)(47,61)(50,53)(51,59)(52,65)
        (54,68)(56,60), ( 1,59,35)( 2,54,32)( 3,22,27)( 4,17,25)( 5,52,45)
        ( 7, 9,56)( 8,30,20)(10,39,47)(11,14,51)(12,68,29)(13,49,53)(15,43,31)
        (16,26,28)(18,65,67)(21,34,41)(23,57,44)(24,50,66)(33,61,60)(36,42,64)
        (37,46,48)(38,40,63) ] ],
[ 2, 8160, 0, "2", [ [ 12, 1 ], [ 15, 1 ], [ 20, 2 ] ], 1, "PSL(2, 16).2", 
  [ "L", [ 2, 16 ], 1 ], 
  [ ( 1, 5)( 2,50)( 3,39)( 4,21)( 6,33)( 7,59)( 8,60)(10,22)(11,29)(12,44)
        (14,24)(15,49)(16,55)(18,25)(19,67)(20,52)(23,66)(26,31)(27,46)(28,34)
        (32,68)(35,58)(36,47)(40,61)(53,65)(56,63), 
      ( 1,37,13,44)( 2,32, 4,24)( 3,47,17,67)( 5,11,12,16)( 6,61,18,29)
        ( 7,41,53,25)( 8,10,62,27)( 9,39,28,35)(14,38,36,33)(15,21,42,26)
        (19,63,65,46)(20,60,57,49)(22,56,50,31)(23,34)(30,43,54,66)
        (40,45,55,64)(48,52)(51,59,58,68) ] ],
[ 3, 16320, 0, "2", [ [ 12, 1 ], [ 15, 1 ], [ 40, 1 ] ], 1, "PSigmaL(2, 16)", 
  [ "L", [ 2, 16 ], 1 ], 
  [ ( 2,54)( 4,13)( 5,56)( 7,45)( 8,38)( 9,52)(12,50)(14,51)(15,41)(16,28)
        (17,53)(20,40)(21,31)(22,27)(23,57)(24,68)(25,49)(29,66)(30,63)(33,60)
        (34,43)(35,59)(36,64)(37,46)(39,47)(65,67), 
      ( 1,59,45,17,37,18,56,58,35,67,22,49)( 2,34,46,62,48,15)( 3,41,21,44,11,
         61,47,25,26,50,66,20)( 4,63,36,42, 8,53)( 5,32,55,12, 9,65,30,24,28,
         54,40,19)( 6,39,60,64)( 7,14,52)(10,38,51,29,43,13,27,33,68,57,16,31
         ) ] ],
[ 4, 150348, 1, "2", [ [ 67, 1 ] ], 2, "PSL(2, 67)", [ "L", [ 2, 67 ], 1 ], 
  "psl" ],
[ 5, 300696, 0, "2", [ [ 67, 1 ] ], 3, "PGL(2, 67)", [ "L", [ 2, 67 ], 1 ], 
  "pgl" ],
[6, Factorial(68)/2,1,"2",[[67,1]],66, "Alt(68)", ["A",68, 1], "Alt"],
[7, Factorial(68),0,"2",[[67, 1]],68, "Sym(68)", ["A",68, 1], "Sym"]];
PRIMGRP[69]:= 
[[1, Factorial(69)/2,1,"2",[[68,1]],67, "Alt(69)", ["A",69, 1], "Alt"],
[2, Factorial(69),0,"2",[[68, 1]],69, "Sym(69)", ["A",69, 1], "Sym"]];
PRIMGRP[70]:= 
[[1, Factorial(70)/2,1,"2",[[69,1]],68, "Alt(70)", ["A",70, 1], "Alt"],
[2, Factorial(70),0,"2",[[69, 1]],70, "Sym(70)", ["A",70, 1], "Sym"]];
PRIMGRP[71]:= 
[[ 1, 71, 3, "1", [ [ 1, 70 ] ], 1, "C(71)", [ "Z", 71, 1 ], [  ] ],
[ 2, 142, 2, "1", [ [ 2, 35 ] ], 1, "D(2*71)", [ "Z", 71, 1 ], 
  [ [ [ Z(71)^35 ] ] ] ],
[ 3, 355, 2, "1", [ [ 5, 14 ] ], 1, "71:5", [ "Z", 71, 1 ], 
  [ [ [ Z(71)^14 ] ] ] ],
[ 4, 497, 2, "1", [ [ 7, 10 ] ], 1, "71:7", [ "Z", 71, 1 ], 
  [ [ [ Z(71)^10 ] ] ] ],
[ 5, 710, 2, "1", [ [ 10, 7 ] ], 1, "71:10", [ "Z", 71, 1 ], 
  [ [ [ Z(71)^7 ] ] ] ],
[ 6, 994, 2, "1", [ [ 14, 5 ] ], 1, "71:14", [ "Z", 71, 1 ], 
  [ [ [ Z(71)^5 ] ] ] ],
[ 7, 2485, 2, "1", [ [ 35, 2 ] ], 1, "71:35", [ "Z", 71, 1 ], 
  [ [ [ Z(71)^2 ] ] ] ],
[ 8, 4970, 2, "1", [ [ 70, 1 ] ], 2, "AGL(1, 71)", [ "Z", 71, 1 ], 
  [ [ [ Z(71) ] ] ] ],
[9, Factorial(71)/2,1,"2",[[70,1]],69, "Alt(71)", ["A",71, 1], "Alt"],
[10, Factorial(71),0,"2",[[70, 1]],71, "Sym(71)", ["A",71, 1], "Sym"]];
PRIMGRP[72]:= 
[[ 1, 178920, 1, "2", [ [ 71, 1 ] ], 2, "PSL(2, 71)", [ "L", [ 2, 71 ], 1 ], 
  "psl" ],
[ 2, 357840, 0, "2", [ [ 71, 1 ] ], 3, "PGL(2, 71)", [ "L", [ 2, 71 ], 1 ], 
  "pgl" ],
[3, Factorial(72)/2,1,"2",[[71,1]],70, "Alt(72)", ["A",72, 1], "Alt"],
[4, Factorial(72),0,"2",[[71, 1]],72, "Sym(72)", ["A",72, 1], "Sym"]];
PRIMGRP[73]:= 
[[ 1, 73, 3, "1", [ [ 1, 72 ] ], 1, "C(73)", [ "Z", 73, 1 ], [  ] ],
[ 2, 146, 2, "1", [ [ 2, 36 ] ], 1, "D(2*73)", [ "Z", 73, 1 ], 
  [ [ [ Z(73)^36 ] ] ] ],
[ 3, 219, 2, "1", [ [ 3, 24 ] ], 1, "73:3", [ "Z", 73, 1 ], 
  [ [ [ Z(73)^24 ] ] ] ],
[ 4, 292, 2, "1", [ [ 4, 18 ] ], 1, "73:4", [ "Z", 73, 1 ], 
  [ [ [ Z(73)^18 ] ] ] ],
[ 5, 438, 2, "1", [ [ 6, 12 ] ], 1, "73:6", [ "Z", 73, 1 ], 
  [ [ [ Z(73)^12 ] ] ] ],
[ 6, 584, 2, "1", [ [ 8, 9 ] ], 1, "73:8", [ "Z", 73, 1 ], 
  [ [ [ Z(73)^9 ] ] ] ],
[ 7, 657, 2, "1", [ [ 9, 8 ] ], 1, "73:9", [ "Z", 73, 1 ], 
  [ [ [ Z(73)^8 ] ] ] ],
[ 8, 876, 2, "1", [ [ 12, 6 ] ], 1, "73:12", [ "Z", 73, 1 ], 
  [ [ [ Z(73)^6 ] ] ] ],
[ 9, 1314, 2, "1", [ [ 18, 4 ] ], 1, "73:18", [ "Z", 73, 1 ], 
  [ [ [ Z(73)^4 ] ] ] ],
[ 10, 1752, 2, "1", [ [ 24, 3 ] ], 1, "73:24", [ "Z", 73, 1 ], 
  [ [ [ Z(73)^3 ] ] ] ],
[ 11, 2628, 2, "1", [ [ 36, 2 ] ], 1, "73:36", [ "Z", 73, 1 ], 
  [ [ [ Z(73)^2 ] ] ] ],
[ 12, 5256, 2, "1", [ [ 72, 1 ] ], 2, "AGL(1, 73)", [ "Z", 73, 1 ], 
  [ [ [ Z(73) ] ] ] ],
[ 13, 16482816, 1, "2", [ [ 72, 1 ] ], 2, "L(3, 2^3)", [ "L", [ 3, 8 ], 1 ], 
  [ ( 4,18, 8,20,69,24, 7)( 5,26,51,15,16, 6,52)( 9,66,45,43,48,12,23)
        (10,33,40,46,54,44,17)(11,70,29,68,30,39,63)(13,58,31,27,21,34,36)
        (14,28,37,32,35,59,22)(19,55,64,50,60,57,72)(25,61,41,71,42,53,67)
        (38,56,47,49,73,65,62), ( 1,42,72,59,58, 3, 2)( 4,40, 5,30,22,21,25)
        ( 6,37,36,41,68,65,20)( 7,12,55,38,24,10,56)( 8,14,13,71,26,23,70)
        ( 9,29,73,48,63,44,19)(11,47,28,27,53,62,39)(15,66,32,31,61,43,51)
        (16,45,33,52,49,50,17)(18,46,35,34,67,54,69) ] ],
[ 14, 49448448, 0, "2", [ [ 72, 1 ] ], 2, "L(3, 2^3):3 = PGammaL(3, 2^3)", 
  [ "L", [ 3, 8 ], 1 ], 
  [ ( 4,44,56,64, 6,70,45)( 5,68,48, 8,10,49,60)( 7,54,38,55,16,11,66)
        ( 9,24,46,62,19,15,63)(12,20,33,73,57,26,30)(13,21,58,34,31,36,27)
        (17,47,50,52,29,43,18)(23,69,40,65,72,51,39)(25,61,41,71,42,53,67), 
      ( 1,42,72,59,58, 3, 2)( 4,40, 5,30,22,21,25)( 6,37,36,41,68,65,20)
        ( 7,12,55,38,24,10,56)( 8,14,13,71,26,23,70)( 9,29,73,48,63,44,19)
        (11,47,28,27,53,62,39)(15,66,32,31,61,43,51)(16,45,33,52,49,50,17)
        (18,46,35,34,67,54,69), ( 4,26,68)( 5,70,20)( 6,30, 8)( 7,52,63)
        ( 9,38,17)(10,45,73)(11,18,15)(12,49,44)(13,36,21)(14,37,22)(16,29,24)
        (19,55,50)(23,65,40)(25,71,41)(27,34,31)(28,35,32)(33,48,56)(39,69,51)
        (43,62,54)(46,66,47)(53,67,61)(57,60,64) ] ],
[15, Factorial(73)/2,1,"2",[[72,1]],71, "Alt(73)", ["A",73, 1], "Alt"],
[16, Factorial(73),0,"2",[[72, 1]],73, "Sym(73)", ["A",73, 1], "Sym"]];
PRIMGRP[74]:= 
[[ 1, 194472, 1, "2", [ [ 73, 1 ] ], 2, "PSL(2, 73)", [ "L", [ 2, 73 ], 1 ], 
  "psl" ],
[ 2, 388944, 0, "2", [ [ 73, 1 ] ], 3, "PGL(2, 73)", [ "L", [ 2, 73 ], 1 ], 
  "pgl" ],
[3, Factorial(74)/2,1,"2",[[73,1]],72, "Alt(74)", ["A",74, 1], "Alt"],
[4, Factorial(74),0,"2",[[73, 1]],74, "Sym(74)", ["A",74, 1], "Sym"]];
PRIMGRP[75]:= 
[[1, Factorial(75)/2,1,"2",[[74,1]],73, "Alt(75)", ["A",75, 1], "Alt"],
[2, Factorial(75),0,"2",[[74, 1]],75, "Sym(75)", ["A",75, 1], "Sym"]];
PRIMGRP[76]:= 
[[1, Factorial(76)/2,1,"2",[[75,1]],74, "Alt(76)", ["A",76, 1], "Alt"],
[2, Factorial(76),0,"2",[[75, 1]],76, "Sym(76)", ["A",76, 1], "Sym"]];
PRIMGRP[77]:= 
[[ 1, 443520, 1, "2", [ [ 16, 1 ], [ 60, 1 ] ], 1, "M_22", 
  [ "Spor", "M(22)", 1 ], 
  [ ( 1,15)( 2,27)( 4, 7)( 6,66)( 9,39)(10,51)(11,74)(12,20)(14,37)(16,58)
        (17,49)(18,68)(19,64)(21,67)(22,33)(23,25)(26,70)(29,61)(31,43)(34,60)
        (35,36)(40,73)(41,48)(42,56)(44,46)(47,63)(50,57)(52,54)(53,71)(55,62)
        (59,72)(69,76), ( 1,56)( 2,22,11,24)( 3,37)( 4,25)( 5,32, 7,28)
        ( 6,34,40,41)( 8,16,50,33)(10,58,71,45)(12,14,60,65)(13,70,44,68)
        (15,48,18,19)(17,27,36,31)(20,74,55,69)(21,72,46,38)(23,64,75,29)
        (30,66,67,43)(39,52)(42,61,51,62)(47,59,77,57)(49,73,54,76) ] ],
[ 2, 887040, 0, "2", [ [ 16, 1 ], [ 60, 1 ] ], 1, "M_22.2", 
  [ "Spor", "M(22)", 1 ], 
  [ ( 1,49,31,24,21,72,76,66,18,37)( 2,15,69,53,74,54,57, 9,52,25)
        ( 3,60,12,56, 7,38,41,34,46,42)( 4,65,45,77,48,58,29,35,22,73)
        ( 5,16,33,51,44,36,20,10,61,40)( 6,26,13,64,14)( 8,32,63,67,50,71,27,
         39,43,55)(11,70,62,75,47,19,23,17,68,59)(28,30), 
      ( 1,13,42,65,23,24,61)( 2,21, 6,70,18,28,25)( 3,26,14,59,50,58,40)
        ( 4,77,68,66,52, 8, 9)( 5,12,56,48,53,57,45)( 7,49,20,36,16,22,29)
        (10,67,11,34,46,64,38)(15,76,72,33,54,74,63)(17,35,69,43,51,27,30)
        (19,32,55,39,71,44,47)(31,37,73,62,75,41,60) ] ],
[3, Factorial(77)/2,1,"2",[[76,1]],75, "Alt(77)", ["A",77, 1], "Alt"],
[4, Factorial(77),0,"2",[[76, 1]],77, "Sym(77)", ["A",77, 1], "Sym"]];
PRIMGRP[78]:= 
[[ 1, 1092, 1, "2", [ [ 14, 3 ], [ 7, 5 ] ], 1, "PSL(2, 13)", 
  [ "L", [ 2, 13 ], 1 ], 
  [ ( 1,62)( 2,65)( 3,45)( 4, 9)( 5,74)( 6,52)( 7,73)( 8,10)(11,61)(12,47)
        (13,75)(14,37)(15,67)(16,34)(17,58)(19,20)(21,41)(22,70)(23,26)(24,64)
        (25,40)(27,29)(28,68)(31,59)(32,49)(33,66)(35,38)(36,56)(39,43)(42,57)
        (44,77)(46,63)(48,72)(51,55)(60,71)(69,76), 
      ( 1,34,65,43,23,21,44,38,16, 7,53,72,50)( 2,54,46,29,49,14,60,68, 9,78,
         35,66,61)( 3,77,18,75,55, 8,67,57,10,74,47,30,39)( 4,62,69,17,51,70,
         45,52, 5,31,25,73,63)( 6,71,20,19,32,22,40,64,42,37,15,56,76)
        (11,24,41,58,12,48,13,59,26,36,33,27,28) ] ],
[ 2, 2184, 0, "2", [ [ 14, 5 ], [ 7, 1 ] ], 1, "PGL(2, 13)", 
  [ "L", [ 2, 13 ], 1 ], 
  [ ( 2,60)( 3,70)( 4,67)( 5,75)( 6,10)( 7,64)( 8,55)( 9,24)(12,63)(14,32)
        (15,54)(16,36)(17,74)(18,46)(19,78)(20,65)(23,73)(25,34)(26,50)(27,44)
        (28,47)(29,30)(31,41)(33,53)(35,56)(38,61)(39,59)(40,62)(42,52)(43,76)
        (45,69)(48,66)(49,57)(68,72)(71,77), 
      ( 1, 7,74,22,76,46,59, 3,58, 9,40, 6,55)( 2,50,73,77,39,62,53,35,26,16,
         48,34,41)( 4,37,63,11,78,71,27,65,38,28,32,54,33)( 5,15,13,45,12,42,
         51,44,30, 8,10,18,43)(14,25,20,52,67,24,49,60,36,57,70,19,69)
        (17,61,66,31,47,64,29,23,72,21,68,56,75) ] ],
[ 3, 3113510400, 1, "2", [ [ 22, 1 ], [ 55, 1 ] ], 1, "Alt(13)", 
  [ "A", 13, 1 ], 
  [ ( 1,61,59)( 2,31,64,51, 8,45)( 3,53,15,38,24,77,35,68,62,60)
        ( 4,73,48,57,74,37)( 5,17,20,26,72, 9,23,28,70,46,75,49, 7,21,30,69,
         67,25,47,22, 6,39,76,66,14,41,42,54,52,36)(10,55,13,11,27)
        (12,32,50,58,78,63)(16,34,56,65,44,43)(18,40,33,19,29), 
      ( 1,45, 2,73,15,47,76,27,75,13,69,36,32)( 3,14,54,66,59,42,77,24,61,25,
         21,50,53)( 4,34,20,38,64,23,11,33,44,49,41,30,31)( 5,10,26,43,17, 6,
         60,74,16,28,70,37,35)( 7,40,52,67,29,19,46,58,63,56,57,71, 8)
        ( 9,22,65,51,48,12,68,62,78,18,55,72,39) ] ],
[ 4, 6227020800, 0, "2", [ [ 22, 1 ], [ 55, 1 ] ], 1, "Sym(13)", 
  [ "A", 13, 1 ], 
  [ ( 1, 2, 3, 5, 7,10,13,17,21,26,31,37,43)( 4, 6, 8,11,14,18,22,27,32,38,44,
         51,50)( 9,12,15,19,23,28,33,39,45,52,58,57,64)(16,20,24,29,34,40,46,
         53,59,66,65,71,75)(25,30,35,41,47,54,60,67,63,70,74,77,78)
        (36,42,48,55,61,68,72,49,56,62,69,73,76), 
      ( 2, 4)( 6, 9)(12,16)(20,25)(30,36)(42,49)(43,50)(51,57)(56,63)(58,65)
        (66,70) ] ],
[5, Factorial(78)/2,1,"2",[[77,1]],76, "Alt(78)", ["A",78, 1], "Alt"],
[6, Factorial(78),0,"2",[[77, 1]],78, "Sym(78)", ["A",78, 1], "Sym"]];
PRIMGRP[79]:= 
[[ 1, 79, 3, "1", [ [ 1, 78 ] ], 1, "C(79)", [ "Z", 79, 1 ], [  ] ],
[ 2, 158, 2, "1", [ [ 2, 39 ] ], 1, "D(2*79)", [ "Z", 79, 1 ], 
  [ [ [ Z(79)^39 ] ] ] ],
[ 3, 237, 2, "1", [ [ 3, 26 ] ], 1, "79:3", [ "Z", 79, 1 ], 
  [ [ [ Z(79)^26 ] ] ] ],
[ 4, 474, 2, "1", [ [ 6, 13 ] ], 1, "79:6", [ "Z", 79, 1 ], 
  [ [ [ Z(79)^13 ] ] ] ],
[ 5, 1027, 2, "1", [ [ 13, 6 ] ], 1, "79:13", [ "Z", 79, 1 ], 
  [ [ [ Z(79)^6 ] ] ] ],
[ 6, 2054, 2, "1", [ [ 26, 3 ] ], 1, "79:26", [ "Z", 79, 1 ], 
  [ [ [ Z(79)^3 ] ] ] ],
[ 7, 3081, 2, "1", [ [ 39, 2 ] ], 1, "79:39", [ "Z", 79, 1 ], 
  [ [ [ Z(79)^2 ] ] ] ],
[ 8, 6162, 2, "1", [ [ 78, 1 ] ], 2, "AGL(1, 79)", [ "Z", 79, 1 ], 
  [ [ [ Z(79) ] ] ] ],
[9, Factorial(79)/2,1,"2",[[78,1]],77, "Alt(79)", ["A",79, 1], "Alt"],
[10, Factorial(79),0,"2",[[78, 1]],79, "Sym(79)", ["A",79, 1], "Sym"]];
PRIMGRP[80]:= 
[[ 1, 246480, 1, "2", [ [ 79, 1 ] ], 2, "PSL(2, 79)", [ "L", [ 2, 79 ], 1 ], 
  "psl" ],
[ 2, 492960, 0, "2", [ [ 79, 1 ] ], 3, "PGL(2, 79)", [ "L", [ 2, 79 ], 1 ], 
  "pgl" ],
[3, Factorial(80)/2,1,"2",[[79,1]],78, "Alt(80)", ["A",80, 1], "Alt"],
[4, Factorial(80),0,"2",[[79, 1]],80, "Sym(80)", ["A",80, 1], "Sym"]];
PRIMGRP[81]:= 
[[ 1, 405, 2, "1", [ [ 5, 16 ] ], 1, "3^4:5", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3), Z(3), Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ] 
         ] ] ],
[ 2, 810, 2, "1", [ [ 5, 8 ], [ 10, 4 ] ], 1, "3^4:D_10", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3), Z(3) ] 
         ] ] ],
[ 3, 810, 2, "1", [ [ 10, 8 ] ], 1, "3^4:10", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3)^0, Z(3)^0 ], [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, Z(3)^0 ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 4, 1296, 2, "1", [ [ 16, 1 ], [ 8, 8 ] ], 1, "3^4:D_16", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 5, 1296, 2, "1", [ [ 16, 4 ], [ 8, 2 ] ], 1, "3^4:SA_16", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 6, 1296, 2, "1", [ [ 16, 2 ], [ 8, 6 ] ], 1, "3^4:Q_8:2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 7, 1296, 2, "1", [ [ 16, 5 ] ], 1, "3^4:16", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ] ] ] ],
[ 8, 1296, 2, "1", [ [ 16, 5 ] ], 1, "3^4:SD_16", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), Z(3), 0*Z(3) ] ] ] ],
[ 9, 1620, 2, "1", [ [ 10, 8 ] ], 1, "3^4:D_20", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3), Z(3)^0, Z(3)^0, Z(3) ] ] ] ],
[ 10, 1620, 2, "1", [ [ 20, 4 ] ], 1, "3^4:5:4", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), Z(3), Z(3) ], [ Z(3)^0, Z(3)^0, Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3)^0, Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3)^0, Z(3)^0, Z(3) ] ] ] ],
[ 11, 1620, 2, "1", [ [ 20, 4 ] ], 1, "3^4:20", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), Z(3), Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] 
 ],
[ 12, 1620, 2, "1", [ [ 5, 2 ], [ 20, 2 ], [ 10, 3 ] ], 1, "3^4:5:4", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), Z(3), Z(3), Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3), Z(3), Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] 
         ] ] ],
[ 13, 2592, 2, "1", [ [ 16, 2 ], [ 8, 2 ], [ 32, 1 ] ], 1, "3^4:SA_16:2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3), Z(3), Z(3) ], 
          [ Z(3), Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] 
         ] ] ],
[ 14, 2592, 2, "1", [ [ 16, 1 ], [ 8, 4 ], [ 32, 1 ] ], 1, "3^4:2^2:4:2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 15, 2592, 2, "1", [ [ 16, 2 ], [ 8, 2 ], [ 32, 1 ] ], 1, "3^4:SA_16:2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ] ] ],
[ 16, 2592, 2, "1", [ [ 8, 6 ], [ 32, 1 ] ], 1, "3^4:2^3:2^2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ] ] ],
[ 17, 2592, 2, "1", [ [ 16, 4 ], [ 8, 2 ] ], 1, "3^4:D_16:2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] 
         ] ] ],
[ 18, 2592, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, "3^4:2^(2+2+1)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 19, 2592, 2, "1", [ [ 16, 3 ], [ 32, 1 ] ], 1, "3^4:Q_16:2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3), 0*Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ] ] ] ],
[ 20, 2592, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, "3^4:2^(2+1+2)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ] ] ] ],
[ 21, 2592, 2, "1", [ [ 16, 5 ] ], 1, "3^4:D_16:2", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 22, 2592, 2, "1", [ [ 16, 5 ] ], 1, "3^4:(2 x Q_8):2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 23, 2592, 2, "1", [ [ 16, 3 ], [ 32, 1 ] ], 1, "3^4:SA_16:2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), Z(3)^0 ] ]
        , 
      [ [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 24, 2592, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, "3^4:SA_32", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 25, 3240, 2, "1", [ [ 40, 2 ] ], 1, "3^4:40", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3), 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), Z(3), Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, Z(3) ] ] 
     ] ],
[ 26, 3240, 2, "1", [ [ 20, 3 ], [ 10, 2 ] ], 1, "3^4:(2 x 5:4)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 27, 3240, 2, "1", [ [ 40, 2 ] ], 1, "3^4:5:8", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ], 
          [ Z(3), Z(3)^0, Z(3), Z(3)^0 ] ] ] ],
[ 28, 3240, 2, "1", [ [ 20, 4 ] ], 1, "3^4:(4 x D_10)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ]
        , 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), Z(3), Z(3), Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ] ] ],
[ 29, 3240, 2, "1", [ [ 40, 2 ] ], 1, "3^4:5:8", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3), Z(3)^0, 0*Z(3), Z(3) ], [ Z(3), Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, Z(3), Z(3), Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ] ] ] ],
[ 30, 3888, 2, "1", [ [ 48, 1 ], [ 16, 2 ] ], 1, "3^4:Q_8.Sym(3)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3), 0*Z(3) ] ] ] ],
[ 31, 3888, 2, "1", [ [ 24, 2 ], [ 16, 2 ] ], 1, "3^4:(Q_8:3):2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 32, 5184, 2, "1", [ [ 16, 2 ], [ 8, 2 ], [ 32, 1 ] ], 1, 
  "3^4:(GL(1, 3) wreath 4)", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), Z(3)^0, Z(3)^0 ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3) ] ] ] ],
[ 33, 5184, 2, "1", [ [ 16, 2 ], [ 8, 2 ], [ 32, 1 ] ], 1, "3^4:4^2:4", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 34, 5184, 2, "1", [ [ 16, 2 ], [ 8, 2 ], [ 32, 1 ] ], 1, "3^4:Q_8:D_8", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3), 0*Z(3), Z(3) ], [ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] 
         ] ] ],
[ 35, 5184, 2, "1", [ [ 16, 1 ], [ 8, 4 ], [ 32, 1 ] ], 1, "3^4:2^3:D_8", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), Z(3)^0 ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3)^0, Z(3) ] ] ] 
 ],
[ 36, 5184, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:8.D_8", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 37, 5184, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:2^(2+3+1)", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 38, 5184, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, "3^4:D_16:4", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 39, 5184, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, "3^4:D_16:4", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3), 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), Z(3) ] 
         ] ] ],
[ 40, 5184, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, "3^4:2^(2+2+2)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ], 
          [ Z(3), 0*Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 41, 5184, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:16:4", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), Z(3) ], [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 42, 5184, 2, "1", [ [ 16, 3 ], [ 32, 1 ] ], 1, "3^4:D_16:4", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ]
        , 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 43, 5184, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, "3^4:(SA_16:2):2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3), Z(3), Z(3) ], [ 0*Z(3), Z(3), Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ], [ Z(3)^0, Z(3)^0, Z(3), 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ 0*Z(3), 0*Z(3), Z(3), Z(3) ], 
          [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 44, 6480, 2, "1", [ [ 80, 1 ] ], 2, "3^4:5:16", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, Z(3)^0, Z(3)^0 ], [ 0*Z(3), Z(3), Z(3)^0, Z(3) ] 
         ] ] ],
[ 45, 6480, 2, "1", [ [ 40, 2 ] ], 1, "3^4:(8 x D_10)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, Z(3)^0, Z(3), Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ] ]
        , 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3)^0, Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ] ] ],
[ 46, 6480, 2, "1", [ [ 40, 1 ], [ 20, 2 ] ], 1, "3^4:20:4", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3)^0 ], [ Z(3), Z(3), 0*Z(3), Z(3)^0 ] ]
        , 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3), Z(3)^0, Z(3), Z(3)^0 ] ] ] ],
[ 47, 6480, 2, "1", [ [ 80, 1 ] ], 2, "3^4:80", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3)^0, Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3) ], [ Z(3), Z(3)^0, Z(3)^0, Z(3) ] ] 
     ] ],
[ 48, 6480, 2, "1", [ [ 40, 2 ] ], 1, "3^4:5:SA_16", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3)^0 ], 
          [ Z(3), Z(3), Z(3)^0, Z(3) ] ] ] ],
[ 49, 7776, 2, "1", [ [ 24, 1 ], [ 8, 3 ], [ 32, 1 ] ], 1, "3^4:2^3:Alt(4)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ]
        , 
      [ [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ] ] ],
[ 50, 7776, 2, "1", [ [ 24, 2 ], [ 16, 2 ] ], 1, "3^4:(Q_8:2):Sym(3)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] 
         ] ] ],
[ 51, 7776, 2, "1", [ [ 48, 1 ], [ 16, 2 ] ], 1, "3^4:Q_8.Sym(3):2", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ] ] ] ],
[ 52, 7776, 2, "1", [ [ 48, 1 ], [ 16, 2 ] ], 1, "3^4:(2 x Q_8):6", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ] ] ] ],
[ 53, 7776, 2, "1", [ [ 48, 1 ], [ 16, 2 ] ], 1, "3^4:Q_8.Sym(3):2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ] ] ] ],
[ 54, 7776, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:(SA_16:2):3", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ] ] ] ],
[ 55, 7776, 2, "1", [ [ 24, 2 ], [ 32, 1 ] ], 1, "3^4:(Q_8:3):2^2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ] ] ] ],
[ 56, 7776, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:Q_8.Sym(3):2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3)^0, Z(3), Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 57, 7776, 2, "1", [ [ 24, 2 ], [ 32, 1 ] ], 1, "3^4:(Q_8:3):4", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), 0*Z(3), Z(3), Z(3) ], 
          [ Z(3), Z(3)^0, Z(3)^0, Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, 0*Z(3) ] ] 
     ] ],
[ 58, 10368, 2, "1", [ [ 16, 2 ], [ 8, 2 ], [ 32, 1 ] ], 1, 
  "3^4:(GL(1, 3) wreath D_4)", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, Z(3), 0*Z(3), Z(3)^0 ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ]
        , 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, Z(3), 0*Z(3), Z(3)^0 ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 59, 10368, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, "3^4:Q_16:D_8", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, Z(3), Z(3)^0 ], [ Z(3), Z(3)^0, Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ]
            , [ Z(3)^0, Z(3)^0, Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3) ], 
          [ Z(3), Z(3)^0, Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ] 
     ] ],
[ 60, 10368, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, "3^4:(4 x 8):4", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3)^0, Z(3), Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, Z(3)^0, Z(3) ] ] ] ],
[ 61, 10368, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:2^(2+3+1+1)", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 62, 10368, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:8.D_8:2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ]
            , [ Z(3), 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 63, 10368, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:2^(2+3+1+1)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ] ] ],
[ 64, 10368, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, "3^4:2^(3+4):4", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0 ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 65, 10368, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:D_16:Q_8", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] 
     ] ],
[ 66, 10368, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:2^(2+3+1+1)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ] ] ] ],
[ 67, 10368, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:D_16:8", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ]
        , 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ] ] ] ],
[ 68, 12960, 2, "1", [ [ 40, 2 ] ], 1, "3^4:40:4", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, Z(3)^0, Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, Z(3)^0, Z(3)^0 ] ] ] ],
[ 69, 12960, 2, "1", [ [ 80, 1 ] ], 2, "3^4:5:2^(2+1+2)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ], [ 0*Z(3), 0*Z(3), Z(3), Z(3) ] ]
        , [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3), Z(3), Z(3) ], 
          [ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3) ], 
          [ Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ] ] ],
[ 70, 12960, 2, "1", [ [ 80, 1 ] ], 2, "3^4:16:D_10", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ], [ Z(3), Z(3), Z(3)^0, Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0 ] ] ] ],
[ 71, 12960, 2, "1", [ [ 80, 1 ] ], 2, "3^4:((2x Q_8):2):5", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), 0*Z(3), Z(3), Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3)^0, Z(3)^0, Z(3) ], 
          [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0 ] ] ] ],
[ 72, 15552, 2, "1", [ [ 24, 1 ], [ 16, 1 ], [ 8, 1 ], [ 32, 1 ] ], 1, 
  "3^4:(GL(1, 3) wreath Alt(4))", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ] ] ],
[ 73, 15552, 2, "1", [ [ 24, 1 ], [ 16, 1 ], [ 8, 1 ], [ 32, 1 ] ], 1, 
  "3^4:Q_8:Sym(4)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] 
         ] ] ],
[ 74, 15552, 2, "1", [ [ 24, 1 ], [ 8, 3 ], [ 32, 1 ] ], 1, "3^4:2^3:Sym(4)", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ]
        , 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 75, 15552, 2, "1", [ [ 48, 1 ], [ 16, 2 ] ], 1, "3^4:(2 x Q_8):Alt(4)",
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), Z(3), Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 76, 15552, 2, "1", [ [ 24, 2 ], [ 32, 1 ] ], 1, "3^4:2^(3+2):Sym(3)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ], [ Z(3)^0, Z(3)^0, Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3) ] ] ] ],
[ 77, 15552, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:(Q_8.Sym(3):2):2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ]
        , 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ], 
          [ Z(3), Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 78, 15552, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:(SA_16:2):6", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3), Z(3), 0*Z(3) ] ] ] ],
[ 79, 15552, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:(SA_16:2):6", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3), Z(3)^0, Z(3)^0 ] ]
        , 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 80, 15552, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:Q_8.Sym(3):4", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3), Z(3)^0 ], [ Z(3), Z(3)^0, Z(3)^0, Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3)^0, Z(3), 0*Z(3) ], 
          [ Z(3), Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ] ] 
     ] ],
[ 81, 15552, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:Q_8.Sym(3):2^2", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3), Z(3), Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ]
            , [ Z(3)^0, Z(3), Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3)^0, Z(3)^0 ] ] ] ],
[ 82, 20736, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:2^(2+3+1+2)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), Z(3), Z(3)^0 ], [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, Z(3), Z(3)^0 ] ], 
      [ [ Z(3), Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3), Z(3)^0 ], [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ] ] 
     ] ],
[ 83, 20736, 2, "1", [ [ 16, 1 ], [ 32, 2 ] ], 1, 
  "3^4:(GL(1, 3) wreath D_4):2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ] ] 
     ] ],
[ 84, 20736, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:Q_8^2:4", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3)^0, Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ] ] ] ],
[ 85, 20736, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:8^2:4", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0, Z(3), Z(3) ] ] 
     ] ],
[ 86, 20736, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:8^2:4", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ], 
          [ 0*Z(3), Z(3), Z(3), Z(3)^0 ], [ Z(3)^0, Z(3), Z(3)^0, Z(3) ] ] ] 
 ],
[ 87, 20736, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:(8.D_8:2):2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, Z(3) ] ] 
     ] ],
[ 88, 23328, 2, "1", [ [ 24, 2 ], [ 32, 1 ] ], 1, "3^4:SL(2, 3):Alt(4)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3)^0, Z(3), Z(3), Z(3)^0 ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ]
            , [ Z(3), Z(3), Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3)^0 ] ] ] ],
[ 89, 25920, 2, "1", [ [ 80, 1 ] ], 2, "3^4:16:5:4", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0, Z(3), Z(3) ] ]
        , 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), Z(3), 0*Z(3), Z(3) ], [ Z(3), 0*Z(3), Z(3)^0, Z(3) ] 
         ] ] ],
[ 90, 25920, 2, "1", [ [ 80, 1 ] ], 2, "3^4:((2 x Q_8):2):D_10", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3), 0*Z(3), Z(3)^0 ], [ Z(3)^0, Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3)^0, Z(3)^0, Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0 ] ] ] ],
[ 91, 31104, 2, "1", [ [ 24, 1 ], [ 16, 1 ], [ 8, 1 ], [ 32, 1 ] ], 1, 
  "3^4:(GL(1, 3) wreath Sym(4))", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ] ] ],
[ 92, 31104, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:Q_8^2:6", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 93, 31104, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:Q_8^2:Sym(3)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3), Z(3), Z(3)^0 ], 
          [ Z(3), Z(3)^0, Z(3), Z(3)^0 ], [ Z(3), Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 94, 31104, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:GL(2, 3):D_8", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3), Z(3), 0*Z(3), Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), 0*Z(3), Z(3), Z(3) ], [ Z(3)^0, Z(3), Z(3), 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3)^0, Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3), Z(3), Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ] ] 
     ] ],
[ 95, 41472, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:8^2:D_8", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ 0*Z(3), Z(3), Z(3), 0*Z(3) ] ] ] 
 ],
[ 96, 46656, 2, "1", [ [ 24, 2 ], [ 32, 1 ] ], 1, "3^4:SL(2, 3):Sym(4)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3), Z(3)^0 ], [ Z(3), Z(3), 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3), 0*Z(3), Z(3) ], 
          [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ] ]
        , [ [ 0*Z(3), Z(3), Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3), Z(3)^0 ], [ Z(3), Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 97, 46656, 2, "1", [ [ 24, 2 ], [ 32, 1 ] ], 1, "3^4:(2^3:Alt(4)):Sym(3)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ] 
         ] ] ],
[ 98, 46656, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, 
  "3^4:GL(2, 3):(3 x Sym(3))", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3), 0*Z(3), Z(3)^0 ], [ Z(3)^0, 0*Z(3), Z(3), Z(3) ] 
         ] ] ],
[ 99, 51840, 2, "1", [ [ 80, 1 ] ], 2, "3^4:((2 x Q_8):2):5:4", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), 0*Z(3), Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0, Z(3), Z(3)^0 ] ], 
      [ [ Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3), Z(3) ], [ Z(3), Z(3), Z(3), 0*Z(3) ] ] ] ],
[ 100, 62208, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:Q_8^2:D_12", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 101, 93312, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:(SL(2, 3) wreath 2)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), 0*Z(3), Z(3), Z(3) ], [ Z(3), Z(3), Z(3)^0, Z(3)^0 ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 102, 93312, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:GL(2, 3):Sym(4)", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ], 
          [ Z(3), Z(3), Z(3), Z(3)^0 ], [ Z(3)^0, Z(3), Z(3), Z(3)^0 ] ] ] ],
[ 103, 93312, 2, "1", [ [ 24, 2 ], [ 32, 1 ] ], 1, "3^4:(2^3:Alt(4)):Sym(3)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3), 0*Z(3) ] ]
        , 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3), Z(3)^0 ] ] ] ],
[ 104, 93312, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:(2^3:2^2):(3^2:4)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), Z(3), Z(3)^0, Z(3)^0 ], [ 0*Z(3), Z(3), Z(3), Z(3)^0 ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), 0*Z(3), Z(3), 0*Z(3) ], 
          [ Z(3), Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 105, 186624, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:Q_8^2:3^2:4", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3)^0, 0*Z(3), Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ] 
         ] ] ],
[ 106, 186624, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:Q_8^2:Sym(3)^2", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ] ]
        , 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ], 
          [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ] ] ] ],
[ 107, 186624, 2, "1", [ [ 48, 1 ], [ 32, 1 ] ], 1, "3^4:(2^3:2^2):3^2:D_8", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), Z(3)^0, Z(3)^0, Z(3) ], [ Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3)^0, Z(3), Z(3) ] ] ] ],
[ 108, 373248, 2, "1", [ [ 16, 1 ], [ 64, 1 ] ], 1, "3^4:(GL(2, 3) wreath 2)",
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ] ] ],
[ 109, 1965150720, 0, "1", [ [ 80, 1 ] ], 2, "AGL(4, 3)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 110, 982575360, 0, "1", [ [ 80, 1 ] ], 2, "ASL(4, 3)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3), Z(3), Z(3) ], [ Z(3), Z(3)^0, 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0 ] ] ] ],
[ 111, 58320, 0, "1", [ [ 80, 1 ] ], 2, "3^4:2.Alt(6)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 112, 116640, 0, "1", [ [ 80, 1 ] ], 2, "3^4:4.Alt(6)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ], [ 0*Z(3), Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 113, 116640, 0, "1", [ [ 80, 1 ] ], 2, "3^4:2.Sym(6)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ Z(3)^0, Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ] ] ],
[ 114, 233280, 0, "1", [ [ 80, 1 ] ], 2, "3^4:8.Alt(6)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ Z(3)^0, Z(3)^0, Z(3)^0, Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3), Z(3) ], [ Z(3), Z(3), 0*Z(3), Z(3)^0 ] ] ] 
 ],
[ 115, 233280, 0, "1", [ [ 80, 1 ] ], 2, "3^4:SL(2, 9):2^2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), 0*Z(3), Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ] ] ] ],
[ 116, 233280, 0, "1", [ [ 80, 1 ] ], 2, "3^4:4.Alt(6).2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3), Z(3)^0 ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ Z(3), Z(3), 0*Z(3), Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ] 
         ] ] ],
[ 117, 466560, 0, "1", [ [ 80, 1 ] ], 2, "3^4:2.Alt(6):D_8", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), Z(3), 0*Z(3), Z(3)^0 ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3), Z(3)^0, Z(3)^0 ], [ Z(3), 0*Z(3), Z(3), Z(3) ] ] 
     ] ],
[ 118, 466560, 0, "1", [ [ 80, 1 ] ], 2, "AGL(2, 9)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3)^0, Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ], [ Z(3), Z(3), Z(3), Z(3) ] ] ] ],
[ 119, 466560, 0, "1", [ [ 80, 1 ] ], 2, "3^4:2.Alt(6):Q_8", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, Z(3), Z(3)^0 ], [ 0*Z(3), 0*Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), 0*Z(3), Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3)^0, Z(3)^0 ] ] ] ],
[ 120, 933120, 0, "1", [ [ 80, 1 ] ], 2, "AGammaL(2, 9)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), Z(3), 0*Z(3), Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, Z(3)^0, Z(3), 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ] ] ] ],
[ 121, 9720, 0, "1", [ [ 40, 2 ] ], 1, "3^4:2.Alt(5)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3), Z(3) ], 
          [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3)^0, Z(3), 0*Z(3) ] 
         ] ] ],
[ 122, 19440, 0, "1", [ [ 40, 2 ] ], 1, "3^4:4.Alt(5)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ]
            , [ Z(3)^0, Z(3), Z(3), Z(3) ], [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ] 
         ] ] ],
[ 123, 19440, 0, "1", [ [ 40, 2 ] ], 1, "3^4:2.Alt(5):2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ]
            , [ Z(3)^0, Z(3)^0, Z(3), 0*Z(3) ], [ Z(3), Z(3), 0*Z(3), Z(3) ] 
         ] ] ],
[ 124, 19440, 0, "1", [ [ 80, 1 ] ], 2, "3^4:2.Alt(5).2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3)^0, Z(3) ], [ Z(3), Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3)^0, Z(3)^0, Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), Z(3) ] ] 
     ] ],
[ 125, 38880, 0, "1", [ [ 40, 2 ] ], 1, "3^5:4.Sym(5)", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), Z(3), Z(3), 0*Z(3) ] ] ] ],
[ 126, 38880, 0, "1", [ [ 80, 1 ] ], 2, "3^4:8.Alt(5)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3)^0, Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3), Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3), Z(3) ], [ Z(3), Z(3), Z(3), Z(3) ] ] ] ],
[ 127, 38880, 0, "1", [ [ 80, 1 ] ], 2, "3^4:4.Sym(5)", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3) ] ]
        , 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ] ] ],
[ 128, 77760, 0, "1", [ [ 80, 1 ] ], 2, "3^4:8.Sym(5)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, Z(3)^0, Z(3)^0, Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ] ] ] ],
[ 129, 311040, 0, "1", [ [ 80, 1 ] ], 2, "3^4:2^(1+4).Alt(5):2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3), Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3) ], [ Z(3), Z(3), Z(3), Z(3)^0 ] 
         ] ] ],
[ 130, 155520, 0, "1", [ [ 80, 1 ] ], 2, "3^4:2^(1+4).Alt(5)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3), Z(3)^0 ], [ Z(3)^0, Z(3), Z(3)^0, Z(3)^0 ] ]
        , 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), Z(3), Z(3)^0 ] ] 
     ] ],
[ 131, 8398080, 0, "1", [ [ 80, 1 ] ], 2, "3^4:Sp(4, 3):2", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), Z(3), Z(3)^0, Z(3)^0 ] ] ] ],
[ 132, 4199040, 0, "1", [ [ 80, 1 ] ], 2, "3^4:Sp(4, 3)", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3) ], [ Z(3), Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ], [ Z(3), Z(3)^0, Z(3), Z(3) ] 
         ] ] ],
[ 133, 29160, 0, "1", [ [ 30, 2 ], [ 20, 1 ] ], 1, "3^4:Alt(6)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), Z(3)^0, Z(3), Z(3) ], [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3), 0*Z(3), Z(3), Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), Z(3) ] ] ] ],
[ 134, 58320, 0, "1", [ [ 30, 2 ], [ 20, 1 ] ], 1, "3^4:(2 x Alt(6))", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3), Z(3), Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3)^0, Z(3)^0, Z(3) ], [ Z(3), Z(3), 0*Z(3), Z(3) ] ] 
     ] ],
[ 135, 58320, 0, "1", [ [ 30, 2 ], [ 20, 1 ] ], 1, "3^4:Sym(6)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3), Z(3), Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3)^0, 0*Z(3) ]
            , [ Z(3)^0, Z(3), 0*Z(3), Z(3) ], [ Z(3), Z(3)^0, Z(3), Z(3)^0 ] 
         ] ] ],
[ 136, 58320, 0, "1", [ [ 60, 1 ], [ 20, 1 ] ], 1, "3^4:Alt(6).2", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3)^0, 0*Z(3), Z(3), 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3)^0, Z(3)^0 ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3)^0, 0*Z(3), Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ] ] ] ],
[ 137, 116640, 0, "1", [ [ 60, 1 ], [ 20, 1 ] ], 1, "3^4:2.PGL(2, 9)", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], [ Z(3), Z(3)^0, Z(3), 0*Z(3) ] ]
        , 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), Z(3)^0, Z(3), 0*Z(3) ], 
          [ Z(3)^0, Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3), Z(3)^0 ] ] ] ],
[ 138, 116640, 0, "1", [ [ 30, 2 ], [ 20, 1 ] ], 1, "3^4:(2 x Sym(6))", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], [ Z(3), Z(3)^0, Z(3)^0, Z(3)^0 ] ]
        , 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3)^0, Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ Z(3), Z(3), Z(3)^0, Z(3)^0 ] ] ] ],
[ 139, 116640, 0, "1", [ [ 60, 1 ], [ 20, 1 ] ], 1, "3^4:(2 x Alt(6).2)",
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, Z(3), Z(3), Z(3)^0 ], [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ Z(3), Z(3)^0, 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3)^0, Z(3), Z(3) ] ] ] ],
[ 140, 233280, 0, "1", [ [ 60, 1 ], [ 20, 1 ] ], 1, "3^4:2.PGammaL(2, 9)", 
  [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ 0*Z(3), Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, Z(3), Z(3) ] ], 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), 0*Z(3), Z(3)^0, Z(3) ], 
          [ Z(3)^0, 0*Z(3), Z(3), Z(3)^0 ] ] ] ],
[ 141, 4860, 0, "1", [ [ 5, 2 ], [ 30, 1 ], [ 20, 1 ], [ 10, 2 ] ], 1, 
  "3^4:Alt(5)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3)^0, Z(3)^0, 0*Z(3) ] ] ] ],
[ 142, 9720, 0, "1", [ [ 5, 2 ], [ 30, 1 ], [ 20, 1 ], [ 10, 2 ] ], 1, 
  "3^4:Sym(5)", [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), Z(3) ], [ Z(3), Z(3), Z(3)^0, Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ]
            , [ 0*Z(3), Z(3)^0, Z(3)^0, Z(3) ], 
          [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ] ] ] ],
[ 143, 9720, 0, "1", [ [ 30, 1 ], [ 20, 2 ], [ 10, 1 ] ], 1, "3^4:Sym(5)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ] ], 
      [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), Z(3), Z(3)^0, 0*Z(3) ], [ Z(3), Z(3)^0, Z(3), Z(3) ] 
         ] ] ],
[ 144, 9720, 0, "1", [ [ 30, 1 ], [ 20, 2 ], [ 10, 1 ] ], 1, "3^4:2.Alt(5)", 
  [ "Z", 3, 4 ], 
  [ [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, Z(3), Z(3), Z(3) ], [ Z(3)^0, Z(3)^0, Z(3)^0, Z(3) ] ], 
      [ [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, 0*Z(3) ], 
          [ Z(3), Z(3), Z(3), Z(3)^0 ], [ Z(3), Z(3)^0, Z(3)^0, Z(3)^0 ] ] ] 
 ],
[ 145, 19440, 0, "1", [ [ 30, 1 ], [ 20, 2 ], [ 10, 1 ] ], 1, 
  "3^4:(2 x Sym(5))", [ "Z", 3, 4 ], 
  [ [ [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], 
          [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ], [ Z(3)^0, Z(3), Z(3)^0, Z(3) ] ]
        , 
      [ [ 0*Z(3), Z(3)^0, 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3), Z(3)^0, 0*Z(3) ]
            , [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)^0 ], 
          [ Z(3)^0, 0*Z(3), 0*Z(3), 0*Z(3) ] ] ] ],
[ 146, 65840947200, 0, "4c", [ [ 16, 1 ], [ 64, 1 ] ], 1, 
  "Alt(9) wreath Sym(2)", [ "A", 9, 2 ], 
  [ ( 1,64,10)( 2,71,15, 9,67,11, 8,69,18, 4,65,17, 6,72,13)( 3,66,12)
        ( 5,68,14)( 7,70,16)(19,73)(20,80,24,81,22,74,26,78,27,76)(21,75)
        (23,77)(25,79)(28,46)(29,53,33,54,31,47,35,51,36,49)(30,48)(32,50)
        (34,52)(38,44,42,45,40)(56,62,60,63,58), 
      ( 1,76,15,55,81,69,62,27,66, 8,22,12)( 2,40,16,46,74,42,61,54,65,44,25,
         48)( 3, 4,13,10,73,78,60,63,72,71,26,21)( 5,31,14,28,77,33,59,36,68,
         35,23,30)( 6,58,18,64,80,24,57, 9,67,17,19,75)( 7,49,11,37,79,51,56,
         45,70,53,20,39)(29,41,34,50)(38,43,52,47) ] ],
[ 147, 131681894400, 0, "4c", [ [ 16, 1 ], [ 64, 1 ] ], 1, "Alt(9)^2.2^2", 
  [ "A", 9, 2 ], 
  [ ( 1,49,55, 4,46,58)( 2,50,61)( 3,48,57)( 5,52,56)( 6,51,60)( 7,47,59)
        ( 8,53,62)( 9,54,63)(10,22,64,40,73,31)(11,23,70,38,77,34)
        (12,21,66,39,75,30)(13,19,67,37,76,28)(14,25,65,41,79,29)
        (15,24,69,42,78,33)(16,20,68,43,74,32)(17,26,71,44,80,35)
        (18,27,72,45,81,36), ( 1,80,15,59,34,19,81, 6,62,16,23,36)
        ( 2,71,13,41,29,64,76,42,56,70,22,45)( 3,53,12,50,30,46,75,51,57,52,
         21,54)( 4,44,11,68,31,37,74,69,58,43,20,72)( 5,35,10,77,33,55,79,24,
         63, 7,26,18)( 8,17,14,32,28,73,78,60,61,25,27, 9)(38,65,67,40)
        (39,47,66,49) ] ],
[ 148, 131681894400, 0, "4c", [ [ 16, 1 ], [ 64, 1 ] ], 1, "Alt(9)^2.4", 
  [ "A", 9, 2 ], 
  [ ( 1,18,55,12,64,13,73,16,46,17,28,15,19,14,37,11)( 2, 9,63,57,66,67,76,79,
         52,53,35,33,24,23,41,38)( 3,72,58,75,70,49,80,34,51,26,32,42,20, 5,
         45,56)( 4,81,61,48,71,31,78,25,50,44,29, 6,27,59,39,65)
        ( 7,54,62,30,69,22,77,43,47, 8,36,60,21,68,40,74), 
      ( 1,24,38,77)( 2,78,37,23)( 3,33,45,59, 4,15,44,50)( 5, 6,42,41)
        ( 7,69,43,68)( 8,51,39,32, 9,60,40,14)(10,26,47,75,28,27,56,76)
        (11,80,46,21,29,81,55,22)(12,35,54,57,31,18,62,49)(13,17,53,48,30,36,
         63,58)(16,71,52,66,34,72,61,67)(19,20,74,73)(25,65,79,64) ] ],
[ 149, 263363788800, 0, "4c", [ [ 16, 1 ], [ 64, 1 ] ], 1, 
  "Sym(9) wreath Sym(2)", [ "A", 9, 2 ], 
  [ ( 1,50,78,66,29,19,59,15,39, 2,46,77,69,30,20,55,14,42, 3,47,73,68,33,21,
         56,10,41, 6,48,74,64,32,24,57,11,37, 5,51,75,65,28,23,60,12,38)
        ( 4,49,76,67,31,22,58,13,40)( 7,52,79,70,34,25,61,16,43)
        ( 8,54,80,72,35,27,62,18,44, 9,53,81,71,36,26,63,17,45), 
      ( 1,80,63,67,43,19,74, 9,71,61,22,38)( 2, 8,62,58,40,37,73,81,72,70,25,
         20)( 3,53,57,49,39,46,75,54,66,52,21,47)( 4,44,55,76,45,64,79,27,65,
          7,26,56)( 5,35,59,31,41,28,77,36,68,34,23,29)( 6,17,60,13,42,10,78,
         18,69,16,24,11)(12,51)(14,33)(30,50) ] ],
[ 150, 508032, 0, "4c", [ [ 16, 1 ], [ 64, 1 ] ], 1, 
  "PSL(2, 8) wreath Sym(2)", [ "L", [ 2, 8 ], 2 ], 
  [ ( 1, 3, 9, 6, 8, 4, 5)(10,39,54,33,80,58,68)(11,38,47,29,74,56,65)
        (12,45,51,35,76,59,64)(13,41,46,30,81,60,71)(14,37,48,36,78,62,67)
        (15,44,49,32,73,57,72)(16,43,52,34,79,61,70)(17,40,50,28,75,63,69)
        (18,42,53,31,77,55,66)(19,21,27,24,26,22,23), 
      ( 1,43,47,12,80, 6,25,54,66,77,60,22,36,64,41,56,13,35)( 2,16,53, 3,79,
         51,21,81,69,23,63,67,32,55,40,29,10,44)( 4,34,46,39,74,15,26, 9,70,
         50,57,76,33,19,45,65,14,62)( 5,61,49,30,73,42,20,18,71)
        ( 7,52,48,75,78,24,27,72,68,59,58,31,28,37,38,11,17, 8) ] ],
[ 151, 1524096, 0, "4c", [ [ 16, 1 ], [ 64, 1 ] ], 1, "PSL(2, 8)^2.6", 
  [ "L", [ 2, 8 ], 2 ], 
  [ ( 1,43,50,56,27,13)( 2,25,49)( 3,34,48,29,21,31)( 4, 7,52,47,20,22)
        ( 5,61,54,11,19,40)( 6,70,51,65,24,67)( 8,79,53,74,26,76)
        ( 9,16,46,38,23,58)(10,37,41,59,63,18)(12,28,39,32,57,36)(14,55,45)
        (15,64,42,68,60,72)(17,73,44,77,62,81)(33,66)(35,75)(71,78), 
      ( 1,67,18,21,53,43)( 2,58,11,57,47,61)( 3,49,16)( 4,13,12,48,52, 7)
        ( 5,76,14,75,50,79)( 6,31,15,30,51,34)( 8,40,10,66,54,25)
        ( 9,22,17,39,46,70)(19,71,45)(20,62,38,55,65,63)(23,80,41,73,68,81)
        (24,35,42,28,69,36)(26,44,37,64,72,27)(29,60)(32,78)(59,74) ] ],
[ 152, 1524096, 0, "4c", [ [ 16, 1 ], [ 64, 1 ] ], 1, "PSL(2, 8)^2.Sym(3)", 
  [ "L", [ 2, 8 ], 2 ], 
  [ ( 1,69,73,60,19,51,37,33,10, 6,64,78,55,24,46,42,28,15)( 2,66,77,61,27,53,
         38,30,14, 7,72,80,56,21,50,43,36,17)( 3,68,79,63,26,47,39,32,16, 9,
         71,74,57,23,52,45,35,11)( 4,67,76,58,22,49,40,31,13)( 5,70,81,62,20,
         48,41,34,18, 8,65,75,59,25,54,44,29,12), 
      ( 1,61,80,40,36,48)( 2,25,78,13,32,66)( 3, 7,79,76,31,30)( 4,34,75)
        ( 5,70,74,22,33,12)( 6,16,77,67,29,21)( 8,43,81,49,28,57)
        ( 9,52,73,58,35,39)(10,59,71,38,27,51)(11,23,69)(14,68,65,20,24,15)
        (17,41,72,47,19,60)(18,50,64,56,26,42)(37,63,53)(44,45,54,46,55,62) ] 
 ],
[ 153, 4572288, 0, "4c", [ [ 16, 1 ], [ 64, 1 ] ], 1, 
  "PSigmaL(2, 8) wreath Sym(2)", [ "L", [ 2, 8 ], 2 ], 
  [ ( 1,58,80)( 2,31,78,46,61,71)( 3,22,81,10,59,44)( 4,76,73,55,62, 8)
        ( 5,40,75,19,63,17)( 6,49,79,64,56,35)( 7,67,74,28,60,53)
        ( 9,13,77,37,57,26)(11,32,42,48,25,72)(12,23,45)(14,41,39,21,27,18)
        (15,50,43,66,20,36)(16,68,38,30,24,54)(29,33,51,52,70,65)(34,69,47), 
      ( 1,39,50,80,31,11, 7,37,48,77,35,13, 2,43,46,75,32,17, 4,38,52,73,30,
         14, 8,40,47,79,28,12, 5,44,49,74,34,10, 3,41,53,76,29,16)
        ( 6,42,51,78,33,15)( 9,45,54,81,36,18)(19,66,23,71,22,65,25,64,21,68,
         26,67,20,70)(24,69)(27,72)(55,57,59,62,58,56,61) ] ],
[154, Factorial(81)/2,1,"2",[[80,1]],79, "Alt(81)", ["A",81, 1], "Alt"],
[155, Factorial(81),0,"2",[[80, 1]],81, "Sym(81)", ["A",81, 1], "Sym"]];
PRIMGRP[82]:= 
[[ 1, 265680, 1, "2", [ [ 81, 1 ] ], 2, "PSL(2, 3^4)", [ "L", [ 2, 81 ], 1 ], 
  [ ( 1,76,27,70,28,81,78,10,75,65, 3,38, 2,36,63,17,48,56,19,59,35, 4,49,77,
         44,30,31,29, 9,41, 6,64,82,39,43,22,33,57,66,26,21)( 5,15,67,53, 7,
         12,79,62,74,68,50,58,52,34,73,55,11,51,60,20,61,40,69,13,46,47,54,18,
         23,45,37,42,80,14,16, 8,25,72,71,24,32), 
      ( 1,52,51,58,48,27, 9,71,26,45,65,22, 4,55,68,73,57,24,28,76, 5,82,79,
         25,62,78,32,37,34,72,18,64,20,42,61,81,54,33,39,23)( 2,50, 3,35,66,
         67,74,77,12,40,63,60,46,21,56,29,11,30,43,41,47,17,36, 7,10,16, 8,19,
         53,13,59,80,14, 6,69,44,49,15,75,70) ] ],
[ 2, 531360, 0, "2", [ [ 81, 1 ] ], 2, "PSL(2, 3^4).2", [ "L", [ 2, 81 ], 1 ],
  [ ( 1,78,61)( 2,47,55)( 3,35,58)( 4,28,37)( 5,51,56)( 6,21,23)( 7,34,38)
        ( 8,26,54)( 9,14,17)(10,77,16)(11,42,25)(12,29,27)(13,53,74)(15,72,76)
        (18,52,30)(19,57,48)(20,70,65)(22,79,49)(24,39,69)(31,62,59)(33,50,40)
        (36,82,43)(41,68,81)(44,64,80)(45,63,60)(46,73,66)(67,71,75), 
      ( 1, 5,34,63,25,10)( 2,55,72,42, 8,36)( 3,21,29,47,69,24)
        ( 4,56,33,23,16,30)( 6,49,65)( 7,59,75,15,76,20)( 9,28,39,52,77,71)
        (11,74,44,70,12,50)(13,19,41,18,81,46)(14,62,38)(17,37,68,27,80,73)
        (22,78,58,31,35,43)(26,51,64)(32,53,82,57,45,54)(40,48,60,79,66,61) ] 
 ],
[ 3, 531360, 0, "2", [ [ 81, 1 ] ], 3, "PSL(2, 3^4).2", [ "L", [ 2, 81 ], 1 ],
  [ ( 1,37,69,47,80,62,45,18,60,51,36,14,44,63,38,12,32,13,58,70,55,11,61,31,
         20,71,65, 5, 2,64,46, 6,43,22,79,26,29, 3,28,24,25,54,56,72,39,82,77,
         4,27,19,30, 9,35,68,67,48,40,76,57,50,52, 8, 7,42,75,33,53,23,49,78,
         73,15,59,81,17,66,21,34,74,41,16,10), 
      ( 1,39,59,50,40,14,67,10,54,26,31,32,81,61,78, 9,22,16,64,80,41,23, 8,
         11,27,51,77,72,46,57,55,35, 6,76, 2,53,37,69,71, 4,42,62,25,20,38,65,
         79,44,56,19,63,43,13, 5,28, 3,36,33,75,66,47,73,18,68,52,60,49,21,45,
         74, 7,12,24,48,34,58,70,29,17,82,15,30) ] ],
[ 4, 531360, 0, "2", [ [ 81, 1 ] ], 3, "PSL(2, 3^4).2", [ "L", [ 2, 81 ], 1 ],
  [ ( 1,20,56, 4,26, 3,18,43,13,77,63,73,71, 7,39,27,64,76,16,45)
        ( 2,79,19,81,74,29,22,70,11,32,41,36,23,38,61,25, 9, 6,59,50)
        ( 5,72,53,35,54,28,78,46,52,67,80,49,60,42,69,68,10,21,75,44)( 8,24)
        (12,66,17,62,51,37,65,14,47,33,31,57,82,58,30,55,48,15,34,40), 
      ( 1,13,79,32,10,29,36, 7,68,49,45,30,14,74,44,12,56,23,82,60,11,50,76,
         63,65,15,19,17,70,61,28,31,53, 2,27,42,67,20,16,26,58)
        ( 3,51, 6,22,54,52,80,21,39,48,24, 9, 5,81,35,57,75,72,18,33,34, 8,59,
         25,46,40,66,37,47,71,41,77, 4,62,38,69,43,55,64,78,73) ] ],
[ 5, 1062720, 0, "2", [ [ 81, 1 ] ], 3, "PSL(2, 3^4).2^2", 
  [ "L", [ 2, 81 ], 1 ], 
  [ ( 1,75,68,80,48,39,43,30,15,23,71,51,21,40,65,29, 3,38,37,22)
        ( 2,27,33,77,35,25,55,82,20,50,74,54,49,17,63, 5, 7,44,26,28)
        ( 4,62,70, 6,31,32,81, 9,52,69,12,53,60,16,42,47,46,41,76,34)
        ( 8,58,36,67,64,14,18,73,78,59,79,72,57,56,66,45,10,13,24,19)(11,61), 
      ( 1,68,71, 4,56,15,32,69,44,27,59,48, 7,73,45,13, 2,77,67, 8,39,49,61,
         43,58,82,17,78,51,42,79,80,47,60,53,20,14,63,81,41,24,29,37,26, 9,55,
         62,66,75,18,40,25,12,28,76,19,57,23,50,74,70,21,52, 5,35,54,64,38,33,
         10,22,16,34, 3,72,11,31,36,30,65, 6,46) ] ],
[ 6, 1062720, 0, "2", [ [ 81, 1 ] ], 2, "PSL(2, 3^4).4", 
  [ "L", [ 2, 81 ], 1 ], 
  [ ( 1,47,29,60,36,11,40,15,69,18)( 2,27,58,19,53)( 3,70,73,20,65,55,23,28,
         46,45)( 4,31,21,14,50,63, 9,39,43,35)( 5,12,71,67,68,75,13,61,81,16)
        ( 6,41,66,56,49,37,25,24,77,59)( 7,62,34,82,57,48,30,44,22,64)
        ( 8,78,72,54,51,79,10,74,52,42)(17,26)(32,33,80,38,76), 
      ( 1,42,74,71, 5,58)( 2,76,23,46,41,26,50,63,20,48,73,52)( 3,24,64,72,16,
         29,17,10, 8, 4,11,45)( 6,68,75,79,25,13, 7,32,35,18,30,54)
        ( 9,47,81,22,15,43,51,70,19,34,62,12)(14,80,49,78,21,28,55,82,77,36,
         38,65)(27,53,39,69,37,66,56,31,61,67,40,57)(33,60,59) ] ],
[ 7, 1062720, 0, "2", [ [ 81, 1 ] ], 3, "PSL(2, 3^4).4", 
  [ "L", [ 2, 81 ], 1 ], 
  [ ( 1, 9,39, 8,38,46,24,76)( 2,21,56,44,66,45,82,42)( 3,37,30,81,20, 6,64,23
         )( 4,53,60,13, 5,16,75,49)( 7,33,73,17,67,77,11,80)(10,48,47,58,25,
         74,55,65)(12,40,29,71,79,72,54,69)(14,28,52,59,27,26,34,32)
        (18,31,78,68,63,70,43,22)(19,50,57,62,41,36,61,35), 
      ( 1,26,14,55,66,11,65,72)( 2,71,56,10,24,34,78,47)( 3,40,76,61,31,63,80,
         21)( 4,32,69,73,43,15,82,64)( 5,53,67,79, 7,52,37,51)( 6,49,18,42,74,
         44,23,22)( 9,50,12,58,81,48,28,30)(13,33,38,60,54,57,35,25)
        (16,36,59,46,17,62,77,70)(19,39,29,68,20,45,75,27) ] ],
[ 8, 2125440, 0, "2", [ [ 81, 1 ] ], 3, "PGammaL(2, 3^4)", 
  [ "L", [ 2, 81 ], 1 ], 
  [ ( 1,70,80,29,32,23,55,81)( 2,26,28,53,59,37,38,64)( 3,65, 9,18,33, 8,36,44
         )( 4,56,11,51,72,31,27,20)( 5,50,61,10,22,48, 7,67)( 6,78,15,16,42,
         66,24,25)(13,77,68,71,30,34,39,40)(14,58,52,43,74,73,41,69)
        (17,19,45,47,46,57,75,35)(21,76,60,82,54,49,63,79), 
      ( 1,70,29,27,15,23,11,74,40,73,36,32,18,28,47,72)( 2,46,43,24,45,44, 9,
          3,33,55,31,34,65,66,14,20)( 4,75,50,10,57,53,64,78,35, 5,63,54,37,
         80, 6,52)( 7,21,49,61,13,38,12,71,59,39,48,81,16,19,68,67)
        ( 8,26,51,62,41,76,25,30,42,17,79,77,22,58,82,56) ] ],
[9, Factorial(82)/2,1,"2",[[81,1]],80, "Alt(82)", ["A",82, 1], "Alt"],
[10, Factorial(82),0,"2",[[81, 1]],82, "Sym(82)", ["A",82, 1], "Sym"]];
PRIMGRP[83]:= 
[[ 1, 83, 3, "1", [ [ 1, 82 ] ], 1, "C(83)", [ "Z", 83, 1 ], [  ] ],
[ 2, 166, 2, "1", [ [ 2, 41 ] ], 1, "D(2*83)", [ "Z", 83, 1 ], 
  [ [ [ Z(83)^41 ] ] ] ],
[ 3, 3403, 2, "1", [ [ 41, 2 ] ], 1, "83:41", [ "Z", 83, 1 ], 
  [ [ [ Z(83)^2 ] ] ] ],
[ 4, 6806, 2, "1", [ [ 82, 1 ] ], 2, "AGL(1, 83)", [ "Z", 83, 1 ], 
  [ [ [ Z(83) ] ] ] ],
[5, Factorial(83)/2,1,"2",[[82,1]],81, "Alt(83)", ["A",83, 1], "Alt"],
[6, Factorial(83),0,"2",[[82, 1]],83, "Sym(83)", ["A",83, 1], "Sym"]];
PRIMGRP[84]:= 
[[ 1, 181440, 1, "2", [ [ 45, 1 ], [ 18, 1 ], [ 20, 1 ] ], 1, "Alt(9)", 
  [ "A", 9, 1 ], 
  [ ( 1,45,37,62,11,56)( 2,54)( 3,74,79,42,36,35)( 4,84,67,43,73,34)
        ( 5,28,40,27,83, 7)( 6,68,53,32,50,69)( 8,29,65,25,58,46)
        ( 9,18,21,30,20,44)(10,41,51,22,78,60)(13,47,66)(14,24,80,26,76,82)
        (15,33,38,19,55,77)(16,64,70,48,23,39)(17,61,81,71,63,75)
        (31,52,57,72,49,59), 
      ( 1, 6,79,77,18,20,22,61,37)( 2,58,43, 5, 8,38,44,17,57)( 3,41, 9,25,80,
         35,40,69,53)( 4,29,63,11,73,55,24,81,45)( 7,31,65,64,21,84,75,78,42)
        (10,15,12,26,27,50,52,49,68)(13,36,39,47,54,59,67,33,82)
        (14,19,30,83,32,62,56,70,74)(16,48,76,34,66,72,51,60,28)(23,46,71) ] 
 ],
[ 2, 362880, 0, "2", [ [ 45, 1 ], [ 18, 1 ], [ 20, 1 ] ], 1, "Sym(9)", 
  [ "A", 9, 1 ], 
  [ ( 1,78,24,57,55,63,36,29,81,38,49,20,42,69,12)( 2,71,75)( 3,21,32,35,82,
         65,58,17,22,60, 9,51,37,26,46)( 4,47,27,39, 7,80,52,83,30,62,76,40,
         50,44,66)( 5,73,56,13,48, 6,14,53,72,18,59,67,28,45,64)
        ( 8,41,11,15,68)(10,79,31,25,74)(16,33,54,19,43)(23,34,84,77,70), 
      ( 1,23,11, 9,67,75,47,50)( 2,40,37,57,70, 8, 5,76)( 3,73,28,83,62,51,31,
         81)( 4,53,17,69,65,79,13, 7)( 6,80,56,27,49,36,68,20)(10,14,71,61,52,
         32,54,16)(12,64,30,29,22,43,19,74)(15,18,44,39,42,34,84,77)
        (21,72,66,58,45,63,78,59)(24,35,46,33,25,82,55,48)(26,60,38,41) ] ],
[ 3, 285852, 1, "2", [ [ 83, 1 ] ], 2, "PSL(2, 83)", [ "L", [ 2, 83 ], 1 ], 
  "psl" ],
[ 4, 571704, 0, "2", [ [ 83, 1 ] ], 3, "PGL(2, 83)", [ "L", [ 2, 83 ], 1 ], 
  "pgl" ],
[5, Factorial(84)/2,1,"2",[[83,1]],82, "Alt(84)", ["A",84, 1], "Alt"],
[6, Factorial(84),0,"2",[[83, 1]],84, "Sym(84)", ["A",84, 1], "Sym"]];
PRIMGRP[85]:= 
[[ 1, 979200, 1, "2", [ [ 20, 1 ], [ 64, 1 ] ], 1, "PSp(4, 4)", 
  [ "B", [ 2, 4 ], 1 ], 
  [ ( 1,33,22,83,44,70,51,69,66,20,11,55,47,84,41,74,81)( 2,64,63,14,37,73,39,
         26,53,18,29, 4, 9,15,24,16,46)( 3,35,57,75,30,67,36,76,21,13,42,48,
         23,27,61,45,56)( 5,82,12,85,78,59, 8,31,19,79,71,40,60, 7,25,58,54)
        ( 6,72,10,17,52,38,68,65,62,50,28,80,77,49,32,34,43), 
      ( 1,75,33,59, 7)( 2,38,72,23,51)( 3,21,40,10,61)( 4,34,15,58,11)
        ( 5,55,45,47,60)( 6,46,63,85,54)( 8,39,77,69,76)( 9,57,18,80,43)
        (12,14,81,32,29)(13,22,74,36,82)(16,19,48,37,25)(17,52,66,24,56)
        (20,41,65,78,27)(26,62,30,28,35)(31,71,64,44,73)(42,53,50,79,70)
        (49,68,84,67,83) ] ],
[ 2, 1958400, 0, "2", [ [ 20, 1 ], [ 64, 1 ] ], 1, "PSp(4, 4).2", 
  [ "B", [ 2, 4 ], 1 ], 
  [ ( 1,75,62,74,22,65,53,42)( 2,59, 4,70,54,14,69, 5)( 3,72,33,29)
        ( 6,46,43,77,31,56,17,61)( 7,51,26,83,19,45,30,24)( 8,57,40,50,58,84,
         48,68)( 9,35,73,82,80,37,16,79)(10,44,55,60,25,76,66,85)
        (11,71,39,34,38,36,81,52)(13,21,41,47,67,23,78,18)(15,49,63,20,27,28,
         64,32), ( 1,17,13,37,62, 2,83,11,77, 6)( 3,81,57,63,47)
        ( 4,42,38,59,35,73,69,39,67,44)( 5,29,74,18,33,46,27,43,79,71)
        ( 7,36,32, 9,40)( 8,21,76,84,26,20,16,82,34,80)(10,78,28,48,15)
        (12,72,49,52,22,31,53,45,60,70)(14,24,23,50,25,51,54,68,55,30)
        (19,58,65,41,56,64,75,85,61,66) ] ],
[ 3, 987033600, 1, "2", [ [ 84, 1 ] ], 2, "PSL(4, 4)", [ "L", [ 4, 4 ], 1 ], 
  [ ( 5,39,40)( 6,63,54)( 7,34,15)( 8,50,20)( 9,77,79)(10,68,32)(11,16,55)
        (12,85,66)(13,67,29)(14,22,80)(17,49,69)(18,48,81)(19,71,65)(21,31,24)
        (23,82,72)(25,78,30)(26,42,73)(27,43,74)(33,57,70)(35,62,58)(36,47,45)
        (37,56,64)(38,53,46)(41,59,76)(51,83,60)(52,61,84), 
      ( 1,54,20,76,30,29,52,51,69,28,27,26, 4, 3, 2)( 5,10, 9,18,19,47,23,80,
         79,84,83,48, 8,34,41)( 6,37,72,12,16,55,38,40,15,14,13,62,75,74,73)
        ( 7,36,53,68,67,81,44,43,42,63,71,66,82,70,57)(11,25,24,49,65)
        (17,64,33,78,77)(21,35,56,39,85,32,31,61,60,58,50,46,59,45,22) ] ],
[ 4, 1974067200, 0, "2", [ [ 84, 1 ] ], 2, "PSigmaL(4, 4)", 
  [ "L", [ 4, 4 ], 1 ], 
  [ ( 1,32,75,34,24, 8,42,50,53,51,61,73,11,26,17,33,85,56,66,80,12,60,22,47,
         39,74,40,65,82,58,84, 3,28,38,37,83,43,70, 2,21,45,68,59,30,55,25,72,
         18,16, 5,54,64,15,52,77,79,46,10,35,63,69,76,23,27,48,57,81,14,44,49,
         78, 4,67,62,19,29, 7,36, 9,20,71, 6,41,31,13), 
      ( 1,26,22,79,43, 9,63,38,15,30,45, 2,16,70)( 3,28,27,36, 5,10,11)
        ( 4,68,64,49, 8,51,76,75,14,59,50,67,35,69)( 6,19,34,57,40,29,32,73,
         55,20,13,60,23,25)( 7,31,61,83,85,84,72,18,81,78,12,53,80,71)
        (17,21,77,47,39,41,48,24,65,56,54,46,42,37)(33,44,52,62,74,58,82) ] ],
[5, Factorial(85)/2,1,"2",[[84,1]],83, "Alt(85)", ["A",85, 1], "Alt"],
[6, Factorial(85),0,"2",[[84, 1]],85, "Sym(85)", ["A",85, 1], "Sym"]];
PRIMGRP[86]:= 
[[1, Factorial(86)/2,1,"2",[[85,1]],84, "Alt(86)", ["A",86, 1], "Alt"],
[2, Factorial(86),0,"2",[[85, 1]],86, "Sym(86)", ["A",86, 1], "Sym"]];
PRIMGRP[87]:= 
[[1, Factorial(87)/2,1,"2",[[86,1]],85, "Alt(87)", ["A",87, 1], "Alt"],
[2, Factorial(87),0,"2",[[86, 1]],87, "Sym(87)", ["A",87, 1], "Sym"]];
PRIMGRP[88]:= 
[[1, Factorial(88)/2,1,"2",[[87,1]],86, "Alt(88)", ["A",88, 1], "Alt"],
[2, Factorial(88),0,"2",[[87, 1]],88, "Sym(88)", ["A",88, 1], "Sym"]];
PRIMGRP[89]:= 
[[ 1, 89, 3, "1", [ [ 1, 88 ] ], 1, "C(89)", [ "Z", 89, 1 ], [  ] ],
[ 2, 178, 2, "1", [ [ 2, 44 ] ], 1, "D(2*89)", [ "Z", 89, 1 ], 
  [ [ [ Z(89)^44 ] ] ] ],
[ 3, 356, 2, "1", [ [ 4, 22 ] ], 1, "89:4", [ "Z", 89, 1 ], 
  [ [ [ Z(89)^22 ] ] ] ],
[ 4, 712, 2, "1", [ [ 8, 11 ] ], 1, "89:8", [ "Z", 89, 1 ], 
  [ [ [ Z(89)^11 ] ] ] ],
[ 5, 979, 2, "1", [ [ 11, 8 ] ], 1, "89:11", [ "Z", 89, 1 ], 
  [ [ [ Z(89)^8 ] ] ] ],
[ 6, 1958, 2, "1", [ [ 22, 4 ] ], 1, "89:22", [ "Z", 89, 1 ], 
  [ [ [ Z(89)^4 ] ] ] ],
[ 7, 3916, 2, "1", [ [ 44, 2 ] ], 1, "89:44", [ "Z", 89, 1 ], 
  [ [ [ Z(89)^2 ] ] ] ],
[ 8, 7832, 2, "1", [ [ 88, 1 ] ], 2, "AGL(1, 89)", [ "Z", 89, 1 ], 
  [ [ [ Z(89) ] ] ] ],
[9, Factorial(89)/2,1,"2",[[88,1]],87, "Alt(89)", ["A",89, 1], "Alt"],
[10, Factorial(89),0,"2",[[88, 1]],89, "Sym(89)", ["A",89, 1], "Sym"]];
PRIMGRP[90]:= 
[[ 1, 352440, 1, "2", [ [ 89, 1 ] ], 2, "PSL(2, 89)", [ "L", [ 2, 89 ], 1 ], 
  "psl" ],
[ 2, 704880, 0, "2", [ [ 89, 1 ] ], 3, "PGL(2, 89)", [ "L", [ 2, 89 ], 1 ], 
  "pgl" ],
[3, Factorial(90)/2,1,"2",[[89,1]],88, "Alt(90)", ["A",90, 1], "Alt"],
[4, Factorial(90),0,"2",[[89, 1]],90, "Sym(90)", ["A",90, 1], "Sym"]];
PRIMGRP[91]:= 
[[ 1, 1092, 1, "2", [ [ 12, 5 ], [ 3, 2 ], [ 6, 4 ] ], 1, "PSL(2, 13)", 
  [ "L", [ 2, 13 ], 1 ], 
  [ ( 1,40)( 2,23)( 3,21)( 4,13)( 5,67)( 6,12)( 7,62)( 9,39)(10,46)(11,44)
        (14,42)(15,34)(16,29)(17,28)(18,27)(19,70)(20,26)(22,47)(24,25)(30,51)
        (32,84)(33,50)(35,69)(36,76)(37,58)(38,74)(41,82)(43,89)(45,80)(48,72)
        (49,71)(53,56)(54,59)(60,77)(61,79)(63,66)(64,81)(65,88)(68,86)(78,91)
        (83,85)(87,90), ( 1,33,66, 8,31,23,84,56,37,25,54, 9,62)
        ( 2,20,50,85,87,32,48,63,60,89,73,91,81)( 3,74,53, 4,78,42,34,27,15,
         44,43,22,40)( 5,79,52,65,82,19,90,10, 7,58,49,83,86)( 6,61,88,17,36,
         72,51,41,18,67,29,26,76)(11,71,30,59,16,46,14,80,75,47,13,57,35)
        (12,39,64,55,77,24,28,21,68,45,69,70,38) ] ],
[ 2, 2184, 0, "2", [ [ 12, 5 ], [ 24, 1 ], [ 6, 1 ] ], 1, "PGL(2, 13)", 
  [ "L", [ 2, 13 ], 1 ], 
  [ ( 2,27)( 3,43)( 4,85)( 5,51)( 7,63)( 9,58)(10,78)(12,25)(13,70)(14,87)
        (15,33)(16,86)(17,84)(18,50)(19,89)(20,36)(21,73)(22,55)(23,82)(24,65)
        (26,28)(29,35)(31,62)(32,74)(34,90)(37,60)(38,40)(41,72)(42,71)(44,91)
        (45,61)(46,77)(47,81)(48,68)(49,69)(52,80)(53,66)(54,67)(56,64)(57,79)
        (59,88)(75,83), ( 1,11,15,13,21,89,18,91,38,47,34,14,56)
        ( 2,63, 7,24,32, 8,40,59,53,31,50,39,58)( 3,60, 9,19,86,25,81,74,80,
         17,55, 6,35)( 4,45,29,49,57,75,10,51,69,22,42,54,44)( 5,30,28,12,16,
         82,76,79,20,27,48,65,36)(23,73,66,90,26,78,77,84,33,64,43,72,83)
        (37,87,88,67,71,46,41,61,85,62,70,52,68) ] ],
[ 3, 1092, 1, "2", [ [ 12, 6 ], [ 4, 3 ], [ 6, 1 ] ], 1, "PSL(2, 13)", 
  [ "L", [ 2, 13 ], 1 ], 
  [ ( 1,86)( 2,72)( 3,71)( 4,77)( 5,80)( 6,82)( 7,90)( 8,29)( 9,40)(10,11)
        (12,20)(13,19)(14,85)(15,81)(16,35)(17,27)(18,84)(21,69)(22,32)(23,89)
        (24,58)(25,53)(26,65)(28,33)(30,38)(31,49)(34,78)(36,55)(37,54)(39,74)
        (41,42)(43,73)(44,70)(45,46)(47,68)(48,88)(50,63)(51,62)(52,61)(56,59)
        (57,83)(60,91)(67,87)(75,79), ( 1,42,61,41,85,29, 6,59, 4,66,12, 7,67)
        ( 2,36,74,62, 5,76,37,73,70,69,19,72,17)( 3,58,83,77,16,46,79,23,28,
         90,26,56,55)( 8,21,87,11,49,32,63,64,35,91,47,71,39)( 9,15,14,33,18,
         34,13,45,38,82,30,40,44)(10,86,43,89,51,78,65,75,81,50,54,48,53)
        (20,68,24,57,27,60,84,22,52,88,25,31,80) ] ],
[ 4, 2184, 0, "2", [ [ 12, 2 ], [ 24, 2 ], [ 4, 1 ], [ 6, 1 ], [ 8, 1 ] ], 1, 
  "PGL(2, 13)", [ "L", [ 2, 13 ], 1 ], 
  [ ( 1,33)( 2,20)( 3,45)( 4,44)( 5,66)( 6,36)( 8,77)( 9,55)(10,43)(11,82)
        (12,52)(13,35)(15,19)(16,42)(18,54)(21,85)(22,41)(23,90)(24,48)(25,75)
        (26,53)(27,32)(28,59)(29,76)(30,50)(31,83)(34,74)(37,91)(38,64)(39,89)
        (40,87)(46,67)(47,65)(49,61)(51,72)(56,84)(57,60)(62,86)(63,70)(68,73)
        (69,78)(71,79), ( 1,88,15,34,73,25,63,26,23,11,37,79,62)
        ( 2,44,76,39,27,21,54,51,72,13,43,80,55)( 3,16,22,67,74,60,50,10,29,
         68,64,31,69)( 4,71,65,89,35,24,59,33,45,57,36, 7,75)( 5,48,18,83,12,
         53,32,17,47,49,61,91,58)( 6,19,28,40,38,46,84,81, 9,30,78,85,70)
        ( 8,52,87,66,82,42,86,20,56,14,41,90,77) ] ],
[ 5, 43589145600, 1, "2", [ [ 66, 1 ], [ 24, 1 ] ], 1, "Alt(14)", 
  [ "A", 14, 1 ], 
  [ ( 1,73,63,14,85,51,30,53,38,32,76, 6,77,22,23,37,59,69,45,49,81,83,72,33,
         27,68, 2,75,41,20, 9,13,40,87,35, 3, 5,91,31,17, 7,43,48,28,26)
        ( 4,84,29,88,39,55,79,62,64)( 8,21,46,44,50,16,56,34,71)
        (10,70,19,66,25)(11,36,18,89,52,47,54,74,67)(12,58,60,24,42,65,61,90,
         78)(15,82,80,57,86), ( 1,28,29, 6,48,26,62,25,89,13,44,69,49)
        ( 2,34, 3,90, 7,71,72,20,75,86,56,19,88)( 4,77,17,12,14,36,83,24, 8,
         67, 9,50,84)( 5,87,65,73,37,55,58,81,53,85,74,57,23)(10,61,38,46,82,
         39,16,64,70,35,21,31,40)(11,63,66,32,45,33,43,30,52,54,76,68,42)
        (15,47,22,60,80,27,79,41,51,59,18,78,91) ] ],
[ 6, 87178291200, 0, "2", [ [ 66, 1 ], [ 24, 1 ] ], 1, "Sym(14)", 
  [ "A", 14, 1 ], 
  [ ( 1,20,82,31,70,60)( 2,41,48,65,62,27)( 3,64,37,78,76,44)( 4, 7,71, 9,11,
         68)( 5,86,80,33,75,23)( 6,25,63,51,74,15)( 8,58,39)(10,19,57,40,56,32
         )(12,85,59,14,72,89)(13,28,77,29,47,17)(16,90,24)(18,55,67)
        (21,35,83,22,53,36)(26,73,87,69,46,61)(30,38,91,88,79,49)(34,52,54)
        (42,50,84)(43,45,66), 
      ( 1,17,75,27,62,15,12,66,61,49)( 2,60,55,43,78,89)( 3,36,69,88,54,51, 8,
         40,52,46)( 4,53,30,64,68,83,63,39,73,81,50,80,44,90,82)
        ( 5,20,47,10,74,35)( 6,71,59)( 7,14,72,87,58,25,84,57,18,41)
        ( 9,77,48,34,76)(11,28,13,31,42,19)(16,33)(21,86)(23,79)
        (24,91,37,67,70)(26,56)(29,38)(45,85) ] ],
[ 7, 42456960, 1, "2", [ [ 90, 1 ] ], 2, "PSL(3, 9)", [ "L", [ 3, 9 ], 1 ], 
  [ ( 4,11,28,43,89,36,29,82)( 5,20, 7,74,32,25,51,77)( 6,18,42,73,86,21,61,31
         )( 8,35,91,63,47,48,64,81)( 9,58,26,49,90,57,62,78)(10,54,75,23,80,
         85,37,65)(12,66,17,76,13,45,24,16)(14,19,34,69,27,79,44,72)
        (15,56,50,22,33,46,30,55)(38,40,87,67)(39,84,68,53,88,60,41,71)
        (52,83,70,59), ( 1,15,61,68,67,33,19,79,42,41,40, 3, 2)
        ( 4,53,52,50,75,49,27,14,21,65, 9,36,91)( 5,62,57,48, 6,43, 8,35,69,
         88,87,55,63)( 7,85,60,59,30,82,76,34,44,73,29,17,80)(10,58,12,64,23,
         20,16,31,54,84,83,56,90)(11,45,26,51,28,81,78,18,89,71,70,22,24)
        (13,66,74,86,37,32,77,72,39,38,46,25,47) ] ],
[ 8, 84913920, 0, "2", [ [ 90, 1 ] ], 2, "PGammaL(3, 9)", 
  [ "L", [ 3, 9 ], 1 ], 
  [ ( 1,20,56,24,48,14,53,58,38, 5,25, 9,33,30,29,81)( 2,46,66,27,74,90,10,26,
         52,84,65,49,64,39, 8,71)( 3, 7,72,18,54,77,69,35,42,15, 4,41,89,31,
         85,79)( 6,63,75,67,12,43,50,68,76,62,28,70,45,32,86,51)
        (11,16,21,34,37,55,87,82,60,44,19,78,57,47,83,36)(13,88,73,17,22,80,
         59,23)(61,91), ( 1,21,41,36,28,87,75,81,64,88,30,63,83,42,56,17,37,
         80,61,45,31,58,34,57, 5,54,79,49,91,18,33,84,13,16,52,50,27,47,32, 7,
         25,11,55,77, 6, 8, 9,89,73,71,86,43,67,23,48,60,74,68, 2,35,59,70,76,
         29,15, 4,24,19,39,10,14,40,53,72,69,38,66,82,44,12,20,90,22,65,85,78,
         62,51, 3,26,46) ] ],
[9, Factorial(91)/2,1,"2",[[90,1]],89, "Alt(91)", ["A",91, 1], "Alt"],
[10, Factorial(91),0,"2",[[90, 1]],91, "Sym(91)", ["A",91, 1], "Sym"]];
PRIMGRP[92]:= 
[[1, Factorial(92)/2,1,"2",[[91,1]],90, "Alt(92)", ["A",92, 1], "Alt"],
[2, Factorial(92),0,"2",[[91, 1]],92, "Sym(92)", ["A",92, 1], "Sym"]];
PRIMGRP[93]:= 
[[1, Factorial(93)/2,1,"2",[[92,1]],91, "Alt(93)", ["A",93, 1], "Alt"],
[2, Factorial(93),0,"2",[[92, 1]],93, "Sym(93)", ["A",93, 1], "Sym"]];
PRIMGRP[94]:= 
[[1, Factorial(94)/2,1,"2",[[93,1]],92, "Alt(94)", ["A",94, 1], "Alt"],
[2, Factorial(94),0,"2",[[93, 1]],94, "Sym(94)", ["A",94, 1], "Sym"]];
PRIMGRP[95]:= 
[[1, Factorial(95)/2,1,"2",[[94,1]],93, "Alt(95)", ["A",95, 1], "Alt"],
[2, Factorial(95),0,"2",[[94, 1]],95, "Sym(95)", ["A",95, 1], "Sym"]];
PRIMGRP[96]:= 
[[1, Factorial(96)/2,1,"2",[[95,1]],94, "Alt(96)", ["A",96, 1], "Alt"],
[2, Factorial(96),0,"2",[[95, 1]],96, "Sym(96)", ["A",96, 1], "Sym"]];
PRIMGRP[97]:= 
[[ 1, 97, 3, "1", [ [ 1, 96 ] ], 1, "C(97)", [ "Z", 97, 1 ], [  ] ],
[ 2, 194, 2, "1", [ [ 2, 48 ] ], 1, "D(2*97)", [ "Z", 97, 1 ], 
  [ [ [ Z(97)^48 ] ] ] ],
[ 3, 291, 2, "1", [ [ 3, 32 ] ], 1, "97:3", [ "Z", 97, 1 ], 
  [ [ [ Z(97)^32 ] ] ] ],
[ 4, 388, 2, "1", [ [ 4, 24 ] ], 1, "97:4", [ "Z", 97, 1 ], 
  [ [ [ Z(97)^24 ] ] ] ],
[ 5, 582, 2, "1", [ [ 6, 16 ] ], 1, "97:6", [ "Z", 97, 1 ], 
  [ [ [ Z(97)^16 ] ] ] ],
[ 6, 776, 2, "1", [ [ 8, 12 ] ], 1, "97:8", [ "Z", 97, 1 ], 
  [ [ [ Z(97)^12 ] ] ] ],
[ 7, 1164, 2, "1", [ [ 12, 8 ] ], 1, "97:12", [ "Z", 97, 1 ], 
  [ [ [ Z(97)^8 ] ] ] ],
[ 8, 1552, 2, "1", [ [ 16, 6 ] ], 1, "97:16", [ "Z", 97, 1 ], 
  [ [ [ Z(97)^6 ] ] ] ],
[ 9, 2328, 2, "1", [ [ 24, 4 ] ], 1, "97:24", [ "Z", 97, 1 ], 
  [ [ [ Z(97)^4 ] ] ] ],
[ 10, 3104, 2, "1", [ [ 32, 3 ] ], 1, "97:32", [ "Z", 97, 1 ], 
  [ [ [ Z(97)^3 ] ] ] ],
[ 11, 4656, 2, "1", [ [ 48, 2 ] ], 1, "97:48", [ "Z", 97, 1 ], 
  [ [ [ Z(97)^2 ] ] ] ],
[ 12, 9312, 2, "1", [ [ 96, 1 ] ], 2, "AGL(1, 97)", [ "Z", 97, 1 ], 
  [ [ [ Z(97) ] ] ] ],
[13, Factorial(97)/2,1,"2",[[96,1]],95, "Alt(97)", ["A",97, 1], "Alt"],
[14, Factorial(97),0,"2",[[96, 1]],97, "Sym(97)", ["A",97, 1], "Sym"]];
PRIMGRP[98]:= 
[[ 1, 456288, 1, "2", [ [ 97, 1 ] ], 2, "PSL(2, 97)", [ "L", [ 2, 97 ], 1 ], 
  "psl" ],
[ 2, 912576, 0, "2", [ [ 97, 1 ] ], 3, "PGL(2, 97)", [ "L", [ 2, 97 ], 1 ], 
  "pgl" ],
[3, Factorial(98)/2,1,"2",[[97,1]],96, "Alt(98)", ["A",98, 1], "Alt"],
[4, Factorial(98),0,"2",[[97, 1]],98, "Sym(98)", ["A",98, 1], "Sym"]];
PRIMGRP[99]:= 
[[1, Factorial(99)/2,1,"2",[[98,1]],97, "Alt(99)", ["A",99, 1], "Alt"],
[2, Factorial(99),0,"2",[[98, 1]],99, "Sym(99)", ["A",99, 1], "Sym"]];
PRIMGRP[100]:= 
[[ 1, 604800, 1, "2", [ [ 36, 1 ], [ 63, 1 ] ], 1, "J_2", 
  [ "Spor", "HJ = J(2) = F(5-)", 1 ], 
  [ (  1, 58, 96, 14, 36,  4, 25, 71)(  2, 20, 85, 42, 50, 92, 64, 31)
        (  3, 51,  5, 17, 89, 34, 99, 11)(  6, 70)(  7, 90, 12, 19, 82, 86,
          54, 23)(  8, 43, 37, 57, 77, 75, 30, 73)(  9, 52, 53, 95)
        ( 10, 59, 91, 28, 97, 32, 68, 40)( 13, 56, 74, 78, 80, 46, 38, 21)
        ( 15,100, 63, 41, 27, 67, 22, 35)( 16, 69, 83, 24)( 18, 33, 45, 81,
          55, 29, 98, 60)( 26, 72, 47, 62)( 39, 76)( 44, 79, 94, 65, 88, 61,
          66, 49)( 48, 84), (  1, 91, 65, 44, 12, 82, 54, 92, 70, 63)
        (  2, 78, 80, 85, 81,  5, 73, 35, 17, 24)(  3, 86, 22, 40, 94, 99,  8,
         66, 41, 20)(  4, 62, 74, 57, 27, 58, 97, 34, 50, 55)(  6, 56, 38, 19,
         29,  7, 59, 28, 96, 95)(  9, 13, 47, 10, 32, 33, 11, 37, 98, 67)
        ( 14, 77, 71, 23, 36, 84, 49, 93, 76, 79)( 15, 31, 18, 45, 16, 26, 72,
         30, 42, 60)( 21, 52, 90, 53, 43, 46, 69, 68, 83, 64)( 25, 75, 87, 89,
         39, 88, 51, 48,100, 61) ] ],
[ 2, 1209600, 0, "2", [ [ 36, 1 ], [ 63, 1 ] ], 1, "J_2.2", 
  [ "Spor", "HJ = J(2) = F(5-)", 1 ], 
  [ (  1, 23, 38,  8,  5,  4, 82, 34, 94, 86, 47, 24, 54, 93, 29,  3, 78, 50,
          91, 62, 22, 99, 11, 35)(  2, 28, 25, 15, 97, 57, 18, 64, 13, 81, 12,
         59, 73, 95, 87, 72, 74, 58, 16, 53, 37, 80, 65,  6)(  7, 46, 10,100,
          49, 30, 31, 77, 92, 83, 90, 88, 56, 68, 33, 39, 36, 60, 26, 79, 63,
          43, 21, 48)(  9, 89, 71, 20, 98, 61, 76, 66)( 14, 75, 27, 40, 67,
          19, 70, 55, 51, 52, 32, 96)( 17, 42)( 41, 84, 45, 69, 44, 85), 
      (  1, 73, 75, 70, 23, 89,  9, 33)(  2, 83, 19,100, 47, 90,  6, 87)
        (  3, 94, 37, 67, 69, 43, 93, 77)(  4, 48, 86, 13, 39, 17, 15, 54)
        (  5, 12, 63, 61, 45, 84, 52, 11)(  7, 99, 60, 91, 95, 76, 26, 62)
        (  8, 92)( 10, 65, 66, 57)( 14, 25, 58, 38, 20, 50, 44, 28)
        ( 16, 24, 97, 82, 40, 31, 51, 64)( 18, 41)( 21, 32, 35, 29, 22, 81,
          30, 56)( 27, 98, 74, 46)( 34, 68, 72, 49, 53, 55, 71, 42)
        ( 36, 85, 88, 78)( 59, 96) ] ],
[ 3, 44352000, 1, "2", [ [ 22, 1 ], [ 77, 1 ] ], 1, "HS", [ "Spor", "HS", 1 ],
  [ (  1, 60)(  2, 72)(  3, 81)(  4, 43)(  5, 11)(  6, 87)(  7, 34)(  9, 63)
        ( 12, 46)( 13, 28)( 14, 71)( 15, 42)( 16, 97)( 18, 57)( 19, 52)
        ( 21, 32)( 23, 47)( 24, 54)( 25, 83)( 26, 78)( 29, 89)( 30, 39)
        ( 33, 61)( 35, 56)( 37, 67)( 44, 76)( 45, 88)( 48, 59)( 49, 86)
        ( 50, 74)( 51, 66)( 53, 99)( 55, 75)( 62, 73)( 65, 79)( 68, 82)
        ( 77, 92)( 84, 90)( 85, 98)( 94,100), 
      (  1, 86, 13, 10, 47)(  2, 53, 30,  8, 38)(  3, 40, 48, 25, 17)
        (  4, 29, 92, 88, 43)(  5, 98, 66, 54, 65)(  6, 27, 51, 73, 24)
        (  7, 83, 16, 20, 28)(  9, 23, 89, 95, 61)( 11, 42, 46, 91, 32)
        ( 12, 14, 81, 55, 68)( 15, 90, 31, 56, 37)( 18, 69, 45, 84, 76)
        ( 19, 59, 79, 35, 93)( 21, 22, 64, 39,100)( 26, 58, 96, 85, 77)
        ( 33, 52, 94, 75, 44)( 34, 62, 87, 78, 50)( 36, 82, 60, 74, 72)
        ( 41, 80, 70, 49, 67)( 57, 63, 71, 99, 97) ] ],
[ 4, 88704000, 0, "2", [ [ 22, 1 ], [ 77, 1 ] ], 1, "HS:2", 
  [ "Spor", "HS", 1 ], 
  [ (  1, 86)(  4, 54)(  5, 30)(  6, 57)(  8, 44)(  9, 52)( 11, 14)( 13, 42)
        ( 18, 43)( 19, 85)( 20, 65)( 22, 91)( 23, 71)( 24, 87)( 25, 50)
        ( 26, 78)( 27, 88)( 29, 73)( 31, 76)( 33, 84)( 34, 72)( 35, 97)
        ( 36, 53)( 37, 63)( 39, 47)( 40, 99)( 45, 80)( 55, 81)( 58, 79)
        ( 62, 83)( 66, 77)( 67, 98)( 68,100)( 69, 93)( 74, 89), 
      (  1, 49, 14, 37, 74)(  2, 16, 52, 96, 44)(  3, 99, 38, 18, 61)
        (  5, 62, 64, 65, 95)(  6,  8, 40, 85, 58)(  7, 68, 80,  9, 39)
        ( 10, 19, 31, 97, 72)( 11, 77, 93, 84, 98)( 12, 46, 86, 78, 42)
        ( 13, 23, 54, 29, 15)( 17, 82, 69, 34, 30)( 21, 28, 56, 88, 89)
        ( 22,100, 73, 87, 35)( 24, 79, 67, 59, 32)( 25, 43, 27, 66, 75)
        ( 26, 92, 47, 50, 94)( 33, 36, 57, 70, 81)( 41, 83, 55, 91, 51)
        ( 45, 90, 60, 48, 71) ] ],
[ 5, 7200, 0, "4c", [ [ 12, 1 ], [ 36, 2 ], [ 6, 1 ], [ 9, 1 ] ], 1, 
  "Alt(5) wreath Sym(2)", [ "A", 5, 2 ], 
  [ (  1, 20, 57, 28, 84, 32)(  2, 10, 60, 58, 88, 82)(  3, 70, 56, 98, 85, 42
         )(  4, 40, 51, 18, 87, 22)(  5, 50, 53, 68, 86, 92)(  6,100, 55, 48,
          83, 62)(  7, 30, 54, 38, 81, 12)(  8, 90, 52)(  9, 80, 59, 78, 89,
          72)( 11, 17, 27, 24, 34, 31)( 13, 67, 26, 94, 35, 41)( 14, 37, 21)
        ( 15, 47, 23, 64, 36, 91)( 16, 97, 25, 44, 33, 61)( 19, 77, 29, 74,
          39, 71)( 43, 63, 66, 96, 95, 45)( 46, 93, 65)( 49, 73, 69, 76, 99,
          75), (  1, 13, 85, 44)(  2, 33, 88, 64)(  3, 83, 84,  4)
        (  5, 43, 81, 14)(  6, 23, 87, 94)(  7, 93, 86, 24)(  8, 63, 82, 34)
        (  9, 53, 89, 54)( 10, 73, 90, 74)( 11, 15, 45, 41)( 12, 35, 48, 61)
        ( 16, 25, 47, 91)( 17, 95, 46, 21)( 18, 65, 42, 31)( 19, 55, 49, 51)
        ( 20, 75, 50, 71)( 22, 37, 98, 66)( 26, 27, 97, 96)( 28, 67, 92, 36)
        ( 29, 57, 99, 56)( 30, 77,100, 76)( 32, 38, 68, 62)( 39, 58, 69, 52)
        ( 40, 78, 70, 72)( 60, 79) ] ],
[ 6, 14400, 0, "4c", [ [ 12, 1 ], [ 36, 2 ], [ 6, 1 ], [ 9, 1 ] ], 1, 
  "Alt(5)^2.2^2", [ "A", 5, 2 ], 
  [ (  1, 13, 44, 80)(  2, 93, 42,100)(  3, 43, 50, 10)(  4, 73, 41, 20)
        (  5, 83, 45, 90)(  6, 53, 48, 70)(  7, 33, 49, 30)(  8, 63, 46, 60)
        (  9, 23, 47, 40)( 11, 14, 74, 71)( 12, 94, 72, 91)( 15, 84, 75, 81)
        ( 16, 54, 78, 61)( 17, 34, 79, 21)( 18, 64, 76, 51)( 19, 24, 77, 31)
        ( 22, 97, 32, 99)( 25, 87, 35, 89)( 26, 57, 38, 69)( 27, 37, 39, 29)
        ( 28, 67, 36, 59)( 52, 98, 62, 96)( 55, 88, 65, 86)( 56, 58, 68, 66)
        ( 82, 95), (  1, 27, 65, 56, 31, 47,  5, 26, 61, 57, 35, 46)
        (  2, 24, 68, 53, 32, 44,  8, 23, 62, 54, 38, 43)(  3, 22, 64, 58, 33,
         42,  4, 28, 63, 52, 34, 48)(  6, 21, 67, 55, 36, 41,  7, 25, 66, 51,
          37, 45)(  9, 30, 69, 60, 39, 50)( 10, 29, 70, 59, 40, 49)
        ( 11, 77, 95, 16, 71, 97, 15, 76, 91, 17, 75, 96)( 12, 74, 98, 13, 72,
         94, 18, 73, 92, 14, 78, 93)( 19, 80, 99, 20, 79,100)( 81, 87, 85, 86)
        ( 82, 84, 88, 83)( 89, 90) ] ],
[ 7, 14400, 0, "4c", [ [ 12, 1 ], [ 36, 2 ], [ 6, 1 ], [ 9, 1 ] ], 1, 
  "Alt(5)^2.4", [ "A", 5, 2 ], 
  [ (  1, 57, 85,  6, 51, 87,  5, 56, 81,  7, 55, 86)(  2, 54, 88,  3, 52, 84,
         8, 53, 82,  4, 58, 83)(  9, 60, 89, 10, 59, 90)( 11, 47, 35, 96, 21,
          67, 15, 46, 31, 97, 25, 66)( 12, 44, 38, 93, 22, 64, 18, 43, 32, 94,
         28, 63)( 13, 42, 34, 98, 23, 62, 14, 48, 33, 92, 24, 68)
        ( 16, 41, 37, 95, 26, 61, 17, 45, 36, 91, 27, 65)( 19, 50, 39,100, 29,
         70)( 20, 49, 40, 99, 30, 69)( 71, 77, 75, 76)( 72, 74, 78, 73)
        ( 79, 80), (  1, 76, 47, 14, 40, 95, 51, 72, 67, 19, 30, 98)
        (  2, 66, 49, 24, 38,  5, 56, 42, 64, 39, 25, 58)(  3, 86, 43, 84, 33,
         85, 53, 82, 63, 89, 23, 88)(  4, 36, 45, 54, 32, 65, 59, 22, 68,  9,
          26, 48)(  6, 46, 44, 34, 35, 55, 52, 62, 69, 29, 28,  8)
        (  7, 16, 50, 94, 31, 75, 57, 12, 70, 99, 21, 78)( 10, 96, 41, 74, 37,
         15, 60, 92, 61, 79, 27, 18)( 11, 80, 97)( 13, 90, 93, 81, 73, 87)
        ( 17, 20,100, 91, 71, 77) ] ],
[ 8, 28800, 0, "4c", [ [ 12, 1 ], [ 36, 2 ], [ 6, 1 ], [ 9, 1 ] ], 1, 
  "Sym(5) wreath Sym(2)", [ "A", 5, 2 ], 
  [ (  1, 60, 18, 75, 39, 86,  2,100, 17, 25, 33, 66)(  3, 70, 11, 55, 38, 76,
         9, 90, 12, 95, 37, 26)(  4, 50, 14, 45, 34, 46)(  5, 40, 16)
        (  6, 10, 20, 15, 35, 36)(  7, 30, 13, 65, 31, 56,  8, 80, 19, 85, 32,
         96)( 21, 53, 68, 71, 59, 88, 72, 99, 87, 22, 93, 67)( 23, 63, 61, 51,
         58, 78, 79, 89, 82, 92, 97, 27)( 24, 43, 64, 41, 54, 48, 74, 49, 84,
          42, 94, 47)( 28, 73, 69, 81, 52, 98, 77, 29, 83, 62, 91, 57), 
      (  1, 14, 91, 54)(  2, 12, 92, 52)(  3, 20, 93, 60)(  4, 11, 94, 51)
        (  5, 15, 95, 55)(  6, 18, 96, 58)(  7, 19, 97, 59)(  8, 16, 98, 56)
        (  9, 17, 99, 57)( 10, 13,100, 53)( 21, 64)( 22, 62)( 23, 70)( 24, 61)
        ( 25, 65)( 26, 68)( 27, 69)( 28, 66)( 29, 67)( 30, 63)( 31, 74, 41, 84
         )( 32, 72, 42, 82)( 33, 80, 43, 90)( 34, 71, 44, 81)( 35, 75, 45, 85)
        ( 36, 78, 46, 88)( 37, 79, 47, 89)( 38, 76, 48, 86)( 39, 77, 49, 87)
        ( 40, 73, 50, 83) ] ],
[ 9, 6584094720000, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, 
  "Alt(10) wreath Sym(2)", [ "A", 10, 2 ], 
  [ (  1, 10,100, 97, 27, 23, 13, 12, 72, 75, 35, 34, 54, 51)(  2, 80, 95, 37,
         24, 53, 11)(  3, 20, 92, 77, 25, 33, 14, 52, 71,  5, 40, 94, 57, 21)
        (  4, 60, 91,  7, 30, 93, 17, 22, 73, 15, 32, 74, 55, 31)
        (  6, 50, 98, 87, 29, 63, 16, 42, 78, 85, 39, 64, 56, 41,  8, 90, 99,
          67, 26, 43, 18, 82, 79, 65, 36, 44, 58, 81,  9, 70, 96, 47, 28, 83,
          19, 62, 76, 45, 38, 84, 59, 61)( 46, 48, 88, 89, 69, 66)
        ( 49, 68, 86), (  1, 60)(  2, 58,  6, 55,  3, 52,  8, 56,  5, 53)
        (  4, 54)(  7, 59)(  9, 57)( 10, 51)( 11, 80, 41, 90, 31, 20, 71, 50,
          81, 40)( 12, 78, 46, 85, 33)( 13, 72, 48, 86, 35)( 14, 74, 44, 84,
          34)( 15, 73, 42, 88, 36)( 16, 75, 43, 82, 38)( 17, 79, 47, 89, 37,
          19, 77, 49, 87, 39)( 18, 76, 45, 83, 32)( 21, 30)( 22, 28, 26, 25,
          23)( 27, 29)( 61,100)( 62, 98, 66, 95, 63, 92, 68, 96, 65, 93)
        ( 64, 94)( 67, 99)( 69, 97)( 70, 91) ] ],
[ 10, 13168189440000, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(10)^2.2^2", 
  [ "A", 10, 2 ], 
  [ (  1, 69, 84, 51, 66, 74, 55,  6, 79, 85)(  2, 29, 87, 11, 63, 34, 58, 96,
         80, 45)(  3, 39, 88, 91, 70, 44, 52, 26, 77, 15)(  4, 59, 86, 71, 65)
        (  5,  9, 89, 81, 61, 64, 54, 56, 76, 75)(  7, 19, 83, 31, 68, 94, 60,
         46, 72, 25)(  8, 99, 90, 41, 62, 24, 57, 16, 73, 35)( 10, 49, 82, 21,
         67, 14, 53, 36, 78, 95)( 12, 23, 37, 18, 93, 40, 48, 92, 30, 47)
        ( 13, 33, 38, 98,100, 50, 42, 22, 27, 17)( 20, 43, 32, 28, 97), 
      (  1, 88,  6, 68,  5, 98,  2, 18)(  3, 78,  7, 28)(  4, 58)(  9, 38)
        ( 10, 48)( 11, 81, 86, 66, 65, 95, 92, 12)( 13, 71, 87, 26, 63, 75,
          97, 22)( 14, 51, 84, 56, 64, 55, 94, 52)( 15, 91, 82, 16, 61, 85,
          96, 62)( 17, 21, 83, 76, 67, 25, 93, 72)( 19, 31, 89, 36, 69, 35,
          99, 32)( 20, 41, 90, 46, 70, 45,100, 42)( 23, 73, 77, 27)
        ( 24, 53, 74, 57)( 29, 33, 79, 37)( 30, 43, 80, 47)( 34, 59)( 40, 49)
        ( 44, 60) ] ],
[ 11, 13168189440000, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(10)^2.4", 
  [ "A", 10, 2 ], 
  [ (  1, 27, 48, 75, 63, 10, 87, 42, 55, 66, 40, 84, 12, 59, 96, 31, 24, 18,
          79, 93)(  2, 57, 46, 35, 64, 20, 89, 92, 51, 26, 38, 74, 13,  9, 97,
         41, 25, 68, 80, 83)(  3,  7, 47, 45, 65, 70, 90, 82, 52, 56, 36, 34,
          14, 19, 99, 91, 21, 28, 78, 73)(  4, 17, 49, 95, 61, 30, 88, 72, 53,
         6, 37, 44, 15, 69,100, 81, 22, 58, 76, 33)(  5, 67, 50, 85, 62, 60,
          86, 32, 54, 16, 39, 94, 11, 29, 98, 71, 23,  8, 77, 43), 
      (  1, 58, 37, 26, 19, 83, 92, 45, 70, 71, 54,  7, 28, 39, 86, 12, 43,
         100, 75, 64)(  2, 48, 40, 76, 14,  3, 98, 35, 66, 11, 53, 97, 25, 69,
         81, 52, 47, 30, 79, 84)(  4,  8, 38, 36, 16, 13, 93, 95, 65, 61, 51,
          57, 27, 29, 89, 82, 42, 50, 80, 74)(  5, 68, 31, 56, 17, 23, 99, 85,
         62, 41, 60, 77, 24,  9, 88, 32, 46, 20, 73, 94)(  6, 18, 33, 96, 15,
          63, 91, 55, 67, 21, 59, 87, 22, 49, 90, 72, 44, 10, 78, 34) ] ],
[ 12, 26336378880000, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, 
  "Sym(10) wreath Sym(2)", [ "A", 10, 2 ], 
  [ (  1, 29, 15, 81, 28, 55, 82, 48, 60,  2, 49, 20)(  3, 69, 16, 71, 27, 95,
         83, 68, 56, 72, 47,100)(  4, 39, 14, 31, 24, 35, 84, 38, 54, 32, 44,
          40)(  5, 89, 18, 51, 22, 45, 90,  8, 59, 12, 41, 30)
        (  6, 79, 17, 91, 23, 65, 86, 78, 57, 92, 43, 70)(  7, 99, 13, 61, 26,
         75, 87, 98, 53, 62, 46, 80)(  9, 19, 11, 21, 25, 85, 88, 58, 52, 42,
          50, 10)( 33, 64, 36, 74, 37, 94)( 63, 66, 76, 77, 97, 93)
        ( 67, 96, 73), (  1, 47, 70, 79,  3, 17, 64, 39,  2, 87, 61, 49, 10,
          77, 63, 19,  4, 37, 62, 89)(  5, 57, 65, 59)(  6, 97, 68, 29)
        (  7, 67, 69,  9)(  8, 27, 66, 99)( 11, 44, 40, 72, 83)
        ( 12, 84, 31, 42, 90, 71, 43, 20, 74, 33)( 13, 14, 34, 32, 82, 81, 41,
         50, 80, 73)( 15, 54, 35, 52, 85, 51, 45, 60, 75, 53)( 16, 94, 38, 22,
         86, 91, 48, 30, 76, 93, 18, 24, 36, 92, 88, 21, 46,100, 78, 23)
        ( 25, 56, 95, 58)( 26, 96, 98, 28) ] ],
[ 13, 259200, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6) wreath Sym(2)", 
  [ "A", 6, 2 ], 
  [ (  1, 43, 62,  9, 50, 61,  3, 42, 69, 10, 41, 63,  2, 49, 70)
        (  4, 47, 65,  8, 46, 64,  7, 45, 68,  6, 44, 67,  5, 48, 66)
        ( 11, 93, 22, 19,100, 21, 13, 92, 29, 20, 91, 23, 12, 99, 30)
        ( 14, 97, 25, 18, 96, 24, 17, 95, 28, 16, 94, 27, 15, 98, 26)
        ( 31, 33, 32, 39, 40)( 34, 37, 35, 38, 36)( 51, 73, 82, 59, 80, 81,
          53, 72, 89, 60, 71, 83, 52, 79, 90)( 54, 77, 85, 58, 76, 84, 57, 75,
         88, 56, 74, 87, 55, 78, 86), 
      (  1, 56, 18, 90, 25, 62)(  2,  6, 16, 20, 30, 22)(  3, 76, 17,100, 24,
          32)(  4, 36, 13, 80, 27, 92)(  5, 66, 11, 60, 28, 82)
        (  7, 96, 14, 40, 23, 72)(  8, 86, 15, 70, 21, 52)(  9, 46, 19, 50,
          29, 42)( 10, 26, 12)( 31, 53, 78, 87, 95, 64)( 33, 73, 77, 97, 94,
          34)( 35, 63, 71, 57, 98, 84)( 37, 93, 74)( 38, 83, 75, 67, 91, 54)
        ( 39, 43, 79, 47, 99, 44)( 41, 59, 48, 89, 45, 69)( 51, 58, 88, 85,
          65, 61)( 55, 68, 81) ] ],
[ 14, 518400, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.2^2", 
  [ "A", 6, 2 ], 
  [ (  1, 32, 15,  6, 31, 12,  5, 36, 11,  2, 35, 16)(  3, 38, 14,  9, 33, 18,
         4, 39, 13,  8, 34, 19)(  7, 37, 17)( 10, 40, 20)( 21, 22, 25, 26)
        ( 23, 28, 24, 29)( 41, 62, 75, 46, 61, 72, 45, 66, 71, 42, 65, 76)
        ( 43, 68, 74, 49, 63, 78, 44, 69, 73, 48, 64, 79)( 47, 67, 77)
        ( 50, 70, 80)( 51, 82, 95, 56, 81, 92, 55, 86, 91, 52, 85, 96)
        ( 53, 88, 94, 59, 83, 98, 54, 89, 93, 58, 84, 99)( 57, 87, 97)
        ( 60, 90,100), (  1,  4, 44, 41)(  2, 34, 47, 21,  3, 74, 49, 81)
        (  5, 54, 46, 91,  8, 14, 50, 61)(  6, 94, 48, 11, 10, 64, 45, 51)
        (  7, 24, 43, 71,  9, 84, 42, 31)( 12, 40, 67, 25, 53, 76, 99, 88)
        ( 13, 80, 69, 85, 52, 36, 97, 28)( 15, 60, 66, 95, 58, 16,100, 68)
        ( 17, 30, 63, 75, 59, 86, 92, 38)( 18, 20, 70, 65, 55, 56, 96, 98)
        ( 19, 90, 62, 35, 57, 26, 93, 78)( 22, 33, 77, 29, 83, 72, 39, 87)
        ( 23, 73, 79, 89, 82, 32, 37, 27) ] ],
[ 15, 518400, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.2^2", 
  [ "A", 6, 2 ], 
  [ (  1, 22, 91, 28, 71, 27)(  2, 92, 98, 78, 77,  7)(  3, 12, 99, 88, 75, 67
         )(  4, 42, 96, 38, 80, 57)(  5, 62, 93, 18, 79, 87)(  6, 32,100, 58,
          74, 47)(  8, 72, 97)(  9, 82, 95, 68, 73, 17)( 10, 52, 94, 48, 76,
          37)( 11, 29, 81, 25, 61, 23)( 13, 19, 89, 85, 65, 63)
        ( 14, 49, 86, 35, 70, 53)( 15, 69, 83)( 16, 39, 90, 55, 64, 43)
        ( 20, 59, 84, 45, 66, 33)( 24, 41, 26, 31, 30, 51)( 34, 50, 56)
        ( 36, 40, 60, 54, 44, 46), (  1, 70, 92, 74, 29, 85, 56, 33, 47, 18)
        (  2, 80, 99, 84, 26, 35, 57, 13, 41, 68)(  3, 50, 98,  4, 30, 95, 54,
         23, 45, 58)(  5, 60, 93, 44, 28)(  6, 40, 97, 14, 21, 65, 52, 73, 49,
         88)(  7, 20, 91, 64, 22, 75, 59, 83, 46, 38)(  8, 10,100, 94, 24, 25,
         55, 53, 43, 48)(  9, 90, 96, 34, 27, 15, 51, 63, 42, 78)
        ( 11, 61, 62, 72, 79, 89, 86, 36, 37, 17)( 12, 71, 69, 82, 76, 39, 87,
         16, 31, 67)( 19, 81, 66, 32, 77) ] ],
[ 16, 518400, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.4", 
  [ "A", 6, 2 ], 
  [ (  1, 21, 61, 91, 81)(  2, 27, 66,100, 82,  7, 26, 70, 92, 87,  6, 30, 62,
         97, 86, 10, 22, 67, 96, 90)(  3, 24, 69, 98, 83,  4, 29, 68, 93, 84,
           9, 28, 63, 94, 89,  8, 23, 64, 99, 88)(  5, 25, 65, 95, 85)
        ( 11, 41, 51, 31, 71)( 12, 47, 56, 40, 72, 17, 46, 60, 32, 77, 16, 50,
         52, 37, 76, 20, 42, 57, 36, 80)( 13, 44, 59, 38, 73, 14, 49, 58, 33,
          74, 19, 48, 53, 34, 79, 18, 43, 54, 39, 78)( 15, 45, 55, 35, 75), 
      (  1, 22, 18, 35, 49, 66, 97, 10, 82, 13, 75, 44, 56, 91, 30, 88, 33,
          79, 64, 57)(  2, 12, 15, 45, 46, 96,100, 90, 83, 73, 74, 54, 51, 21,
         28, 38, 39, 69, 67,  7)(  3, 72, 14, 55, 41, 26, 98, 40, 89, 63, 77,
           4, 52, 11, 25, 48, 36, 99, 70, 87)(  5, 42, 16, 95, 50, 86, 93, 80,
         84, 53, 71, 24, 58, 31, 29, 68, 37,  9, 62, 17)(  6, 92, 20, 85, 43,
          76, 94, 60, 81, 23, 78, 34, 59, 61, 27,  8, 32, 19, 65, 47) ] ],
[ 17, 518400, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.2^2", 
  [ "A", 6, 2 ], 
  [ (  1, 41, 45, 15, 20, 10)(  2, 81, 49, 25, 13,100)(  3, 91, 42, 85, 19, 30
         )(  4, 31, 48, 65, 16, 80)(  5, 11, 50)(  6, 71, 44, 35, 18, 70)
        (  7, 51, 47, 55, 17, 60)(  8, 61, 46, 75, 14, 40)(  9, 21, 43, 95,
          12, 90)( 22, 83, 99)( 23, 93, 92, 82, 89, 29)( 24, 33, 98, 62, 86,
          79)( 26, 73, 94, 32, 88, 69)( 27, 53, 97, 52, 87, 59)
        ( 28, 63, 96, 72, 84, 39)( 34, 38, 68, 66, 76, 74)( 36, 78, 64)
        ( 37, 58, 67, 56, 77, 54), (  1, 12, 78, 94, 81, 42, 58, 24)
        (  2, 18, 74, 91, 82, 48, 54, 21)(  3, 17, 80, 95, 83, 47, 60, 25)
        (  4, 11, 72, 98, 84, 41, 52, 28)(  5, 13, 77,100, 85, 43, 57, 30)
        (  6, 16, 76, 96, 86, 46, 56, 26)(  7, 20, 75, 93, 87, 50, 55, 23)
        (  8, 14, 71, 92, 88, 44, 51, 22)(  9, 19, 79, 99, 89, 49, 59, 29)
        ( 10, 15, 73, 97, 90, 45, 53, 27)( 31, 62, 38, 64)( 32, 68, 34, 61)
        ( 33, 67, 40, 65)( 35, 63, 37, 70)( 36, 66)( 39, 69) ] ],
[ 18, 518400, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.4", 
  [ "A", 6, 2 ], 
  [ (  1, 88, 76)(  2, 83, 77)(  3, 87, 72)(  4, 85, 80)(  5, 90, 74)
        (  6, 81, 78)(  7, 82, 73)(  8, 86, 71)(  9, 89, 79)( 10, 84, 75)
        ( 11, 98, 66)( 12, 93, 67)( 13, 97, 62)( 14, 95, 70)( 15,100, 64)
        ( 16, 91, 68)( 17, 92, 63)( 18, 96, 61)( 19, 99, 69)( 20, 94, 65)
        ( 21, 38, 46)( 22, 33, 47)( 23, 37, 42)( 24, 35, 50)( 25, 40, 44)
        ( 26, 31, 48)( 27, 32, 43)( 28, 36, 41)( 29, 39, 49)( 30, 34, 45)
        ( 51, 58, 56)( 52, 53, 57)( 54, 55, 60), 
      (  1, 25, 37, 52,  8, 65, 33, 72,  6, 15, 34, 92,  9, 85, 40, 42)
        (  2,  5, 35, 32)(  3, 75, 36, 12,  4, 95, 39, 82, 10, 45, 31, 22,  7,
         55, 38, 62)( 11, 24, 97, 59, 88, 70, 43, 71, 26, 17, 54, 98, 69, 83,
          80, 46)( 13, 74, 96, 19, 84,100, 49, 81, 30, 47, 51, 28, 67, 53, 78,
         66)( 14, 94, 99, 89, 90, 50, 41, 21, 27, 57, 58, 68, 63, 73, 76, 16)
        ( 18, 64, 93, 79, 86, 20, 44, 91, 29, 87, 60, 48, 61, 23, 77, 56) ] ],
[ 19, 518400, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.2^2", 
  [ "A", 6, 2 ], 
  [ (  1, 20, 83, 96,  4, 17, 81,100,  3, 16, 84, 97)(  2, 12, 82, 92)
        (  5, 18, 89, 95,  8, 19, 85, 98,  9, 15, 88, 99)(  6, 14, 87, 91, 10,
         13, 86, 94,  7, 11, 90, 93)( 21, 50, 23, 46, 24, 47)( 22, 42)
        ( 25, 48, 29, 45, 28, 49)( 26, 44, 27, 41, 30, 43)( 31, 80, 53, 66,
          34, 77, 51, 70, 33, 76, 54, 67)( 32, 72, 52, 62)( 35, 78, 59, 65,
          38, 79, 55, 68, 39, 75, 58, 69)( 36, 74, 57, 61, 40, 73, 56, 64, 37,
         71, 60, 63), (  1, 63, 87, 40, 94, 46)(  2, 53, 85, 30, 98, 76)
        (  3, 83, 90,100, 96,  6)(  4, 43, 81, 70, 97, 36)(  5, 23, 88, 80,
          92, 56)(  7, 33, 84, 50, 91, 66)(  8, 73, 82, 60, 95, 26)
        (  9, 13, 89, 20, 99, 16)( 10, 93, 86)( 11, 69, 17, 39, 14, 49)
        ( 12, 59, 15, 29, 18, 79)( 21, 68, 77, 32, 54, 45)( 22, 58, 75)
        ( 24, 48, 71, 62, 57, 35)( 25, 28, 78, 72, 52, 55)( 27, 38, 74, 42,
          51, 65)( 31, 64, 47)( 34, 44, 41, 61, 67, 37) ] ],
[ 20, 1036800, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.D_8", 
  [ "A", 6, 2 ], 
  [ (  1, 46, 34, 88, 13, 30, 95, 79, 67, 52)(  2,  6, 36, 38, 18, 20,100, 99,
         69, 62)(  3, 26, 35, 78, 17, 60, 91, 49, 64, 82)(  4, 86, 33, 28, 15,
         80, 97, 59, 61, 42)(  5, 76, 37, 58, 11, 50, 94, 89, 63, 22)
        (  7, 56, 31, 48, 14, 90, 93, 29, 65, 72)(  8, 16, 40, 98, 19, 70, 92,
         9, 66, 32)( 10, 96, 39, 68, 12)( 21, 45, 74, 87, 53)( 23, 25, 75, 77,
         57, 51, 41, 44, 84, 83)( 24, 85, 73, 27, 55, 71, 47, 54, 81, 43), 
      (  1, 94, 50, 56)(  2, 99, 42, 59)(  3, 95, 47, 58)(  4,100, 46, 51)
        (  5, 97, 48, 53)(  6, 91, 44, 60)(  7, 98, 43, 55)(  8, 93, 45, 57)
        (  9, 92, 49, 52)( 10, 96, 41, 54)( 11, 34, 70, 76)( 12, 39, 62, 79)
        ( 13, 35, 67, 78)( 14, 40, 66, 71)( 15, 37, 68, 73)( 16, 31, 64, 80)
        ( 17, 38, 63, 75)( 18, 33, 65, 77)( 19, 32, 69, 72)( 20, 36, 61, 74)
        ( 21, 24, 30, 26)( 22, 29)( 23, 25, 27, 28)( 81, 84, 90, 86)( 82, 89)
        ( 83, 85, 87, 88) ] ],
[ 21, 1036800, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.2^3", 
  [ "A", 6, 2 ], 
  [ (  1, 16,  3, 46,  7, 56)(  2, 96,  9, 76,  4, 26)(  5, 86, 10, 36,  8, 66
         )( 11, 13, 43, 47, 57, 51)( 12, 93, 49, 77, 54, 21)( 14, 23, 42, 97,
          59, 71)( 15, 83, 50, 37, 58, 61)( 17, 53, 41)( 18, 63, 45, 87, 60,
          31)( 19, 73, 44, 27, 52, 91)( 20, 33, 48, 67, 55, 81)
        ( 22, 92, 99, 79, 74, 24)( 25, 82,100, 39, 78, 64)( 28, 62, 95, 89,
          80, 34)( 29, 72, 94)( 30, 32, 98, 69, 75, 84)( 35, 88, 70)
        ( 38, 68, 65, 85, 90, 40), 
      (  1, 20,  2, 50,  9, 60)(  3, 70,  7, 90,  4, 40)(  5,100,  8, 80,  6,
          30)( 11, 12, 42, 49, 59, 51)( 13, 62, 47, 89, 54, 31)
        ( 14, 32, 43, 69, 57, 81)( 15, 92, 48, 79, 56, 21)( 16, 22, 45, 99,
          58, 71)( 17, 82, 44, 39, 53, 61)( 18, 72, 46, 29, 55, 91)
        ( 19, 52, 41)( 23, 65, 97, 88, 74, 36)( 24, 35, 93, 68, 77, 86)
        ( 25, 95, 98, 78, 76, 26)( 27, 85, 94, 38, 73, 66)( 28, 75, 96)
        ( 33, 63, 67, 87, 84, 34)( 37, 83, 64), 
      (  1,  2, 52, 56, 76, 80, 70, 63, 43, 41)(  3, 42, 51,  6, 72, 60, 66,
          73, 50, 61)(  4, 12, 55, 86, 77, 40, 69, 23, 48, 91)
        (  5, 82, 57, 36, 79, 30, 68, 93, 44, 11)(  7, 32, 59, 26, 78,100, 64,
         13, 45, 81)(  8, 92, 54, 16, 75, 90, 67, 33, 49, 21)(  9, 22, 58, 96,
         74, 20, 65, 83, 47, 31)( 10, 62, 53, 46, 71)( 14, 15, 85, 87, 37, 39,
         29, 28, 98, 94)( 17, 35, 89, 27, 38, 99, 24, 18, 95, 84)
        ( 19, 25, 88, 97, 34) ] ],
[ 22, 1036800, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.D_8", 
  [ "A", 6, 2 ], 
  [ (  1, 19,  3, 69,  4, 59,  2, 99)(  5, 79,  8, 29,  6, 39, 10, 89)
        (  7, 49)( 11, 13, 63, 64, 54, 52, 92, 91)( 12, 93, 61, 14, 53, 62,
          94, 51)( 15, 73, 68, 24, 56, 32,100, 81)( 16, 33, 70, 84, 55, 72,
          98, 21)( 17, 43, 67, 44, 57, 42, 97, 41)( 18, 23, 66, 34, 60, 82,
          95, 71)( 20, 83, 65, 74, 58, 22, 96, 31)( 25, 76, 38, 30, 86, 35,
          80, 88)( 26, 36, 40, 90, 85, 75, 78, 28)( 27, 46, 37, 50, 87, 45,
          77, 48), (  1, 81, 87,  7)(  2, 11, 82, 17)(  3, 41, 83, 47)
        (  4, 71, 89, 57)(  5, 61, 90, 37)(  6, 21, 86, 27)(  8, 91, 88, 97)
        (  9, 51, 84, 77)( 10, 31, 85, 67)( 13, 42)( 14, 72, 19, 52)
        ( 15, 62, 20, 32)( 16, 22)( 18, 92)( 23, 46)( 24, 76, 29, 56)
        ( 25, 66, 30, 36)( 28, 96)( 33, 45, 63, 50)( 34, 75, 69, 60)
        ( 35, 65, 70, 40)( 38, 95, 68,100)( 39, 55, 64, 80)( 44, 73, 49, 53)
        ( 48, 93)( 54, 74, 79, 59)( 58, 94, 78, 99) ] ],
[ 23, 1036800, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.D_8", 
  [ "A", 6, 2 ], 
  [ (  1, 86, 35, 11, 96, 45, 61, 56, 75, 21,  6, 85, 31, 16, 95, 41, 66, 55,
          71, 26,  5, 81, 36, 15, 91, 46, 65, 51, 76, 25)(  2, 82, 32, 12, 92,
         42, 62, 52, 72, 22)(  3, 87, 39, 13, 97, 49, 63, 57, 79, 23,  7, 89,
          33, 17, 99, 43, 67, 59, 73, 27,  9, 83, 37, 19, 93, 47, 69, 53, 77,
          29)(  4, 90, 38, 14,100, 48, 64, 60, 78, 24, 10, 88, 34, 20, 98, 44,
         70, 58, 74, 30,  8, 84, 40, 18, 94, 50, 68, 54, 80, 28), 
      (  1, 95, 33,  4, 25, 32, 74, 30, 42, 79, 60, 46, 19, 57, 86, 18, 67,
          81, 98, 63)(  2, 75, 40, 44, 29, 52, 76, 20, 47, 89, 58, 66, 11, 97,
         83,  8, 65, 31, 94, 23)(  3,  5, 35, 34, 24, 22, 72, 80, 50, 49, 59,
          56, 16, 17, 87, 88, 68, 61, 91, 93)(  6, 15, 37, 84, 28, 62, 71,100,
         43,  9, 55, 36, 14, 27, 82, 78, 70, 41, 99, 53)(  7, 85, 38, 64, 21,
          92, 73, 10, 45, 39, 54, 26, 12, 77, 90, 48, 69, 51, 96, 13) ] ],
[ 24, 1036800, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.D_8", 
  [ "A", 6, 2 ], 
  [ (  1, 77, 89, 23, 66, 55, 31, 17,  9, 73, 86, 25, 61, 57, 39, 13,  6, 75,
          81, 27, 69, 53, 36, 15)(  2, 80, 84, 22, 70, 54, 32, 20,  4, 72, 90,
         24, 62, 60, 34, 12, 10, 74, 82, 30, 64, 52, 40, 14)(  3, 76, 85, 21,
          67, 59, 33, 16,  5, 71, 87, 29, 63, 56, 35, 11,  7, 79, 83, 26, 65,
          51, 37, 19)(  8, 78, 88, 28, 68, 58, 38, 18)( 41, 47, 49, 43, 46, 45
         )( 42, 50, 44)( 91, 97, 99, 93, 96, 95)( 92,100, 94), 
      (  1, 38, 91, 33, 61, 32, 41, 36)(  2, 48, 96,  3, 68, 92, 43, 66)
        (  4, 18, 95, 73, 69, 52, 50, 26)(  5, 78, 99, 53, 70, 22, 44, 16)
        (  6,  8, 98, 93, 63, 62, 42, 46)(  7, 88, 97, 83, 67, 82, 47, 86)
        (  9, 58,100, 23, 64, 12, 45, 76)( 10, 28, 94, 13, 65, 72, 49, 56)
        ( 11, 35, 71, 39, 51, 40, 21, 34)( 14, 15, 75, 79, 59, 60, 30, 24)
        ( 17, 85, 77, 89, 57, 90, 27, 84)( 19, 55, 80, 29, 54, 20, 25, 74)
        ( 37, 81) ] ],
[ 25, 1036800, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.D_8", 
  [ "A", 6, 2 ], 
  [ (  1, 18, 93, 74, 46, 70, 32, 85, 29, 57)(  2, 88, 99, 54, 41, 20, 33, 75,
         26, 67)(  3, 78, 96, 64, 42, 90, 39, 55, 21, 17)(  4, 48,100, 34, 45,
         30, 37,  5, 28, 97)(  6, 68, 92, 84, 49, 60, 31, 15, 23, 77)
        (  7,  8, 98, 94, 44, 50, 40, 35, 25, 27)(  9, 58, 91, 14, 43, 80, 36,
         65, 22, 87)( 10, 38, 95, 24, 47)( 11, 13, 73, 76, 66, 62, 82, 89, 59,
         51)( 12, 83, 79, 56, 61)( 16, 63, 72, 86, 69, 52, 81, 19, 53, 71), 
      (  1, 16, 62, 97, 41, 13, 32, 99, 81, 15, 52, 98, 21, 14, 72,100)
        (  2, 96, 61, 17, 42, 93, 31, 19, 82, 95, 51, 18, 22, 94, 71, 20)
        (  3, 36, 69, 87, 45, 53, 38, 29, 84, 75, 60,  8, 26, 64, 77, 50)
        (  4, 76, 70,  7, 46, 63, 37, 49, 83, 35, 59, 88, 25, 54, 78, 30)
        (  5, 56, 68, 27, 44, 73, 40,  9, 86, 65, 57, 48, 23, 34, 79, 90)
        (  6, 66, 67, 47, 43, 33, 39, 89, 85, 55, 58, 28, 24, 74, 80, 10)
        ( 11, 12, 92, 91) ] ],
[ 26, 1036800, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.(2 x 4)", 
  [ "A", 6, 2 ], 
  [ (  1, 69,  8, 89,  7, 49,  3, 19)(  2, 59,  5, 79,  6, 39, 10, 29)
        (  4, 99)( 11, 61, 68, 88, 87, 47, 43, 13)( 12, 51, 65, 78, 86, 37,
          50, 23)( 14, 91, 64, 98, 84, 97, 44, 93)( 15, 71, 66, 38, 90, 27,
          42, 53)( 16, 31, 70, 28, 82, 57, 45, 73)( 17, 41, 63, 18, 81, 67,
          48, 83)( 20, 21, 62, 58, 85, 77, 46, 33)( 22, 52, 55, 75, 76, 36,
          40, 30)( 24, 92, 54, 95, 74, 96, 34,100)( 25, 72, 56, 35, 80, 26,
          32, 60), (  1, 33, 20, 89,  8, 53, 17, 79,  5, 23, 16, 99,  4, 43,
          12, 69)(  2, 63, 11, 39, 10, 83, 18, 59,  7, 73, 15, 29,  6, 93, 14,
         49)(  3, 13, 19,  9)( 21, 36,100, 84, 48, 52, 67, 71, 35, 30, 86, 98,
         54, 47, 72, 65)( 22, 66, 91, 34, 50, 82, 68, 51, 37, 80, 85, 28, 56,
          97, 74, 45)( 24, 46, 92, 64, 41, 32, 70, 81, 38, 60, 87, 78, 55, 27,
         76, 95)( 25, 26, 96, 94, 44, 42, 62, 61, 31, 40, 90, 88, 58, 57, 77,
          75) ] ],
[ 27, 1036800, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.D_8", 
  [ "A", 6, 2 ], 
  [ (  1, 79, 51, 49)(  2, 77, 52, 47)(  3, 78, 53, 48)(  4, 80, 54, 50)
        (  5, 76, 55, 46)(  6, 75, 56, 45)(  7, 72, 57, 42)(  8, 73, 58, 43)
        (  9, 71, 59, 41)( 10, 74, 60, 44)( 11, 39, 81, 99)( 12, 37, 82, 97)
        ( 13, 38, 83, 98)( 14, 40, 84,100)( 15, 36, 85, 96)( 16, 35, 86, 95)
        ( 17, 32, 87, 92)( 18, 33, 88, 93)( 19, 31, 89, 91)( 20, 34, 90, 94)
        ( 21, 29)( 22, 27)( 23, 28)( 24, 30)( 25, 26)( 61, 69)( 62, 67)
        ( 63, 68)( 64, 70)( 65, 66), 
      (  1, 25, 99, 12, 74, 68, 31, 30, 59, 13, 44, 66)(  2, 75, 98, 32, 80,
          58, 33, 50, 56,  3, 45, 96)(  4, 65, 91, 22, 79, 18, 34, 70, 51, 23,
         49, 16)(  5, 95, 92, 72, 78, 38, 40, 60, 53, 43, 46,  6)
        (  7, 85, 97, 82, 77, 88, 37, 90, 57, 83, 47, 86)(  8, 35,100, 52, 73,
         48, 36, 10, 55, 93, 42, 76)(  9, 15, 94, 62, 71, 28, 39, 20, 54, 63,
          41, 26)( 11, 24, 69)( 14, 64, 61, 21, 29, 19)( 17, 84, 67, 81, 27,
          89) ] ],
[ 28, 1036800, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.(2 x 4)", 
  [ "A", 6, 2 ], 
  [ (  1, 15, 34, 43, 89, 57, 10, 25, 36, 93, 82, 77)(  2, 75, 31, 13, 84, 47,
         9, 55, 40, 23, 86, 97)(  3, 85, 37)(  4, 45, 39, 53, 90, 27,  6, 95,
          32, 73, 81, 17)(  5, 35, 33, 83, 87,  7)(  8, 65, 38, 63, 88, 67)
        ( 11, 14, 44, 49, 59, 60, 30, 26, 96, 92, 72, 71)( 12, 74, 41, 19, 54,
         50, 29, 56,100, 22, 76, 91)( 16, 94, 42, 79, 51, 20, 24, 46, 99, 52,
          80, 21)( 18, 64, 48, 69, 58, 70, 28, 66, 98, 62, 78, 61), 
      (  1, 71, 78,  8)(  2, 81, 74, 98,  7, 51, 75, 28)(  3, 61, 76, 38, 10,
          11, 79, 48)(  4, 91, 77, 58,  5, 21, 72, 88)(  6, 31, 80, 18,  9,
          41, 73, 68)( 12, 89, 44, 93, 67, 56, 35, 30)( 13, 69, 46, 33, 70,
          16, 39, 50)( 14, 99, 47, 53, 65, 26, 32, 90)( 15, 29, 42, 83, 64,
          96, 37, 60)( 17, 59, 45, 23, 62, 86, 34,100)( 19, 49, 43, 63, 66,
          36, 40, 20)( 22, 82, 84, 94, 97, 57, 55, 25)( 24, 92, 87, 54, 95,
          27, 52, 85) ] ],
[ 29, 1036800, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.(2 x 4)", 
  [ "A", 6, 2 ], 
  [ (  1, 91, 94, 24, 23, 43, 49, 39, 40, 80, 72, 12, 18, 58, 56,  6)
        (  2, 11, 98, 54, 26,  3, 41, 99, 34, 30, 73, 42, 19, 38, 60, 76)
        (  4, 21, 93, 44, 29, 33, 50, 79, 32, 20, 78, 52, 16,  8, 51, 96)
        (  5, 81, 95, 84, 25, 83, 45, 89, 35, 90, 75, 82, 15, 88, 55, 86)
        (  7, 61, 97, 64, 27, 63, 47, 69, 37, 70, 77, 62, 17, 68, 57, 66)
        (  9, 31,100, 74, 22, 13, 48, 59, 36, 10, 71, 92, 14, 28, 53, 46)
        ( 65, 87), (  1, 28, 69, 97, 46, 34, 15, 82, 73, 51, 30,  9, 98, 66,
          37, 45, 84, 13, 52, 80)(  2, 78, 61, 27, 49, 94, 16, 32, 75, 81, 23,
         59,100,  6, 38, 65, 87, 43, 54, 20)(  3, 58, 70,  7, 48, 64, 17, 42,
          74, 11, 22, 79, 91, 26, 39, 95, 86, 33, 55, 90)(  4, 18, 62, 77, 41,
         24, 19, 92, 76, 31, 25, 89, 93, 56, 40,  5, 88, 63, 57, 50)
        (  8, 68, 67, 47, 44, 14, 12, 72, 71, 21, 29, 99, 96, 36, 35, 85, 83,
          53, 60, 10) ] ],
[ 30, 2073600, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.2^2:4", 
  [ "A", 6, 2 ], 
  [ (  1, 69, 11, 99, 41,  9, 61, 19, 91, 49)(  2, 63, 20, 94, 48,  6, 65, 17,
         92, 43, 10, 64, 18, 96, 45,  7, 62, 13,100, 44,  8, 66, 15, 97, 42,
           3, 70, 14, 98, 46,  5, 67, 12, 93, 50,  4, 68, 16, 95, 47)
        ( 21, 39, 71, 89, 51, 29, 31, 79, 81, 59)( 22, 33, 80, 84, 58, 26, 35,
         77, 82, 53, 30, 34, 78, 86, 55, 27, 32, 73, 90, 54, 28, 36, 75, 87,
          52, 23, 40, 74, 88, 56, 25, 37, 72, 83, 60, 24, 38, 76, 85, 57), 
      (  1, 73, 15, 31, 77, 45, 32, 97, 44, 82, 98, 24, 86, 68, 29, 56, 70,
           9, 53, 20)(  2, 93, 14, 81, 78, 25, 36, 67, 49, 52,100,  4, 83, 18,
         21, 76, 65, 39, 57, 50)(  3, 13, 11, 71, 75, 35, 37, 47, 42, 92, 94,
          84, 88, 28, 26, 66, 69, 59, 60, 10)(  5, 33, 17, 41, 72, 95, 34, 87,
         48, 22, 96, 64, 89, 58, 30,  6, 63, 19, 51, 80)(  7, 43, 12, 91, 74,
          85, 38, 27, 46, 62, 99, 54, 90,  8, 23, 16, 61, 79, 55, 40) ] ],
[ 31, 2073600, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, 
  "Alt(6)^2.(2 x D_8)", [ "A", 6, 2 ], 
  [ (  1, 44, 69, 32, 58, 96, 25,  7, 74, 61, 42, 59, 36, 28, 97, 75)
        (  2, 54, 66, 22, 57, 76, 21, 47, 79, 31, 48, 99, 35,  8, 94, 65)
        (  3, 84, 63, 82, 53, 86, 23, 87, 73, 81, 43, 89, 33, 88, 93, 85)
        (  4, 64, 62, 52, 56, 26, 27, 77, 71, 41, 49, 39, 38, 98, 95,  5)
        (  6, 24, 67, 72, 51, 46, 29, 37, 78, 91, 45,  9, 34, 68, 92, 55)
        ( 10, 14, 70, 12, 60, 16, 30, 17, 80, 11, 50, 19, 40, 18,100, 15)
        ( 13, 90), (  1,  5, 85, 81)(  2, 95, 88, 71)(  3, 15, 84, 41)
        (  4, 45, 83, 11)(  6, 25, 86, 21)(  7, 55, 87, 51)(  8, 75, 82, 91)
        (  9, 65, 90, 31)( 10, 35, 89, 61)( 12, 94, 48, 73)( 13, 14, 44, 43)
        ( 16, 24, 46, 23)( 17, 54, 47, 53)( 18, 74, 42, 93)( 19, 64, 50, 33)
        ( 20, 34, 49, 63)( 22, 96, 28, 76)( 27, 56)( 29, 66, 30, 36)
        ( 32, 99, 68, 80)( 37, 59, 67, 60)( 38, 79, 62,100)( 39, 69, 70, 40)
        ( 52, 97, 58, 77)( 72, 92, 98, 78), 
      (  1, 37, 59, 20, 23,  4, 36, 52, 11, 27,  9, 40, 53, 14, 26,  2, 31,
          57, 19, 30,  3, 34, 56, 12, 21,  7, 39, 60, 13, 24,  6, 32, 51, 17,
          29, 10, 33, 54, 16, 22)(  5, 35, 55, 15, 25)(  8, 38, 58, 18, 28)
        ( 41, 67, 99, 80, 83, 44, 66, 92, 71, 87, 49, 70, 93, 74, 86, 42, 61,
          97, 79, 90, 43, 64, 96, 72, 81, 47, 69,100, 73, 84, 46, 62, 91, 77,
          89, 50, 63, 94, 76, 82)( 45, 65, 95, 75, 85)( 48, 68, 98, 78, 88) ] 
 ],
[ 32, 2073600, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.2^2:4", 
  [ "A", 6, 2 ], 
  [ (  1, 23, 94,  2, 73, 91, 22, 74)(  3, 93, 92, 72, 71, 21, 24,  4)
        (  5, 43,100, 32, 78, 61, 27, 54)(  6, 13, 96, 12, 76, 11, 26, 14)
        (  7, 53, 95, 42, 80, 31, 28, 64)(  8, 63, 97, 52, 75, 41, 30, 34)
        (  9, 83, 99, 82, 79, 81, 29, 84)( 10, 33, 98, 62, 77, 51, 25, 44)
        ( 15, 46, 20, 36, 18, 66, 17, 56)( 19, 86)( 35, 48, 70, 37, 58, 65,
          47, 60)( 38, 68, 67, 57, 55, 45, 50, 40)( 39, 88, 69, 87, 59, 85,
          49, 90), (  1, 22, 47, 76)(  2, 27, 46, 71)(  3, 28, 45, 80)
        (  4, 24, 44, 74)(  5, 30, 43, 78)(  6, 21, 42, 77)(  7, 26, 41, 72)
        (  8, 25, 50, 73)(  9, 29, 49, 79)( 10, 23, 48, 75)( 11, 32, 17, 36)
        ( 12, 37, 16, 31)( 13, 38, 15, 40)( 14, 34)( 18, 35, 20, 33)( 19, 39)
        ( 51, 62, 87, 96)( 52, 67, 86, 91)( 53, 68, 85,100)( 54, 64, 84, 94)
        ( 55, 70, 83, 98)( 56, 61, 82, 97)( 57, 66, 81, 92)( 58, 65, 90, 93)
        ( 59, 69, 89, 99)( 60, 63, 88, 95) ] ],
[ 33, 2073600, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, 
  "Alt(6)^2.(2 x D_8)", [ "A", 6, 2 ], 
  [ (  1, 10, 40, 35, 75, 74, 94, 93, 23, 27, 17, 18, 48, 42, 62, 61)
        (  2, 70, 31,  5, 80, 34, 95, 73, 24, 97, 13, 28, 47, 12, 68, 41)
        (  3, 30, 37, 15, 78, 44, 92, 63, 21,  7, 20, 38, 45, 72, 64, 91)
        (  4,100, 33, 25, 77, 14, 98, 43, 22, 67, 11,  8, 50, 32, 65, 71)
        (  6, 90, 39, 55, 76, 84, 99, 53, 26, 87, 19, 58, 46, 82, 69, 51)
        (  9, 60, 36, 85, 79, 54, 96, 83, 29, 57, 16, 88, 49, 52, 66, 81)
        ( 56, 86, 89, 59), (  1, 44, 17)(  2, 64, 20, 21, 43, 57)
        (  3, 54, 12, 61, 50, 27)(  4, 14, 11, 41, 47,  7)(  5, 84, 18, 71,
          46, 97)(  6, 94, 15, 81, 48, 77)(  8, 74, 16, 91, 45, 87)
        (  9, 34, 19, 31, 49, 37)( 10, 24, 13, 51, 42, 67)( 22, 63, 60)
        ( 23, 53, 52, 62, 70, 30)( 25, 83, 58, 72, 66,100)( 26, 93, 55, 82,
          68, 80)( 28, 73, 56, 92, 65, 90)( 29, 33, 59, 32, 69, 40)
        ( 35, 89, 38, 79, 36, 99)( 75, 86, 98)( 76, 96, 95, 85, 88, 78), 
      (  1,  5, 55, 59, 69, 61)(  2, 15, 57, 79, 64, 91)(  3, 85, 58, 29, 66,
          31)(  4, 95, 52, 19, 67, 71)(  6, 35, 53, 89, 68, 21)
        (  7, 75, 54, 99, 62, 11)(  8, 25, 56, 39, 63, 81)(  9, 65, 51)
        ( 10, 45, 60, 49, 70, 41)( 12, 17, 77, 74, 94, 92)( 13, 87, 78, 24,
          96, 32)( 14, 97, 72)( 16, 37, 73, 84, 98, 22)( 18, 27, 76, 34, 93,
          82)( 20, 47, 80, 44,100, 42)( 23, 86, 38)( 26, 36, 33, 83, 88, 28)
        ( 30, 46, 40, 43, 90, 48) ] ],
[ 34, 2073600, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, 
  "Alt(6)^2.(2 x D_8)", [ "A", 6, 2 ], 
  [ (  1, 22,  3, 24)(  2, 23,  4, 21)(  5, 27,  8, 30)(  6, 26)
        (  7, 28, 10, 25)(  9, 29)( 11, 42, 13, 44)( 12, 43, 14, 41)
        ( 15, 47, 18, 50)( 16, 46)( 17, 48, 20, 45)( 19, 49)( 31, 52, 33, 54)
        ( 32, 53, 34, 51)( 35, 57, 38, 60)( 36, 56)( 37, 58, 40, 55)( 39, 59)
        ( 61, 72, 63, 74)( 62, 73, 64, 71)( 65, 77, 68, 80)( 66, 76)
        ( 67, 78, 70, 75)( 69, 79)( 81, 92, 83, 94)( 82, 93, 84, 91)
        ( 85, 97, 88,100)( 86, 96)( 87, 98, 90, 95)( 89, 99), 
      (  2, 81, 10, 41,  7, 51,  9, 31,  3, 21,  5, 11)(  4, 71,  6, 91,  8,
          61)( 12, 82, 90, 50, 47, 57, 59, 39, 33, 23, 25, 15)
        ( 13, 22, 85, 20, 42, 87, 60, 49, 37, 53, 29, 35)( 14, 72, 86,100, 48,
         67, 54, 79, 36, 93, 28, 65)( 16, 92, 88, 70, 44, 77, 56, 99, 38, 63,
          24, 75)( 17, 52, 89, 40, 43, 27, 55, 19, 32, 83, 30, 45)
        ( 18, 62, 84, 80, 46, 97, 58, 69, 34, 73, 26, 95)( 64, 74, 76, 96, 98,
         68)( 66, 94, 78), (  1, 81, 87, 67, 62, 42, 50, 30, 25,  5)
        (  2, 41, 90, 27, 65)(  3, 11, 84, 97, 68, 72, 49, 60, 26, 35)
        (  4, 91, 88, 77, 69, 52, 46, 40, 23, 15)(  6, 31, 83, 17, 64, 92, 48,
         80, 29, 55)(  7, 61, 82, 47, 70, 22, 45, 10, 21, 85)(  8, 71, 89, 57,
         66, 32, 43, 20, 24, 95)(  9, 51, 86, 37, 63, 12, 44,100, 28, 75)
        ( 13, 14, 94, 98, 78, 79, 59, 56, 36, 33)( 16, 34, 93, 18, 74, 99, 58,
         76, 39, 53)( 19, 54, 96, 38, 73) ] ],
[ 35, 2073600, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, "Alt(6)^2.2^2:4", 
  [ "A", 6, 2 ], 
  [ (  1, 57, 78, 42, 30, 84, 65, 31, 56,  8, 47, 80, 82, 25, 34, 66)
        (  2, 27, 74, 62, 21, 54, 68, 41, 60, 88, 45, 40, 86,  5, 37, 76)
        (  3, 97, 73, 92, 23, 94, 63, 91, 53, 98, 43,100, 83, 95, 33, 96)
        (  4, 67, 71, 52, 28, 44, 70, 81, 55, 38, 46, 10, 87, 75, 32, 26)
        (  6,  7, 77, 72, 22, 24, 64, 61, 51, 58, 48, 50, 90, 85, 35, 36)
        (  9, 17, 79, 12, 29, 14, 69, 11, 59, 18, 49, 20, 89, 15, 39, 16)
        ( 13, 99), (  1, 44, 69, 25,  6, 47, 63, 28)(  2, 42, 62, 22)
        (  3, 48, 61, 24,  9, 45, 66, 27)(  4, 49, 65, 26,  7, 43, 68, 21)
        (  5, 46, 67, 23,  8, 41, 64, 29)( 10, 50, 70, 30)( 11, 74, 59, 95,
          16, 77, 53, 98)( 12, 72, 52, 92)( 13, 78, 51, 94, 19, 75, 56, 97)
        ( 14, 79, 55, 96, 17, 73, 58, 91)( 15, 76, 57, 93, 18, 71, 54, 99)
        ( 20, 80, 60,100)( 31, 34, 39, 35, 36, 37, 33, 38)( 81, 84, 89, 85,
          86, 87, 83, 88) ] ],
[ 36, 4147200, 0, "4c", [ [ 81, 1 ], [ 18, 1 ] ], 1, 
  "PGammaL(2, 9) wreath Sym(2)", [ "A", 6, 2 ], 
  [ (  1, 14, 90, 22, 68, 41, 34, 60,  2, 18, 81, 24, 70, 42, 38, 51,  4, 20,
          82, 28, 61, 44, 40, 52,  8, 11, 84, 30, 62, 48, 31, 54, 10, 12, 88,
          21, 64, 50, 32, 58)(  3, 17, 85, 29, 66, 43, 37, 55,  9, 16, 83, 27,
         65, 49, 36, 53,  7, 15, 89, 26, 63, 47, 35, 59,  6, 13, 87, 25, 69,
          46, 33, 57,  5, 19, 86, 23, 67, 45, 39, 56)( 71, 94, 80, 92, 78, 91,
         74,100, 72, 98)( 73, 97, 75, 99, 76, 93, 77, 95, 79, 96), 
      (  1, 66,100, 48, 82, 27, 15, 34, 59, 71, 63, 10, 46, 92, 28, 85, 37,
          19, 74, 53)(  2, 26, 95, 38, 89, 77, 13,  4, 56, 91, 68, 90, 47, 12,
         24, 55, 31, 69, 80, 43)(  3,  6, 96, 98, 88, 87, 17, 14, 54, 51, 61,
          70, 50, 42, 22, 25, 35, 39, 79, 73)(  5, 36, 99, 78, 83,  7, 16, 94,
         58, 81, 67, 20, 44, 52, 21, 65, 40, 49, 72, 23)(  8, 86, 97, 18, 84,
          57, 11, 64, 60, 41, 62, 30, 45, 32, 29, 75, 33,  9, 76, 93), 
      (  1, 19, 50,  4, 99, 43, 54, 92, 63, 56, 22, 67, 76, 21, 17, 80)
        (  2, 69, 46, 24, 97, 73, 51, 12, 70,  6, 29, 47, 74, 91, 13, 60)
        (  3, 59, 42, 64, 96, 23, 57, 72, 61, 16, 30,  7, 79, 41, 14,100)
        (  5, 39, 48, 84, 95, 33, 58, 82, 65, 36, 28, 87, 75, 31, 18, 90)
        (  8, 89, 45, 34, 98, 83, 55, 32, 68, 86, 25, 37, 78, 81, 15, 40)
        (  9, 49, 44, 94, 93, 53, 52, 62, 66, 26, 27, 77, 71, 11, 20, 10)
        ( 35, 38, 88, 85) ] ],
[37, Factorial(100)/2,1,"2",[[99,1]],98, "Alt(100)", ["A",100, 1], "Alt"],
[38, Factorial(100),0,"2",[[99, 1]],100, "Sym(100)", ["A",100, 1], "Sym"]];
PRIMGRP[101]:= 
[[ 1, 101, 3, "1", [ [ 1, 100 ] ], 1, "C(101)", [ "Z", 101, 1 ], [  ] ],
[ 2, 202, 2, "1", [ [ 2, 50 ] ], 1, "D(2*101)", [ "Z", 101, 1 ], 
  [ [ [ Z(101)^50 ] ] ] ],
[ 3, 404, 2, "1", [ [ 4, 25 ] ], 1, "101:4", [ "Z", 101, 1 ], 
  [ [ [ Z(101)^25 ] ] ] ],
[ 4, 505, 2, "1", [ [ 5, 20 ] ], 1, "101:5", [ "Z", 101, 1 ], 
  [ [ [ Z(101)^20 ] ] ] ],
[ 5, 1010, 2, "1", [ [ 10, 10 ] ], 1, "101:10", [ "Z", 101, 1 ], 
  [ [ [ Z(101)^10 ] ] ] ],
[ 6, 2020, 2, "1", [ [ 20, 5 ] ], 1, "101:20", [ "Z", 101, 1 ], 
  [ [ [ Z(101)^5 ] ] ] ],
[ 7, 2525, 2, "1", [ [ 25, 4 ] ], 1, "101:25", [ "Z", 101, 1 ], 
  [ [ [ Z(101)^4 ] ] ] ],
[ 8, 5050, 2, "1", [ [ 50, 2 ] ], 1, "101:50", [ "Z", 101, 1 ], 
  [ [ [ Z(101)^2 ] ] ] ],
[ 9, 10100, 2, "1", [ [ 100, 1 ] ], 2, "AGL(1, 101)", [ "Z", 101, 1 ], 
  [ [ [ Z(101) ] ] ] ],
[10, Factorial(101)/2,1,"2",[[100,1]],99, "Alt(101)", ["A",101, 1], "Alt"],
[11, Factorial(101),0,"2",[[100, 1]],101, "Sym(101)", ["A",101, 1], "Sym"]];
PRIMGRP[102]:= 
[[ 1, 2448, 1, "2", [ [ 12, 1 ], [ 24, 3 ], [ 3, 1 ], [ 6, 1 ], [ 8, 1 ] ], 1, 
  "PSL(2, 17)", [ "L", [ 2, 17 ], 1 ], 
  [ (  1,  2,  4,  8, 14, 24, 40, 59)(  3,  6, 11, 19, 31, 50, 68, 77)
        (  5,  9, 16, 12, 21, 35,  7, 13)( 10, 18, 28, 44, 63, 83, 94, 47)
        ( 15, 26, 41, 61, 80, 32, 51, 69)( 17, 29, 46, 66, 84, 81, 93, 95)
        ( 20, 33, 53, 60, 49, 67, 78, 25)( 22, 37, 56, 36, 45, 65, 85, 54)
        ( 23, 38, 57, 75, 70, 89, 27, 43)( 30, 48, 64, 74, 52, 39, 58, 34)
        ( 42, 55, 73, 62, 82, 92, 99, 76)( 71, 90, 86, 96)( 72, 87)
        ( 79, 91, 88, 97, 98,101,102,100), 
      (  1,  3,  7)(  2,  5, 10)(  4,  9, 17)(  6, 12, 22)(  8, 15, 27)
        ( 11, 20, 34)( 13, 23, 39)( 14, 25, 38)( 16, 28, 45)( 18, 30, 49)
        ( 19, 32, 52)( 21, 36, 31)( 24, 41, 62)( 26, 42, 37)( 29, 47, 43)
        ( 33, 54, 72)( 35, 55, 74)( 40, 60, 79)( 44, 64, 80)( 46, 66, 86)
        ( 48, 61, 81)( 50, 68, 87)( 51, 70, 56)( 53, 71, 85)( 57, 76, 91)
        ( 58, 77, 67)( 59, 78, 92)( 63, 84, 73)( 65, 69, 88)( 75, 90, 98)
        ( 83, 95, 97)( 93, 94,100)( 96, 99,102) ] ],
[ 2, 515100, 1, "2", [ [ 101, 1 ] ], 2, "PSL(2, 101)", [ "L", [ 2, 101 ], 1 ],
  [ (  3, 20, 72, 12, 49, 46, 71, 17, 74, 84, 38, 52, 54, 77, 95, 29, 42, 61,
          89, 48, 75, 14, 60, 26, 70, 55, 23,100, 32, 24, 13, 37, 11, 96,101,
          80, 41,  6, 36, 83, 43, 27, 87, 65, 47, 19, 98, 39, 97, 15)
        (  4,  9, 94, 68, 92, 81, 73,  5, 82, 50, 35, 79, 45, 91, 30, 57, 16,
          44, 63, 76, 10, 28, 51, 53, 67, 21, 31, 88, 34, 59, 56, 93, 33, 85,
         102, 90,  8, 66,  7, 86, 58, 40, 18, 78, 62, 22, 69, 99, 64, 25), 
      (  1, 21,  2)(  3, 18, 77)(  4, 12, 72)(  5, 79, 33)(  6, 40,100)
        (  7, 35, 94)(  8, 91,  9)( 10, 85, 99)( 11, 51, 20)( 13, 27,102)
        ( 14, 36, 69)( 15, 52, 22)( 16, 95, 55)( 17, 96, 57)( 19, 28, 83)
        ( 23, 62, 80)( 24, 75, 73)( 25, 66, 30)( 26, 49, 34)( 29, 84, 93)
        ( 31, 41, 65)( 32, 50, 89)( 37, 88, 39)( 38, 42, 59)( 43, 76, 98)
        ( 44, 56, 68)( 45, 64, 58)( 46, 87, 82)( 47, 71, 81)( 48, 67, 54)
        ( 53, 70, 74)( 60, 97, 90)( 61,101, 92)( 63, 86, 78) ] ],
[ 3, 1030200, 0, "2", [ [ 101, 1 ] ], 3, "PGL(2, 101)", 
  [ "L", [ 2, 101 ], 1 ], 
  [ (  3, 53, 20, 67, 72, 21, 12, 31, 49, 88, 46, 34, 71, 59, 17, 56, 74, 93,
          84, 33, 38, 85, 52,102, 54, 90, 77,  8, 95, 66, 29,  7, 42, 86, 61,
          58, 89, 40, 48, 18, 75, 78, 14, 62, 60, 22, 26, 69, 70, 99, 55, 64,
          23, 25,100,  4, 32,  9, 24, 94, 13, 68, 37, 92, 11, 81, 96, 73,101,
           5, 80, 82, 41, 50,  6, 35, 36, 79, 83, 45, 43, 91, 27, 30, 87, 57,
          65, 16, 47, 44, 19, 63, 98, 76, 39, 10, 97, 28, 15, 51), 
      (  1, 21,  2)(  3, 18, 77)(  4, 12, 72)(  5, 79, 33)(  6, 40,100)
        (  7, 35, 94)(  8, 91,  9)( 10, 85, 99)( 11, 51, 20)( 13, 27,102)
        ( 14, 36, 69)( 15, 52, 22)( 16, 95, 55)( 17, 96, 57)( 19, 28, 83)
        ( 23, 62, 80)( 24, 75, 73)( 25, 66, 30)( 26, 49, 34)( 29, 84, 93)
        ( 31, 41, 65)( 32, 50, 89)( 37, 88, 39)( 38, 42, 59)( 43, 76, 98)
        ( 44, 56, 68)( 45, 64, 58)( 46, 87, 82)( 47, 71, 81)( 48, 67, 54)
        ( 53, 70, 74)( 60, 97, 90)( 61,101, 92)( 63, 86, 78) ] ],
[4, Factorial(102)/2,1,"2",[[101,1]],100, "Alt(102)", ["A",102, 1], "Alt"],
[5, Factorial(102),0,"2",[[101, 1]],102, "Sym(102)", ["A",102, 1], "Sym"]];
PRIMGRP[103]:= 
[[ 1, 103, 3, "1", [ [ 1, 102 ] ], 1, "C(103)", [ "Z", 103, 1 ], [  ] ],
[ 2, 206, 2, "1", [ [ 2, 51 ] ], 1, "D(2*103)", [ "Z", 103, 1 ], 
  [ [ [ Z(103)^51 ] ] ] ],
[ 3, 309, 2, "1", [ [ 3, 34 ] ], 1, "103:3", [ "Z", 103, 1 ], 
  [ [ [ Z(103)^34 ] ] ] ],
[ 4, 618, 2, "1", [ [ 6, 17 ] ], 1, "103:6", [ "Z", 103, 1 ], 
  [ [ [ Z(103)^17 ] ] ] ],
[ 5, 1751, 2, "1", [ [ 17, 6 ] ], 1, "103:17", [ "Z", 103, 1 ], 
  [ [ [ Z(103)^6 ] ] ] ],
[ 6, 3502, 2, "1", [ [ 34, 3 ] ], 1, "103:34", [ "Z", 103, 1 ], 
  [ [ [ Z(103)^3 ] ] ] ],
[ 7, 5253, 2, "1", [ [ 51, 2 ] ], 1, "103:51", [ "Z", 103, 1 ], 
  [ [ [ Z(103)^2 ] ] ] ],
[ 8, 10506, 2, "1", [ [ 102, 1 ] ], 2, "AGL(1, 103)", [ "Z", 103, 1 ], 
  [ [ [ Z(103) ] ] ] ],
[9, Factorial(103)/2,1,"2",[[102,1]],101, "Alt(103)", ["A",103, 1], "Alt"],
[10, Factorial(103),0,"2",[[102, 1]],103, "Sym(103)", ["A",103, 1], "Sym"]];
PRIMGRP[104]:= 
[[ 1, 546312, 1, "2", [ [ 103, 1 ] ], 2, "PSL(2, 103)", [ "L", [ 2, 103 ], 1 ],
  "psl" ],
[ 2, 1092624, 0, "2", [ [ 103, 1 ] ], 3, "PGL(2, 103)", 
  [ "L", [ 2, 103 ], 1 ], "pgl" ],
[3, Factorial(104)/2,1,"2",[[103,1]],102, "Alt(104)", ["A",104, 1], "Alt"],
[4, Factorial(104),0,"2",[[103, 1]],104, "Sym(104)", ["A",104, 1], "Sym"]];
PRIMGRP[105]:= 
[[ 1, 40320, 0, "2", [ [ 8, 1 ], [ 64, 1 ], [ 32, 1 ] ], 1, "PSL(3, 4).2", 
  [ "L", [ 3, 4 ], 1 ], 
  [ (  1, 76)(  2, 84)(  3, 62)(  4, 13)(  5, 17)(  6, 78)(  7, 64)(  8, 67)
        (  9, 97)( 10, 37)( 11,103)( 12, 63)( 14, 33)( 15, 59)( 16, 81)
        ( 18, 94)( 20, 25)( 21, 61)( 22, 68)( 23, 49)( 24, 60)( 27, 66)
        ( 28, 34)( 29, 41)( 30, 50)( 31, 83)( 32, 52)( 35, 75)( 36,105)
        ( 38, 53)( 39, 56)( 40, 57)( 42, 89)( 43, 96)( 44, 47)( 45, 69)
        ( 46, 80)( 48, 91)( 51,100)( 54, 58)( 55, 82)( 70, 79)( 71, 98)
        ( 72, 93)( 73, 86)( 74, 92)( 77, 95)( 85, 88)( 87,104)( 90,101), 
      (  1, 10)(  2,  5)(  3, 83, 90, 66)(  4,  6, 22, 34)(  7, 81, 89, 61)
        (  8, 33, 48, 35)(  9,105, 17,101)( 12, 39, 60, 75)( 13, 95, 67, 93)
        ( 14, 36, 73, 84)( 15, 74, 76, 58)( 16, 99, 52, 79)( 18, 62, 53, 69)
        ( 19, 59, 41, 32)( 20, 65, 43, 71)( 21, 91)( 23, 96, 56, 70)
        ( 24, 25, 30, 29)( 26, 28, 92, 47)( 27, 45)( 31, 80, 51, 40)
        ( 37, 38, 68, 63)( 42, 98, 54,103)( 44,100, 55, 97)( 46, 82,104, 85)
        ( 49, 88, 94, 72)( 50, 78, 86, 87)( 57, 64, 77,102) ] ],
[ 2, 40320, 0, "2", [ [ 8, 1 ], [ 64, 1 ], [ 32, 1 ] ], 1, "PSL(3, 4).2", 
  [ "L", [ 3, 4 ], 1 ], 
  [ (  1, 57, 68, 22, 35, 27, 98, 71)(  2, 88, 37,  4,  7, 21, 62, 31)
        (  3, 11, 81, 67, 10, 18, 91,  8)(  5, 60, 13, 48, 42, 45, 83, 16)
        (  6, 96,  9, 97)( 12, 86, 44, 41, 87, 73, 54, 53)( 14, 23, 80, 40,
          28, 50, 52, 66)( 15,105, 33, 77, 36, 59, 34, 70)( 17,100, 39, 63,
          89, 72, 92,104)( 20, 85, 47, 74, 90, 61, 58, 56)( 24, 29, 84, 65,
          69, 38, 64, 99)( 25, 26, 51,103,101,102, 93, 94)( 30, 79, 76, 32,
          49, 95, 75, 46)( 43, 78, 55, 82), (  1, 32, 15, 20, 10, 55, 87, 83)
        (  2, 50, 73, 93, 11, 23, 39, 80)(  3, 51, 12, 76, 71, 79, 77, 75)
        (  4,  9, 41,  8,  6,100, 98, 34)(  5, 46, 47, 99)(  7, 52, 92, 84,
         105, 95, 27, 64)( 13, 86,103, 97, 40, 57, 89, 42)( 14, 67,104, 61,
          78, 16, 88, 53)( 17, 22, 43, 70, 62, 35, 65, 36)( 18, 90, 58, 37,
          59, 66, 96, 94)( 19, 85, 81, 33,101, 68, 44, 48)( 21, 45,102, 49,
          30, 26, 74, 63)( 24, 60, 54, 38, 91, 56, 69, 82)( 28, 31, 29, 72) ] 
 ],
[ 3, 80640, 0, "2", [ [ 8, 1 ], [ 64, 1 ], [ 32, 1 ] ], 1, "PSL(3, 4).2^2", 
  [ "L", [ 3, 4 ], 1 ], 
  [ (  1,105)(  2, 59)(  3, 21)(  5, 97)(  6, 73)(  7, 95)(  9, 15)( 10, 22)
        ( 11, 71)( 16, 45)( 17, 84)( 18, 93)( 19, 47)( 20, 60)( 23, 85)
        ( 24, 56)( 25, 96)( 26, 44)( 27, 31)( 28, 78)( 29, 82)( 30,104)
        ( 32,100)( 33, 54)( 34, 74)( 35, 63)( 38, 42)( 39, 43)( 40,102)
        ( 41, 50)( 46, 70)( 49, 79)( 51, 52)( 55, 87)( 57, 99)( 64, 94)
        ( 66, 69)( 67, 91)( 72, 77)( 80, 88)( 81, 83)( 86, 92), 
      (  1, 28, 15, 41, 96, 91)(  2, 29, 73, 85, 57, 21)(  3, 42, 58, 86, 59,
          71)(  4, 72,102)(  5, 47, 87, 70, 27, 11)(  6, 76,  9, 17, 19, 37)
        (  7,101, 12, 56, 22, 31)(  8, 99, 49, 65, 53, 64)( 10, 25, 39,100,
          77, 45)( 13, 33, 75, 98, 20, 82)( 14, 36, 44, 97, 67, 35)
        ( 16, 18, 38, 92,104,105)( 23, 48, 46, 69, 32, 61)( 24, 88, 63)
        ( 26, 79, 74, 40, 60, 95)( 30, 51, 54, 94, 81, 93)( 34, 78, 68)
        ( 43, 84)( 50, 66)( 52, 90, 89, 62, 83, 80)( 55,103) ] ],
[ 4, 120960, 0, "2", [ [ 8, 1 ], [ 64, 1 ], [ 32, 1 ] ], 1, 
  "PSL(3, 4).Sym(3)", [ "L", [ 3, 4 ], 1 ], 
  [ (  2, 33)(  3, 25)(  4, 17)(  5, 35)(  6, 11)(  7, 47)(  8, 44)(  9, 45)
        ( 10, 34)( 12, 94)( 13, 50)( 15,102)( 16, 72)( 18, 29)( 19, 21)
        ( 20, 22)( 23, 68)( 24, 53)( 26, 90)( 27, 43)( 28, 42)( 30, 54)
        ( 32, 37)( 36, 64)( 38, 78)( 40, 77)( 41, 48)( 46, 67)( 49, 73)
        ( 51, 60)( 52, 74)( 55, 91)( 56, 98)( 57, 79)( 58, 75)( 59, 83)
        ( 61, 85)( 62, 86)( 63, 82)( 65, 84)( 66, 70)( 69, 87)( 71, 99)
        ( 76,101)( 80,105)( 81,104)( 89, 92)( 93, 97)( 95, 96)(100,103), 
      (  1, 55, 45)(  2, 19, 64)(  3, 99, 38)(  4, 68, 44)(  5, 43,102)
        (  6, 23, 11)(  7, 25, 95)(  8, 36, 59)(  9, 56, 10)( 12,105, 81)
        ( 13, 17,100)( 14, 16, 80)( 15,104, 48)( 18, 72, 63)( 20,101, 67)
        ( 21, 35, 46)( 22, 98, 86)( 24, 82, 75)( 26, 96, 89)( 27, 33, 50)
        ( 28, 40, 49)( 29, 66, 39)( 30, 78, 94)( 31, 93, 42)( 32, 91, 34)
        ( 37, 41, 65)( 47, 79, 69)( 51,103, 87)( 52, 76, 85)( 53, 74, 57)
        ( 54, 60, 77)( 58, 71, 83)( 61, 73, 88)( 62, 92, 97)( 70, 90, 84) ] ],
[ 5, 120960, 0, "2", [ [ 8, 1 ], [ 64, 1 ], [ 32, 1 ] ], 1, "PSL(3, 4).6", 
  [ "L", [ 3, 4 ], 1 ], 
  [ (  1, 55)(  2, 46)(  3, 40)(  5, 50)(  7, 95)(  8, 65)(  9, 33)( 10, 32)
        ( 11, 23)( 13, 62)( 14,103)( 15, 54)( 17, 78)( 18, 79)( 19, 34)
        ( 20, 82)( 21,102)( 22,100)( 24, 31)( 25, 26)( 27, 56)( 28, 84)
        ( 29, 60)( 30, 99)( 35, 43)( 36, 53)( 37, 75)( 38, 69)( 39, 63)
        ( 41, 97)( 42, 66)( 44, 96)( 47, 74)( 48,101)( 49, 93)( 51, 81)
        ( 52, 83)( 57,104)( 58, 61)( 59, 70)( 64, 91)( 67, 94)( 68, 89)
        ( 71, 85)( 72, 92)( 77, 86)( 87,105)( 90, 98), 
      (  1, 65, 76)(  2, 32, 78)(  3,104, 61)(  4, 14,  5)(  6, 52, 84)
        (  7, 88, 66)(  8, 38, 47)(  9, 80, 74)( 10,101, 28)( 11,100, 75)
        ( 12, 31, 59)( 13, 17, 33)( 15, 83, 63)( 16, 56, 77)( 18, 79, 69)
        ( 19, 30, 50)( 20, 54, 68)( 21, 87, 62)( 22, 58, 25)( 23, 96, 24)
        ( 26, 55, 82)( 27, 85, 64)( 29, 48, 42)( 34, 90, 37)( 35, 51,103)
        ( 36, 99,105)( 39, 81, 95)( 40,102, 57)( 41, 89, 91)( 43, 49, 60)
        ( 44, 53, 67)( 45, 70, 94)( 46, 97, 92)( 71, 86, 72)( 73, 98, 93) ] ],
[ 6, 241920, 0, "2", [ [ 8, 1 ], [ 64, 1 ], [ 32, 1 ] ], 1, "PSL(3, 4).D_12", 
  [ "L", [ 3, 4 ], 1 ], 
  [ (  1,  9, 67, 72, 69, 30)(  2,  6, 68, 31, 61, 49)(  3, 12,  7, 92, 35, 36
         )(  4, 78, 21, 32, 76, 93)(  5, 43, 13, 25, 66, 52)(  8, 97, 27, 23,
          84, 20)( 10, 19, 91, 46,103, 80)( 11, 55, 37, 99, 48, 82)
        ( 14, 38,101)( 15, 16, 53, 39, 24, 33)( 17, 83, 22, 96, 45, 50)
        ( 18, 86)( 26, 34, 98, 71, 77,102)( 28, 95, 65)( 29, 79, 51)
        ( 40, 90, 47)( 41, 62,105, 70, 64, 74)( 42, 58)( 44, 81, 59, 57, 56,
          60)( 54, 87, 94)( 63,100, 75)( 73, 85, 89)( 88,104), 
      (  1, 16,  4, 18, 87, 83,102, 17, 89, 66)(  2, 71,101, 57, 15, 80, 56,
          76, 53, 43)(  3,100, 81, 39, 20, 64,103, 33, 40, 10)
        (  5, 31, 32, 60, 73, 93, 45, 37, 90, 79)(  6, 24, 22, 42, 70, 98, 49,
         44, 75, 61)(  7, 41, 62, 69, 34, 94, 48, 35, 85,  8)(  9, 30, 59, 14,
         77)( 11, 67, 65, 88, 47, 99, 23, 84, 54, 95)( 12, 19, 92, 97, 58, 96,
         36, 82, 86, 78)( 13, 51, 29, 25, 46, 50, 74, 63, 21, 91)
        ( 26,105, 38, 27, 68, 52,104, 28, 72, 55) ] ],
[ 7, 40320, 0, "2", [ [ 12, 2 ], [ 48, 1 ], [ 32, 1 ] ], 1, "Sym(8)", 
  [ "A", 8, 1 ], 
  [ (  1,  2,  4,  7, 11, 17, 24, 34)(  3,  6, 10, 15,  5,  9, 13, 21)
        (  8, 12, 19, 27, 38, 52, 68, 83)( 14, 22, 30, 43, 59, 75, 90, 49)
        ( 16, 23, 32, 45, 61, 76, 84, 74)( 18, 26, 36, 50, 25, 35, 48, 60)
        ( 20, 29, 41, 56)( 28, 40, 54, 71, 88, 93, 65, 80)( 31, 44)
        ( 33, 42, 58, 73)( 37, 51, 66, 39, 53, 70, 86, 96)( 46, 63, 78, 67,
          82, 57, 47, 64)( 55, 72, 89, 98,102, 87, 95,101)( 62, 77, 91, 97)
        ( 69, 85, 94, 79)( 81, 92)( 99,103,104,100), 
      (  1,  3)(  2,  5)(  4,  8)(  9, 14)( 10, 16)( 11, 18)( 12, 20)( 17, 25)
        ( 19, 28)( 21, 30)( 22, 31)( 23, 33)( 26, 37)( 27, 39)( 29, 42)
        ( 32, 46)( 34, 47)( 35, 49)( 40, 55)( 41, 57)( 43, 60)( 45, 62)
        ( 48, 65)( 50, 53)( 51, 67)( 52, 69)( 58, 74)( 63, 79)( 64, 80)
        ( 66, 81)( 68, 84)( 70, 87)( 71, 72)( 75, 77)( 76, 91)( 82, 88)
        ( 83, 93)( 85, 95)( 86, 97)( 89, 99)( 92,100)( 94, 98)( 96,102)
        (101,104)(103,105) ] ],
[ 8, 653837184000, 1, "2", [ [ 78, 1 ], [ 26, 1 ] ], 1, "Alt(15)", 
  [ "A", 15, 1 ], 
  [ (  1,  9,  4, 36, 66, 57, 64)(  2, 19, 89,102, 76, 65, 41)(  3, 24, 93,
          50, 92, 56,  6)(  5, 63, 46, 43, 98, 45, 20)(  7, 47, 26, 44, 69,
          53, 70)(  8, 33, 59, 58, 17, 90, 11)( 10,103, 84, 32, 82, 29, 95)
        ( 12, 55, 79, 77, 85, 67, 28)( 13, 51,105, 34, 72, 71, 97)
        ( 14, 68, 75, 60, 42, 87, 15)( 16, 80, 91, 74, 49, 83, 25)
        ( 18, 78, 40, 62, 52, 39, 37)( 21, 88,100, 35, 61, 99,104)
        ( 22, 73, 96, 48, 30,101, 81)( 23, 38, 54, 94, 27, 31, 86), 
      (  1,  5, 95, 13, 80, 94, 67, 46, 40, 43, 92, 88, 11, 89, 17)
        (  2, 29,  4, 23, 83, 14, 38, 77, 84, 44,105, 59, 28, 73, 41)
        (  3, 35, 49, 16, 78, 61, 33, 52, 58, 75, 54, 99, 76, 56,  6)
        (  7, 51, 22, 72,100, 81, 39, 25,103, 45, 30, 55, 97, 98, 91)
        (  8, 53, 36, 47, 37,102, 26, 86, 50, 32, 20,101, 48, 42,  9)
        ( 10, 68, 60, 65, 71, 15, 85, 64, 12, 87, 24, 27, 74,104, 31)
        ( 18, 66, 34, 90, 19, 63, 69, 57, 62, 70, 93, 21, 82, 96, 79) ] ],
[ 9, 1307674368000, 0, "2", [ [ 78, 1 ], [ 26, 1 ] ], 1, "Sym(15)", 
  [ "A", 15, 1 ], 
  [ (  1,  2,  3,  5,  7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57)
        (  4,  6,  8, 11, 14, 18, 22, 27, 32, 38, 44, 51, 58, 66, 65)
        (  9, 12, 15, 19, 23, 28, 33, 39, 45, 52, 59, 67, 74, 73, 81)
        ( 16, 20, 24, 29, 34, 40, 46, 53, 60, 68, 75, 83, 82, 89, 96)
        ( 25, 30, 35, 41, 47, 54, 61, 69, 76, 84, 91, 90, 97,101,104)
        ( 36, 42, 48, 55, 62, 70, 77, 85, 92, 80, 88, 95,100,103,105)
        ( 49, 56, 63, 71, 78, 86, 93, 98, 64, 72, 79, 87, 94, 99,102), 
      ( 2, 4)( 6, 9)(12,16)(20,25)(30,36)(42,49)(56,64)(57,65)(66,73)(72,80)
        (74,82)(83,90)(88,91) ] ],
[10, Factorial(105)/2,1,"2",[[104,1]],103, "Alt(105)", ["A",105, 1], "Alt"],
[11, Factorial(105),0,"2",[[104, 1]],105, "Sym(105)", ["A",105, 1], "Sym"]];
PRIMGRP[106]:= 
[[1, Factorial(106)/2,1,"2",[[105,1]],104, "Alt(106)", ["A",106, 1], "Alt"],
[2, Factorial(106),0,"2",[[105, 1]],106, "Sym(106)", ["A",106, 1], "Sym"]];
PRIMGRP[107]:= 
[[ 1, 107, 3, "1", [ [ 1, 106 ] ], 1, "C(107)", [ "Z", 107, 1 ], [  ] ],
[ 2, 214, 2, "1", [ [ 2, 53 ] ], 1, "D(2*107)", [ "Z", 107, 1 ], 
  [ [ [ Z(107)^53 ] ] ] ],
[ 3, 5671, 2, "1", [ [ 53, 2 ] ], 1, "107:53", [ "Z", 107, 1 ], 
  [ [ [ Z(107)^2 ] ] ] ],
[ 4, 11342, 2, "1", [ [ 106, 1 ] ], 2, "AGL(1, 107)", [ "Z", 107, 1 ], 
  [ [ [ Z(107) ] ] ] ],
[5, Factorial(107)/2,1,"2",[[106,1]],105, "Alt(107)", ["A",107, 1], "Alt"],
[6, Factorial(107),0,"2",[[106, 1]],107, "Sym(107)", ["A",107, 1], "Sym"]];
PRIMGRP[108]:= 
[[ 1, 612468, 1, "2", [ [ 107, 1 ] ], 2, "PSL(2, 107)", [ "L", [ 2, 107 ], 1 ],
  "psl" ],
[ 2, 1224936, 0, "2", [ [ 107, 1 ] ], 3, "PGL(2, 107)", 
  [ "L", [ 2, 107 ], 1 ], "pgl" ],
[3, Factorial(108)/2,1,"2",[[107,1]],106, "Alt(108)", ["A",108, 1], "Alt"],
[4, Factorial(108),0,"2",[[107, 1]],108, "Sym(108)", ["A",108, 1], "Sym"]];
PRIMGRP[109]:= 
[[ 1, 109, 3, "1", [ [ 1, 108 ] ], 1, "C(109)", [ "Z", 109, 1 ], [  ] ],
[ 2, 218, 2, "1", [ [ 2, 54 ] ], 1, "D(2*109)", [ "Z", 109, 1 ], 
  [ [ [ Z(109)^54 ] ] ] ],
[ 3, 327, 2, "1", [ [ 3, 36 ] ], 1, "109:3", [ "Z", 109, 1 ], 
  [ [ [ Z(109)^36 ] ] ] ],
[ 4, 436, 2, "1", [ [ 4, 27 ] ], 1, "109:4", [ "Z", 109, 1 ], 
  [ [ [ Z(109)^27 ] ] ] ],
[ 5, 654, 2, "1", [ [ 6, 18 ] ], 1, "109:6", [ "Z", 109, 1 ], 
  [ [ [ Z(109)^18 ] ] ] ],
[ 6, 981, 2, "1", [ [ 9, 12 ] ], 1, "109:9", [ "Z", 109, 1 ], 
  [ [ [ Z(109)^12 ] ] ] ],
[ 7, 1308, 2, "1", [ [ 12, 9 ] ], 1, "109:12", [ "Z", 109, 1 ], 
  [ [ [ Z(109)^9 ] ] ] ],
[ 8, 1962, 2, "1", [ [ 18, 6 ] ], 1, "109:18", [ "Z", 109, 1 ], 
  [ [ [ Z(109)^6 ] ] ] ],
[ 9, 2943, 2, "1", [ [ 27, 4 ] ], 1, "109:27", [ "Z", 109, 1 ], 
  [ [ [ Z(109)^4 ] ] ] ],
[ 10, 3924, 2, "1", [ [ 36, 3 ] ], 1, "109:36", [ "Z", 109, 1 ], 
  [ [ [ Z(109)^3 ] ] ] ],
[ 11, 5886, 2, "1", [ [ 54, 2 ] ], 1, "109:54", [ "Z", 109, 1 ], 
  [ [ [ Z(109)^2 ] ] ] ],
[ 12, 11772, 2, "1", [ [ 108, 1 ] ], 2, "AGL(1, 109)", [ "Z", 109, 1 ], 
  [ [ [ Z(109) ] ] ] ],
[13, Factorial(109)/2,1,"2",[[108,1]],107, "Alt(109)", ["A",109, 1], "Alt"],
[14, Factorial(109),0,"2",[[108, 1]],109, "Sym(109)", ["A",109, 1], "Sym"]];
PRIMGRP[110]:= 
[[ 1, 647460, 1, "2", [ [ 109, 1 ] ], 2, "PSL(2, 109)", [ "L", [ 2, 109 ], 1 ],
  "psl" ],
[ 2, 1294920, 0, "2", [ [ 109, 1 ] ], 3, "PGL(2, 109)", 
  [ "L", [ 2, 109 ], 1 ], "pgl" ],
[3, Factorial(110)/2,1,"2",[[109,1]],108, "Alt(110)", ["A",110, 1], "Alt"],
[4, Factorial(110),0,"2",[[109, 1]],110, "Sym(110)", ["A",110, 1], "Sym"]];
PRIMGRP[111]:= 
[[1, Factorial(111)/2,1,"2",[[110,1]],109, "Alt(111)", ["A",111, 1], "Alt"],
[2, Factorial(111),0,"2",[[110, 1]],111, "Sym(111)", ["A",111, 1], "Sym"]];
PRIMGRP[112]:= 
[[ 1, 3265920, 1, "2", [ [ 81, 1 ], [ 30, 1 ] ], 1, "PSU(4, 3)", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 19, 42, 86, 66, 61, 56)(  2,  3, 83,  9, 99, 39, 27)
        (  4, 67,102, 30, 76, 41,101)(  5, 92, 58, 64, 95, 94, 69)
        (  6, 45, 34, 75, 47, 87, 28)(  7, 48, 29, 13, 33, 22, 80)
        (  8, 32, 44, 81, 60, 23, 46)( 10, 36, 68, 65,105, 93, 14)
        ( 11, 84, 52, 78,107, 54, 18)( 12, 21, 63, 35, 82, 16, 20)
        ( 15, 31, 59,108,112, 24, 79)( 17, 88,110,111, 25, 96, 57)
        ( 26, 43, 40,109, 55,106, 38)( 37, 53, 51, 89, 62, 73, 70)
        ( 49, 72, 97,103, 91, 50,104)( 71,100, 74, 98, 90, 77, 85), 
      (  1, 40, 37, 15, 69, 59, 82)(  2, 68, 47, 11, 67,  6,101)
        (  3, 12,109, 66,106, 38, 64)(  4, 60, 27,  8, 56, 81, 46)
        (  5, 92, 14,110, 75, 43,107)(  7, 31, 70, 39, 80, 89, 65)
        (  9, 18, 44, 76, 55, 51, 25)( 10, 41, 36, 95, 23, 98, 94)
        ( 13, 97, 42, 88, 74,104,108)( 16,103, 19, 20, 54, 85, 63)
        ( 17, 93, 21, 33, 22, 79, 91)( 24, 90, 96, 26,111,112, 32)
        ( 28, 71, 29,105, 86, 45, 35)( 30, 34, 62, 99, 58,100, 48)
        ( 49, 78, 53, 77, 72,102, 57)( 50, 84, 52, 73, 83, 61, 87) ] ],
[ 2, 6531840, 0, "2", [ [ 81, 1 ], [ 30, 1 ] ], 1, "PSU(4, 3).2", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 47, 65, 96,104, 86, 70, 37, 95, 36, 84, 38)(  2, 16, 41, 11, 15, 94,
         39, 55, 78, 62, 23, 13)(  3,100,  8, 75, 29,109, 14, 28, 44,  4, 50,
         103)(  5,  6,  9, 59)(  7, 74, 34)( 10, 31, 24, 45, 79,111)
        ( 12, 57, 30, 80,106, 97,101, 82,108, 83, 99,107)( 17, 64, 19, 66, 72,
         76, 26, 49, 89, 91, 90, 85)( 18, 92, 40, 81, 98, 33, 63, 88, 77, 51,
          46, 25)( 20, 32, 43, 68)( 21, 48, 61, 22,102,110)( 27, 42, 58, 54,
          93, 60, 71, 87, 56,112, 52, 67)( 35,105, 53, 73), 
      (  1, 49, 73,100, 56, 98, 51, 68, 80, 64)(  2, 92, 39, 91, 33, 48, 85,
          61, 93, 66)(  3,  5, 44, 78,  7, 72, 53, 17, 22, 67)
        (  4,109,108,104, 58,107, 82, 81, 77, 30)(  6, 47,  9, 55, 19)
        (  8, 14, 36, 35, 96)( 10, 15, 25, 27, 52, 42,110,106, 76, 99)
        ( 11, 65, 37, 26, 43)( 12, 88)( 13, 57, 40,105, 69)( 16, 63, 62, 50,
          90)( 18, 89, 41, 60, 59, 95, 29,102, 79, 20)( 21, 71, 34, 74,112,
          23,101, 87, 54, 24)( 28, 46, 32, 31, 45)( 38,111, 83, 84, 97)
        ( 70, 75, 86, 94,103) ] ],
[ 3, 6531840, 0, "2", [ [ 81, 1 ], [ 30, 1 ] ], 1, "PSU(4, 3).2", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 57, 96, 65, 29, 13)(  2, 24, 85, 67, 40,  6, 83, 94, 18,100, 20, 66)
        (  3, 52,108,111, 95,107, 90, 28, 38, 15,  7, 35)(  4, 50, 82, 59, 99,
         112, 41, 69,110, 27, 58, 53)(  5, 80, 17, 62, 70, 43, 75, 25, 92, 76,
         61, 51)(  8, 73, 14, 97, 93, 88, 56, 16, 42, 54, 60, 84)
        (  9, 89, 86, 21, 71,101, 78, 45, 98, 32, 91, 79)( 10, 64, 31, 23, 22,
         47)( 11, 87, 39, 48, 81, 55, 63, 72, 33, 49, 77,103)( 12, 74)
        ( 19, 68)( 26,109, 44, 36, 34, 30,104,105,106,102, 37, 46), 
      (  1, 31, 85, 63,  4, 82, 97, 99)(  2, 59, 76, 96,107, 74, 98, 50)
        (  3, 83, 15, 33, 71, 51, 60, 68)(  5, 20, 34, 23, 90, 67, 94, 29)
        (  6, 19, 11,  9, 78, 87, 53, 61)(  7, 32, 65, 75,106, 28, 55, 45)
        (  8, 77, 44, 49, 17, 10, 35, 13)( 12,109,111, 69, 57, 46, 52, 81)
        ( 14, 38,110, 72)( 16, 64,101, 42)( 18, 80, 73, 66)( 21, 40, 36, 24,
          30, 86, 43, 89)( 22, 27,103, 92, 47, 48, 39, 62)( 25, 84,112, 88,
          54,108, 58, 26)( 37,105, 56, 95, 91, 93,100,102)( 41, 70,104, 79) ] 
 ],
[ 4, 6531840, 0, "2", [ [ 81, 1 ], [ 30, 1 ] ], 1, "PSU(4, 3).2", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1,111,  6, 77, 14, 45)(  2, 25, 52, 64, 26, 20)(  3, 56, 44,101, 34, 69
         )(  4, 66, 15, 23, 11, 83)(  5, 88, 48, 32, 16, 68)(  7, 40)
        (  8, 84, 19, 12, 70, 85)(  9, 79, 35,100, 60, 82)( 10, 37, 46, 55,
         110, 67)( 13, 91, 43,105, 49, 18)( 17, 62, 38, 63, 39,109)
        ( 21, 76, 89, 81, 59, 31)( 22, 58, 71,104, 27, 51)( 24,102, 61, 57,
          78, 28)( 29, 80,112, 65, 86, 96)( 30, 75, 90, 99, 94, 95)
        ( 33, 54, 72, 50,108, 93)( 36, 87, 42,106, 73,103)( 41, 98)
        ( 47, 97, 74, 92, 53,107), 
      (  1, 56, 53,  9, 36,  4, 58)(  2, 26, 96, 11, 49,111,105)
        (  3, 87, 47, 66, 97, 39, 86)(  5, 85,104, 94,  6, 75,102)
        (  7, 42, 90,103, 73, 13, 54)(  8, 80, 29, 24, 65, 83, 46)
        ( 10, 17, 71, 45, 98, 55, 62)( 12, 38, 44, 27,107, 16,109)
        ( 14, 91, 95, 32,110, 21, 84)( 15, 34, 51, 74, 22, 28,112)
        ( 18,100, 43, 64,101, 48, 72)( 19, 92, 78, 68, 52, 81, 50)
        ( 20, 67, 63, 88, 25, 31,108)( 23, 41, 76, 57, 59, 77, 93)
        ( 30, 70, 99, 37, 79, 60, 40)( 33, 82, 35, 89, 69,106, 61) ] ],
[ 5, 13063680, 0, "2", [ [ 81, 1 ], [ 30, 1 ] ], 1, "PSU(4, 3).2^2", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1,  4, 84, 56, 32, 11, 29, 33, 18, 14, 70, 64, 96, 23, 61, 60, 36, 99)
        (  2, 39, 10,101, 98, 25, 17, 72, 55,  5, 35, 86, 97, 57, 58, 46, 85,
         102)(  3, 75,105, 38, 40, 92, 95, 16, 89)(  6, 37, 21, 87,108,103,
          88, 44, 66, 41,  7, 13, 80,104,107, 31, 90, 63)(  8, 24, 71, 74,109,
         15, 42, 73, 28, 12, 51, 45, 93, 76, 20, 19, 78, 67)(  9, 62, 53, 83,
          30, 69,111, 91, 59)( 22, 48, 34, 82, 77,106, 49, 65, 26)
        ( 43, 47, 52, 54, 81, 94,100,110, 79)( 50,112, 68), 
      (  1, 75,105,108, 23,  8, 72, 58, 69, 91)(  2, 83, 67, 61, 86, 87, 50,
          42,  7, 37)(  3,102, 12, 63, 16, 33, 68, 30, 92, 15)
        (  4, 93, 32, 21, 78,110, 40, 17, 90, 85)(  5, 34,100, 38, 19)
        (  6, 97, 84,106, 26, 22, 52,107, 31, 24)(  9, 39, 10, 11, 60)
        ( 13,101, 88, 44, 66, 54, 45, 57, 27, 55)( 14, 95,109, 70, 98, 77, 71,
         74, 56, 81)( 18, 41, 73, 82, 20, 43, 36, 65, 46, 51)( 25, 49,103, 64,
         94,104, 96, 59,112, 76)( 28, 80, 48, 53, 62, 35, 29, 79, 89, 47) ] ],
[ 6, 13063680, 0, "2", [ [ 81, 1 ], [ 30, 1 ] ], 1, "PSU(4, 3).4", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 85, 69, 54, 96, 67, 35, 78, 48, 73, 45, 51, 56, 77, 79,  8,  5, 60,
          52,  4, 93, 84,107, 20, 23, 61, 43, 66)(  2, 40, 98, 15, 95, 89,112,
         64, 57, 65, 14,  9,108, 68,106,  6, 42, 33, 81,103, 50, 36, 37, 21,
         100, 30,102, 27)(  3, 75, 80,101, 87, 53, 62, 83, 39,104, 28, 12, 76,
         38,110, 88, 16, 59, 49, 46,111, 91, 44, 72, 24, 55, 71, 47)
        (  7, 34, 10, 82,105, 11, 29, 13, 32, 31, 58, 90, 26,109, 25, 17, 74,
          41, 63, 70, 94, 92, 99, 22, 19, 86, 97, 18), 
      (  1, 16, 61, 44, 24, 74, 70, 35, 94, 14, 13, 59, 22, 41)
        (  2, 43, 90, 27,109, 55, 47, 30, 38, 23, 72,  3,  4,105)
        (  5,  6, 89, 15, 91, 99, 46,106,107,108,112, 78, 34, 21)
        (  7, 68, 50, 51, 88, 56, 63, 97, 93, 83,110, 19, 36, 64)
        (  8,  9, 71, 54, 48, 58, 20, 42,111, 37, 73, 25, 53, 49)
        ( 10,104, 76, 62, 85, 18, 28, 31, 79, 92, 69, 82,100,101)
        ( 11, 77, 26, 66, 65, 80, 57, 98, 29, 40, 96, 75, 52, 39)
        ( 12, 32, 95, 33, 60,103, 67, 86, 17, 87, 84, 81,102, 45) ] ],
[ 7, 13063680, 0, "2", [ [ 81, 1 ], [ 30, 1 ] ], 1, "PSU(4, 3).2^2", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 52, 28,  7, 75, 47, 95, 74)(  2,100, 91, 71, 41, 60, 26, 86)
        (  3, 33, 29, 56, 70, 45, 65, 27)(  4, 18, 36, 53,112, 98, 58,105)
        (  6, 34, 37, 66)(  8, 13, 39, 76, 87, 22, 78, 90)(  9, 19, 72, 61,
          59, 64, 89, 62)( 10, 79, 23, 94, 25, 88, 15, 21)( 11, 96, 24, 43,
         110, 38, 81, 68)( 12, 82, 51,101,107,106,111, 30)( 14, 97, 16,104,
          54, 83,102,103)( 17, 77, 35, 32)( 20, 40)( 31, 84, 80, 63, 92, 44,
         108, 46)( 42, 55, 49, 50,109, 48, 85, 67)( 69, 99, 73, 93), 
      (  1, 57, 71,104, 86,100, 66, 28, 47,  4)(  2, 63, 27, 53, 35, 59, 26,
          67, 78, 13)(  3, 38, 55, 88,  6, 10, 70, 32, 99, 11)
        (  5, 52, 49, 75, 83, 73, 42,  7, 60, 74)(  8,110, 72, 76, 33,107, 22,
         12, 44, 96)(  9, 37, 16, 41, 14, 21,108, 23, 62, 29)( 15, 50, 17, 64,
         98, 68, 45, 51, 80,106)( 18, 30, 94, 81, 31, 92, 87, 39, 46, 91)
        ( 19, 82, 61,102, 89, 93, 24,105, 43, 84)( 25,111, 77,101, 40, 56, 79,
         65, 90, 54)( 34,112,109, 95, 36)( 58, 85, 69,103, 97) ] ],
[ 8, 26127360, 0, "2", [ [ 81, 1 ], [ 30, 1 ] ], 1, "PSU(4, 3).D_8", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 44,  6, 59, 23, 66,106,103, 65,105,109, 99)(  2, 26, 43, 19, 17, 78,
         100, 82, 97, 80, 54, 41)(  3, 94,  9,102, 32, 79, 18, 25, 67, 52,108,
         86)(  4,107, 28, 12, 77, 89, 14, 49, 29,104, 40, 87)(  5, 63, 98, 60,
         101, 64, 35, 75, 46, 53, 85, 20)(  7,111, 61)(  8, 71, 70, 74, 73,
          56, 15, 22, 91, 16, 95, 31)( 11, 76, 88, 83, 69, 30, 34, 84, 13, 42,
         51, 90)( 21, 72, 48,112, 92, 39, 96, 68, 37, 57, 33, 50)
        ( 24, 47, 93,110, 62, 81)( 27, 58)( 36, 45, 38), 
      (  1, 14, 96,110, 68, 66)(  2, 87, 60)(  3, 44, 84, 40, 46, 51, 69, 12,
         107, 82, 33, 99, 27,108, 20, 92, 31, 45,106, 93,101, 65, 73, 70)
        (  4,112, 54, 36,109, 13, 24, 26, 77, 88, 32, 98, 18, 95,105, 78, 55,
           6, 71, 59, 94, 17, 85, 58)(  7, 34, 35,  9, 86, 89, 42, 38, 10, 79,
         28, 83, 37, 53, 67, 62, 61, 48, 19, 50, 11,100, 39, 47)
        (  8, 41, 23, 64, 43, 91,104, 25,102,103, 52, 22, 74, 21, 72, 15, 49,
          81, 90, 57, 76, 97, 16, 75)( 29, 80)( 30, 63, 56) ] ],
[9, Factorial(112)/2,1,"2",[[111,1]],110, "Alt(112)", ["A",112, 1], "Alt"],
[10, Factorial(112),0,"2",[[111, 1]],112, "Sym(112)", ["A",112, 1], "Sym"]];
PRIMGRP[113]:= 
[[ 1, 113, 3, "1", [ [ 1, 112 ] ], 1, "C(113)", [ "Z", 113, 1 ], [  ] ],
[ 2, 226, 2, "1", [ [ 2, 56 ] ], 1, "D(2*113)", [ "Z", 113, 1 ], 
  [ [ [ Z(113)^56 ] ] ] ],
[ 3, 452, 2, "1", [ [ 4, 28 ] ], 1, "113:4", [ "Z", 113, 1 ], 
  [ [ [ Z(113)^28 ] ] ] ],
[ 4, 791, 2, "1", [ [ 7, 16 ] ], 1, "113:7", [ "Z", 113, 1 ], 
  [ [ [ Z(113)^16 ] ] ] ],
[ 5, 904, 2, "1", [ [ 8, 14 ] ], 1, "113:8", [ "Z", 113, 1 ], 
  [ [ [ Z(113)^14 ] ] ] ],
[ 6, 1582, 2, "1", [ [ 14, 8 ] ], 1, "113:14", [ "Z", 113, 1 ], 
  [ [ [ Z(113)^8 ] ] ] ],
[ 7, 1808, 2, "1", [ [ 16, 7 ] ], 1, "113:16", [ "Z", 113, 1 ], 
  [ [ [ Z(113)^7 ] ] ] ],
[ 8, 3164, 2, "1", [ [ 28, 4 ] ], 1, "113:28", [ "Z", 113, 1 ], 
  [ [ [ Z(113)^4 ] ] ] ],
[ 9, 6328, 2, "1", [ [ 56, 2 ] ], 1, "113:56", [ "Z", 113, 1 ], 
  [ [ [ Z(113)^2 ] ] ] ],
[ 10, 12656, 2, "1", [ [ 112, 1 ] ], 2, "AGL(1, 113)", [ "Z", 113, 1 ], 
  [ [ [ Z(113) ] ] ] ],
[11, Factorial(113)/2,1,"2",[[112,1]],111, "Alt(113)", ["A",113, 1], "Alt"],
[12, Factorial(113),0,"2",[[112, 1]],113, "Sym(113)", ["A",113, 1], "Sym"]];
PRIMGRP[114]:= 
[[ 1, 721392, 1, "2", [ [ 113, 1 ] ], 2, "PSL(2, 113)", [ "L", [ 2, 113 ], 1 ],
  "psl" ],
[ 2, 1442784, 0, "2", [ [ 113, 1 ] ], 3, "PGL(2, 113)", 
  [ "L", [ 2, 113 ], 1 ], "pgl" ],
[3, Factorial(114)/2,1,"2",[[113,1]],112, "Alt(114)", ["A",114, 1], "Alt"],
[4, Factorial(114),0,"2",[[113, 1]],114, "Sym(114)", ["A",114, 1], "Sym"]];
PRIMGRP[115]:= 
[[1, Factorial(115)/2,1,"2",[[114,1]],113, "Alt(115)", ["A",115, 1], "Alt"],
[2, Factorial(115),0,"2",[[114, 1]],115, "Sym(115)", ["A",115, 1], "Sym"]];
PRIMGRP[116]:= 
[[1, Factorial(116)/2,1,"2",[[115,1]],114, "Alt(116)", ["A",116, 1], "Alt"],
[2, Factorial(116),0,"2",[[115, 1]],116, "Sym(116)", ["A",116, 1], "Sym"]];
PRIMGRP[117]:= 
[[ 1, 11232, 0, "2", [ [ 12, 1 ], [ 24, 1 ], [ 48, 1 ], [ 16, 2 ] ], 1, 
  "PSL(3, 3).2", [ "L", [ 3, 3 ], 1 ], 
  [ (  1, 62, 95, 48, 63,  5, 88, 82)(  2, 74, 99, 30, 68, 26, 86, 16)
        (  3, 90, 28,106, 43, 33, 38, 23)(  4,  7,104, 50, 35, 34, 55, 45)
        (  6, 12, 80, 36, 47, 44, 53, 14)(  8, 92, 41, 29)(  9, 15, 13, 46,
          20,100, 17,115)( 10, 93, 49, 85, 61, 87, 58, 65)( 11, 89, 40, 70,
         114, 66, 75,110)( 18, 98, 19, 56)( 21, 76, 72,113)( 22,108, 39, 78,
          54,111, 91, 79)( 24, 37, 69,105, 96, 73, 81,101)( 25,117, 60,102,
          51, 59, 52, 64)( 27, 97, 42, 31, 94, 83, 84,109)( 32, 57,112,107,
         103, 71, 77,116), (  1, 85, 95,113, 86, 10)(  2, 54,115, 19, 32,  6)
        (  3, 60, 14, 37, 65, 52)(  4, 51, 91)(  5, 73, 83, 56, 53, 28)
        (  7,111,104, 97, 33, 70)(  8, 21, 44, 82, 81, 68)(  9, 78, 49, 80,
          36, 42)( 11, 47, 20, 64,108, 27)( 12, 50, 77, 92, 96, 58)
        ( 13, 15, 40, 24, 23,107)( 16, 72, 59, 94,109,116)( 17, 29, 31, 34,
         102, 69)( 18, 45, 76,114, 38, 57)( 22, 39,105,101, 88,112)
        ( 25, 46, 90, 55, 93, 26)( 30, 67,103, 43, 35, 84)( 41, 48, 79,106,
          62, 89)( 61,110, 71)( 63, 75,117)( 66,100, 87, 99, 98, 74) ] ],
[ 2, 6065280, 1, "2", [ [ 36, 1 ], [ 80, 1 ] ], 1, "PSL(4, 3)", 
  [ "L", [ 4, 3 ], 1 ], 
  [ (  1, 37, 70,103, 74, 92,  2, 47,108, 18, 78, 65,104, 12, 63, 33,117, 79,
         112, 32)(  3,110, 27, 90, 22, 91,109,111, 73, 66, 54, 14, 77, 34, 88,
         16,  5, 40, 48, 76)(  4, 13, 80, 96, 39, 19, 87, 98,100, 31, 52, 26,
         114, 58, 23, 24, 71, 21, 11, 59)(  6, 51, 57,102, 67, 28, 15, 85,105,
         97, 17, 29, 25, 93,  7, 20,  9,116, 75, 53)(  8, 45, 41, 61, 46)
        ( 10,101, 42, 83, 38, 60, 49, 35, 94, 89, 44, 43, 95, 69,113, 86,115,
         106, 36, 62)( 30, 84)( 50, 81,107, 99, 56)( 55, 68, 64, 82, 72), 
      (  1,114, 21,  7, 54, 48,105, 24, 52,112, 10,115)(  2,110,  3, 83, 73,
          40,104, 27, 44, 36, 49,109)(  4, 19,108, 86, 43, 78, 98, 80, 67, 16,
         90, 75)(  5, 91, 94, 34, 77, 70,111, 60, 69,101, 14,117)
        (  6,113, 87, 71, 42, 57, 17, 89, 13, 26,106, 25)(  8,107, 64, 97, 81,
         102, 55, 50, 61,103, 46, 92)(  9, 96, 35, 76, 62, 31, 15,100, 95, 88,
         38, 23)( 11, 39, 58, 59)( 12, 47, 72, 82, 37, 33, 53, 65, 56, 99, 79,
         93)( 18,116, 84, 20, 32, 68)( 22, 63, 66, 74)( 28, 41, 51, 29, 45, 85
         ) ] ],
[ 3, 12130560, 0, "2", [ [ 36, 1 ], [ 80, 1 ] ], 1, "PSL(4, 3).2", 
  [ "L", [ 4, 3 ], 1 ], 
  [ (  1, 38, 36,101)(  2, 44, 11, 59)(  3, 37, 39,109)(  4,116,105, 30)
        (  5, 15,113, 91)(  6, 32, 27, 56)(  7, 64, 89, 23)(  8,112, 47, 88)
        (  9, 82, 60,115)( 10, 87, 98, 67)( 12,106, 40, 45)( 13, 51,110, 21)
        ( 14, 78, 46, 86)( 16, 97)( 17,104,108, 74)( 18, 22, 42, 68)
        ( 19, 93, 85, 25)( 20, 48, 66, 81)( 24, 75)( 26, 54, 96, 83)
        ( 28, 35, 72, 70)( 29,100)( 31, 58, 33, 49)( 34,111, 95, 76)
        ( 41, 62, 80,117)( 43, 69, 53,114)( 50, 55)( 52, 57, 84, 61)
        ( 63,103, 73,107)( 65, 94)( 71, 92)( 77, 90, 99, 79), 
      (  1,115, 83)(  2, 95, 98, 66, 68, 46, 60, 11,106)(  3, 34,114,111, 85,
          20, 50, 30, 61, 28, 47, 62, 58, 73, 16,105, 81, 63)(  4, 99, 55, 64,
         19, 53, 10, 88, 51)(  5, 22, 72, 79, 17,116, 41, 44, 14, 23, 94,  9,
          48,117, 90, 67, 43, 59)(  6, 93, 18)(  7, 13, 71, 15, 35, 54, 25,
          37, 24,107,103, 12, 82, 52, 65, 70, 91, 42)(  8,113, 76, 92,108, 33,
         86, 77, 45, 74, 21, 69, 26, 78, 87, 49,100, 75)( 27,102, 84, 32, 38,
         109, 36,101,110)( 29,104, 80, 31, 39, 96, 57, 97,112)( 40, 56, 89) ] 
 ],
[4, Factorial(117)/2,1,"2",[[116,1]],115, "Alt(117)", ["A",117, 1], "Alt"],
[5, Factorial(117),0,"2",[[116, 1]],117, "Sym(117)", ["A",117, 1], "Sym"]];
PRIMGRP[118]:= 
[[1, Factorial(118)/2,1,"2",[[117,1]],116, "Alt(118)", ["A",118, 1], "Alt"],
[2, Factorial(118),0,"2",[[117, 1]],118, "Sym(118)", ["A",118, 1], "Sym"]];
PRIMGRP[119]:= 
[[ 1, 197406720, 1, "2", [ [ 64, 1 ], [ 54, 1 ] ], 1, "O-(8, 2)", 
  [ "2D", [ 4, 2 ], 1 ], 
  [ (  1,  2)(  3,  5)(  4,  7)(  6, 10)(  8, 12)(  9, 13)( 14, 19)( 15, 20)
        ( 16, 22)( 17, 23)( 18, 25)( 24, 31)( 26, 33)( 27, 34)( 28, 36)
        ( 29, 38)( 30, 39)( 35, 45)( 37, 46)( 41, 48)( 42, 50)( 43, 51)
        ( 44, 53)( 47, 57)( 49, 59)( 52, 62)( 54, 64)( 55, 65)( 56, 67)
        ( 58, 70)( 60, 73)( 61, 74)( 63, 77)( 66, 80)( 68, 82)( 69, 75)
        ( 71, 84)( 72, 85)( 76, 88)( 78, 90)( 79, 91)( 81, 94)( 83, 97)
        ( 86,100)( 87,101)( 89,102)( 92,104)( 93,105)( 95,103)( 96,106)
        ( 99,107)(108,114)(109,115)(110,112)(113,117)(118,119), 
      (  1,  3,  6)(  2,  4,  8)(  5,  9, 14)(  7, 11, 16)( 10, 15, 21)
        ( 12, 17, 24)( 13, 18, 26)( 19, 27, 35)( 20, 28, 37)( 22, 29, 36)
        ( 23, 30, 40)( 25, 32, 42)( 31, 41, 49)( 33, 43, 52)( 34, 44, 54)
        ( 38, 39, 47)( 45, 55, 66)( 46, 56, 68)( 48, 58, 71)( 50, 60, 65)
        ( 51, 61, 75)( 53, 63, 78)( 57, 69, 73)( 59, 72, 86)( 62, 76, 89)
        ( 64, 79, 92)( 67, 81, 95)( 70, 83, 98)( 74, 87, 77)( 80, 93, 88)
        ( 82, 96, 97)( 84, 99,108)( 85, 90,103)( 91,101,110)( 94,100,109)
        (102,111,104)(105,112,116)(106,113,118)(114,115,117) ] ],
[ 2, 394813440, 0, "2", [ [ 64, 1 ], [ 54, 1 ] ], 1, "PSO-(8, 2)", 
  [ "2D", [ 4, 2 ], 1 ], 
  [ (  3, 25)(  8, 21)(  9, 36)( 12, 74)( 15, 22)( 16, 63)( 17, 52)( 19, 77)
        ( 24, 60)( 27, 59)( 28, 32)( 30, 39)( 35, 86)( 40, 75)( 43, 71)
        ( 47, 57)( 48, 64)( 49,102)( 50, 95)( 51,101)( 68,116)( 80,109)
        ( 81,112)( 84, 87)( 94,106)( 97,107)( 98,103)(104,110), 
      (  1,103, 72, 21,  9, 92, 16, 19, 58, 52, 62, 70, 75, 82)
        (  2, 20, 38, 44, 17, 61, 98)(  3, 77, 88, 13, 68,105, 57)
        (  4, 95, 31,116,111,  6, 45, 12, 34, 64, 89, 86, 49,106)
        (  5,115, 48, 46, 29, 79, 50)(  7, 99,  8, 84,110,119, 74)
        ( 10, 47, 22, 65, 39, 73, 97,104, 55, 66, 27, 14, 60, 76)
        ( 11, 78, 24, 96, 40, 23, 59)( 15, 53, 37,107, 43,102, 81)
        ( 18, 26,117, 33,118, 32,112, 25, 51, 87, 71,109, 42, 85)
        ( 28, 94, 56, 41, 35, 80, 93)( 30, 91, 69,114, 54,100, 90)
        ( 36,108, 67,113, 83, 63,101) ] ],
[3, Factorial(119)/2,1,"2",[[118,1]],117, "Alt(119)", ["A",119, 1], "Alt"],
[4, Factorial(119),0,"2",[[118, 1]],119, "Sym(119)", ["A",119, 1], "Sym"]];
PRIMGRP[120]:= 
[[ 1, 5040, 0, "2", [ [ 14, 2 ], [ 7, 1 ], [ 42, 1 ], [ 21, 2 ] ], 1, 
  "Sym(7)", [ "A", 7, 1 ], 
  [ (  1,  2,  4,  6,  9, 14,  3)(  5,  8, 12, 19, 29, 44, 64)
        (  7, 11, 17, 26, 39, 58, 61)( 10, 16, 24, 37, 56, 78, 99)
        ( 13, 21, 32, 49, 70, 93, 80)( 15, 23, 35, 54, 76, 96,109)
        ( 18, 28, 42, 62, 84, 48, 25)( 20, 31, 47, 68, 91,100, 50)
        ( 22, 34, 52, 74, 77, 98, 73)( 27, 41, 60, 83,103,110,119)
        ( 30, 46, 66, 89, 97,105, 88)( 33, 51, 72, 82,102,107,104)
        ( 36, 55, 43, 63, 40, 59, 81)( 38, 57, 79,101,113,111,112)
        ( 45, 65, 87, 94, 95,108,116)( 53, 75, 67, 90, 71, 85, 86)
        ( 69, 92,106,114,120,117,118), (  1,  3)(  2,  5)(  4,  7)(  6, 10)
        (  8, 13)(  9, 15)( 11, 18)( 12, 20)( 14, 22)( 16, 25)( 17, 27)
        ( 19, 30)( 21, 33)( 23, 36)( 24, 38)( 26, 40)( 28, 43)( 29, 45)
        ( 31, 48)( 32, 50)( 34, 53)( 35, 52)( 37, 54)( 39, 56)( 41, 61)
        ( 42, 62)( 44, 58)( 46, 67)( 47, 69)( 49, 71)( 51, 73)( 55, 77)
        ( 57, 80)( 59, 82)( 60, 79)( 63, 85)( 64, 86)( 65, 88)( 66, 81)
        ( 68, 83)( 70, 84)( 72, 89)( 74, 94)( 75, 95)( 76, 97)( 78,100)
        ( 87, 93)( 90,104)( 91,105)( 92,107)( 96,110)( 98,111)( 99,112)
        (101,114)(102,106)(103,115)(108,117)(109,118)(113,119)(116,120) ] ],
[ 2, 181440, 1, "2", [ [ 56, 1 ], [ 63, 1 ] ], 1, "Alt(9)", [ "A", 9, 1 ], 
  [ (  1,  2,  4,  8, 15, 27, 47)(  3,  6, 12, 22, 39, 64, 94)
        (  5, 10, 19, 34, 20, 36, 58)(  7, 14, 25, 43, 38, 63, 92)
        (  9, 17, 31, 53, 80, 91, 70)( 11, 21, 37, 62, 71, 98,112)
        ( 13, 24, 42, 67, 96,102,116)( 16, 29, 50, 75, 46, 61, 90)
        ( 18, 33, 57, 86, 23, 40, 59)( 26, 45, 56, 85, 97, 28, 41)
        ( 30, 52, 32, 55, 83,108, 79)( 35, 60, 88,104,114,117,107)
        ( 44, 69, 48, 73,101, 68, 81)( 49, 74,103, 78,106, 95, 82)
        ( 51, 77, 87, 93, 65, 84, 54)( 66, 76,105,100,115,111,120)
        ( 72, 99,113,109,118,110,119), (  1,  3,  7)(  2,  5, 11)(  4,  9, 18)
        (  6, 13, 22)(  8, 16, 30)( 10, 20, 37)( 12, 23, 41)( 14, 26, 46)
        ( 15, 28, 49)( 17, 32, 56)( 19, 35, 61)( 21, 38, 43)( 24, 27, 48)
        ( 25, 44, 70)( 29, 51, 78)( 31, 54, 82)( 33, 58, 75)( 34, 59, 87)
        ( 36, 45, 71)( 39, 65, 95)( 40, 66, 57)( 42, 68, 97)( 47, 72,100)
        ( 50, 76, 90)( 52, 79, 67)( 53, 81,107)( 55, 84,110)( 60, 89, 77)
        ( 62, 91, 80)( 63, 93, 69)( 64, 83,109)( 73,102,101)( 74,104, 92)
        ( 85,111,119)( 86,106, 88)( 94, 99,114)( 96,105, 98)(103,117,108)
        (112,120,116)(113,115,118) ] ],
[ 3, 4080, 1, "2", [ [ 17, 7 ] ], 1, "PSL(2, 16)", [ "L", [ 2, 16 ], 1 ], 
  [ (  1, 40)(  2, 78)(  3,118)(  4,112)(  5, 94)(  6,102)(  7, 88)(  8, 12)
        (  9, 85)( 10, 91)( 11, 84)( 13, 19)( 14,114)( 15, 18)( 17,108)
        ( 20, 66)( 21, 47)( 22, 53)( 23,106)( 24, 41)( 25, 46)( 26, 58)
        ( 27,105)( 28, 57)( 29,115)( 31, 90)( 32, 52)( 33, 49)( 34, 76)
        ( 35, 51)( 36, 43)( 37,103)( 39, 44)( 42, 56)( 45, 71)( 48, 60)
        ( 50, 59)( 54, 98)( 55, 72)( 61, 69)( 62,111)( 63,109)( 65, 83)
        ( 67, 74)( 68,104)( 70, 73)( 75, 96)( 77, 80)( 79, 95)( 82, 99)
        ( 86, 93)( 87,100)( 92,113)( 97,107)(101,110)(117,120), 
      (  1,116, 18)(  2, 56,113)(  3, 70, 58)(  4, 65,105)(  5, 42, 43)
        (  6, 50, 27)(  7, 16, 69)(  8, 89,106)(  9, 28, 55)( 10, 91, 59)
        ( 11, 98, 63)( 12, 92,120)( 13, 44, 76)( 14,100, 21)( 15,104, 94)
        ( 17, 82, 37)( 19, 74, 62)( 20,103, 67)( 22,112, 31)( 23, 40, 87)
        ( 24, 78, 34)( 25,119, 83)( 26, 96, 46)( 29, 90,117)( 30,107, 72)
        ( 32, 33, 97)( 35,114, 52)( 36, 79, 66)( 38,111, 81)( 39, 45,108)
        ( 41, 75, 84)( 47, 51, 54)( 48, 71, 80)( 49, 86, 95)( 53,109, 64)
        ( 57,102, 88)( 60,101, 73)( 61, 93,118)( 68, 85, 77)( 99,110,115) ] ],
[ 4, 8160, 0, "2", [ [ 34, 2 ], [ 17, 3 ] ], 1, "PSL(2, 16).2", 
  [ "L", [ 2, 16 ], 1 ], 
  [ (  1, 82)(  2,110)(  3, 73)(  4,102)(  5, 41)(  6, 60)(  7,108)(  8, 63)
        (  9, 14)( 10,117)( 11, 33)( 12, 97)( 13, 72)( 15, 92)( 16, 96)
        ( 17,120)( 18, 94)( 19, 67)( 20,111)( 21, 54)( 22, 74)( 23,106)
        ( 24,113)( 25, 32)( 26, 59)( 27, 57)( 28, 78)( 29, 30)( 31, 46)
        ( 34, 87)( 35, 83)( 36, 48)( 37, 49)( 38, 80)( 39, 84)( 40, 99)
        ( 42, 65)( 43,112)( 44,103)( 45, 71)( 47, 85)( 50, 66)( 51,104)
        ( 52, 61)( 53, 55)( 56, 68)( 58, 62)( 64, 93)( 69, 90)( 70, 76)
        ( 75, 81)( 77,119)( 79,107)( 86, 89)( 88, 91)( 95,109)( 98,114)
        (100,118)(101,105)(115,116), (  1, 44, 19, 34)(  2, 77, 88, 50)
        (  3,110, 56, 31)(  4, 83, 21, 14)(  5, 93, 55, 97)(  6, 48, 41, 42)
        (  7,103, 66,102)(  8, 49, 17, 18)(  9, 87, 95, 30)( 10, 80, 62, 26)
        ( 11,109)( 12, 54, 47,115)( 13, 64, 58, 67)( 15, 68, 94, 23)
        ( 16, 69,104, 32)( 20, 38,101, 28)( 22,111, 39, 79)( 24, 36, 82, 89)
        ( 25, 84, 99,100)( 29, 63,116, 45)( 33, 52, 75, 81)( 35, 61)
        ( 37, 96, 46, 72)( 40, 60, 59, 86)( 43, 85, 51,113)( 53, 90, 65, 78)
        ( 57,105, 70, 74)( 71,108,119,120)( 76,118,114,107)( 91,112, 92,117) 
     ] ],
[ 5, 16320, 0, "2", [ [ 34, 1 ], [ 68, 1 ], [ 17, 1 ] ], 1, "PSigmaL(2, 16)", 
  [ "L", [ 2, 16 ], 1 ], 
  [ (  1, 52)(  2,109)(  3,101)(  4, 13)(  5, 72)(  6, 74)(  7, 45)(  8, 47)
        (  9, 78)( 10,111)( 11, 94)( 12, 33)( 14, 40)( 15, 63)( 16, 39)
        ( 17, 83)( 18, 35)( 19, 50)( 20,102)( 21, 87)( 22, 79)( 23,100)
        ( 24, 28)( 25, 37)( 26, 71)( 27, 62)( 29, 84)( 30, 43)( 31, 66)
        ( 32, 92)( 34, 55)( 36,112)( 38, 91)( 41,117)( 42,107)( 44,105)
        ( 46, 80)( 48, 96)( 49, 85)( 51,106)( 53, 56)( 54, 89)( 57,103)
        ( 58, 73)( 59, 81)( 60, 70)( 61,110)( 64,113)( 65, 76)( 67, 88)
        ( 68, 86)( 69,108)( 75, 90)( 77, 95)( 82,119)( 93, 99)( 97,120)
        ( 98,104)(114,116)(115,118), 
      (  1, 86, 74, 49,106, 44,110, 53, 70,  8, 98,  3)(  2,114, 65, 15, 68,
          73, 77,118, 60, 47, 54, 27)(  4, 95,105, 28,100, 23,  5, 82, 57, 64,
         51,115)(  6, 75, 94, 62, 26, 18, 79,108, 12,103,  7, 17)
        (  9,117, 83, 58, 37, 43, 24, 72, 97,101, 92, 84)( 10, 59,113, 42, 11,
         55,102, 90, 99, 22, 35, 21)( 13, 25, 76, 14, 89, 34, 20, 85,107, 93,
          87, 56)( 16, 19, 52, 39, 50, 32, 29, 31,119, 48, 88, 63)
        ( 30, 61,111, 67, 40,104, 36,109, 41, 38, 78,116)( 33, 96, 81, 45, 91,
         66,120,112, 71, 69, 46, 80) ] ],
[ 6, 20160, 1, "2", [ [ 56, 1 ], [ 42, 1 ], [ 21, 1 ] ], 1, "PSL(3, 4)", 
  [ "L", [ 3, 4 ], 1 ], 
  [ (  1, 58)(  2, 95)(  3, 34)(  4,106)(  5, 36)(  6, 57)(  7, 13)(  8, 31)
        (  9, 56)( 10,104)( 11, 39)( 12, 30)( 14,117)( 15, 85)( 16, 53)
        ( 17, 73)( 18, 45)( 19, 77)( 20, 81)( 21, 28)( 22, 86)( 23, 26)
        ( 24,114)( 27, 55)( 29,100)( 32, 70)( 33, 91)( 35, 62)( 37, 46)
        ( 38, 97)( 40, 79)( 43,105)( 44,110)( 47, 50)( 48, 92)( 49, 59)
        ( 51, 94)( 52, 72)( 54, 76)( 60,112)( 61, 88)( 63, 98)( 64, 82)
        ( 65,115)( 66,109)( 68,118)( 69, 83)( 71,101)( 74,116)( 78, 84)
        ( 80, 90)( 87,108)( 93, 99)( 96,103)(102,111)(107,120), 
      (  1, 75, 86,117)(  2, 30, 66, 13)(  3, 38, 94,104)(  4, 42, 28,107)
        (  5, 20, 92, 15)(  6, 22, 55, 95)(  7, 33, 72, 62)(  8, 64,119,108)
        (  9, 37, 41,106)( 10, 18,118,112)( 11, 36,100, 35)( 12, 24,115, 25)
        ( 14, 45,111, 68)( 16,109, 82, 69)( 17,110, 27, 39)( 19, 98, 48, 67)
        ( 21, 50, 99, 93)( 23,102)( 26, 73, 56, 85)( 29, 49, 84, 53)
        ( 31, 91,116, 77)( 32, 54, 59,120)( 40, 60, 63, 97)( 43, 74)
        ( 44, 51,101, 89)( 46, 96, 47,113)( 52, 61, 90,103)( 57, 83, 81, 58)
        ( 65, 70, 80, 87)( 71,105, 78,114) ] ],
[ 7, 40320, 0, "2", [ [ 56, 1 ], [ 42, 1 ], [ 21, 1 ] ], 1, "PSL(3, 4).2", 
  [ "L", [ 3, 4 ], 1 ], 
  [ (  1, 36)(  3, 67)(  4, 64)(  5, 99)(  6, 54)(  7,118)(  8, 56)(  9, 21)
        ( 10,119)( 11, 57)( 12, 74)( 13, 94)( 14, 58)( 15,113)( 17, 33)
        ( 18,120)( 19, 43)( 22, 26)( 23, 24)( 27, 73)( 28, 76)( 29, 65)
        ( 30, 98)( 31, 39)( 32, 97)( 35, 89)( 37, 53)( 38, 88)( 40,110)
        ( 41,109)( 42, 95)( 46,101)( 47, 90)( 49, 51)( 50,117)( 59, 77)
        ( 61, 86)( 66,102)( 68,105)( 69, 81)( 70,114)( 72,107)( 75,111)
        ( 79,108)( 80, 93)( 82, 96)( 83, 84)( 92,100)(103,106), 
      (  1, 21,  8,119)(  2, 96, 40, 23)(  3, 92, 65, 10)(  4, 54, 79, 17)
        (  5, 41, 35, 61)(  6, 22, 85, 69)(  7, 33, 51,112)(  9,110, 26,102)
        ( 11, 42, 89, 49)( 12, 75, 52, 84)( 13, 73,117, 87)( 14,103, 94, 56)
        ( 15,116, 16, 66)( 18, 67, 45, 50)( 19, 44, 91, 90)( 20, 93, 24, 83)
        ( 25,105, 82, 27)( 28, 78)( 29, 98, 30, 58)( 31, 72, 63,100)
        ( 32, 36, 43,118)( 34, 57, 71, 53)( 37, 81,109,107)( 38, 86,104, 99)
        ( 39, 59)( 46, 48, 74, 97)( 47,113)( 55, 62, 70, 68)( 60, 95, 77,106)
        ( 64, 88)( 76, 80,108,111)(101,114,115,120) ] ],
[ 8, 40320, 0, "2", [ [ 56, 1 ], [ 42, 1 ], [ 21, 1 ] ], 1, "PSL(3, 4).2", 
  [ "L", [ 3, 4 ], 1 ], 
  [ (  1, 23)(  2,120)(  3,111)(  4, 88)(  6, 13)(  7, 17)(  8,103)(  9, 99)
        ( 10, 40)( 11,114)( 12, 91)( 14, 63)( 15,105)( 16,117)( 18, 94)
        ( 19,104)( 20, 49)( 21,113)( 22, 39)( 24, 29)( 25, 54)( 26, 95)
        ( 27, 31)( 28, 52)( 30, 75)( 32, 46)( 33,119)( 34, 48)( 35,116)
        ( 36, 67)( 37,102)( 38, 60)( 41, 50)( 43,115)( 44, 97)( 45, 86)
        ( 47, 76)( 51,100)( 53, 98)( 56, 58)( 59, 90)( 61,109)( 62, 80)
        ( 64, 74)( 65, 66)( 69, 70)( 71,108)( 72, 89)( 77, 78)( 79,101)
        ( 81, 82)( 83, 92)( 84, 87)( 85,106)( 93,107), 
      (  1,110, 48, 22)(  2, 41, 83, 38)(  3,  8,114, 79)(  4, 75, 37,  6)
        (  5, 82, 25, 42)(  7, 84,120, 69)(  9, 32, 78, 73)( 10, 54, 94, 23)
        ( 11,113,119, 12)( 13, 53, 74,105)( 14, 20,112, 19)( 15, 33, 80, 56)
        ( 16, 95, 96, 91)( 17,108,111, 24)( 18, 21, 89, 30)( 26, 98, 88, 60)
        ( 27, 81, 40, 34)( 28,100)( 29, 52, 45, 39)( 31,102, 65, 85)
        ( 35, 36,118, 49)( 43, 77, 58, 87)( 44, 61,107, 46)( 47, 68, 64, 67)
        ( 50, 62)( 51, 97, 63,109)( 55,117, 71,104)( 57, 70, 93, 90)
        ( 76, 92,106,103)( 86,101,116,115) ] ],
[ 9, 40320, 0, "2", [ [ 56, 1 ], [ 42, 1 ], [ 21, 1 ] ], 1, "PSL(3, 4).2", 
  [ "L", [ 3, 4 ], 1 ], 
  [ (  1,104)(  2,101)(  3,  5)(  4, 71)(  6, 87)(  7, 91)(  9,103)( 10,102)
        ( 11, 97)( 12,114)( 14, 64)( 15, 29)( 16,105)( 17, 44)( 18,109)
        ( 19,113)( 20, 48)( 21, 38)( 22, 40)( 23, 60)( 24, 54)( 25,117)
        ( 26, 94)( 27, 79)( 28,120)( 30, 68)( 31, 52)( 34, 81)( 35, 39)
        ( 37,116)( 41, 43)( 42, 51)( 47, 63)( 49, 78)( 50, 90)( 53, 69)
        ( 55, 89)( 56, 59)( 57,100)( 58,115)( 61, 80)( 62, 95)( 65, 76)
        ( 66, 74)( 67, 83)( 70, 93)( 72, 73)( 75,112)( 77, 82)( 85, 98)
        ( 86,119)( 88,108)(106,107)(111,118), 
      (  1, 44, 68, 96,109, 34)(  2, 17,118,  5, 16, 93)(  3, 98,101, 60,110,
          15)(  4,111, 67,117, 79, 13)(  6, 57,114, 24, 47,104)
        (  7, 11,100, 29,102, 23)(  8,115, 48, 75, 86, 51)(  9, 97, 94, 37,
          78,116)( 12, 45,103, 73, 88, 20)( 14,119, 39, 76, 26, 32)
        ( 18, 92, 53, 33, 27,112)( 19, 89,106, 90, 54, 41)( 21, 66, 49, 62,
          82, 99)( 22, 83, 63,107, 64, 91)( 25, 95, 74, 81,108, 35)
        ( 28, 52, 85, 56,120,113)( 30, 31, 61, 59, 71, 69)( 36, 42, 55, 43,
          58, 46)( 38,105, 87)( 40, 70, 77)( 65, 84, 72) ] ],
[ 10, 80640, 0, "2", [ [ 56, 1 ], [ 42, 1 ], [ 21, 1 ] ], 1, "PSL(3, 4).2^2", 
  [ "L", [ 3, 4 ], 1 ], 
  [ (  1,  2)(  3,  5)(  6,  9)(  7, 11)(  8, 13)( 10, 16)( 14, 20)( 15, 22)
        ( 18, 26)( 19, 28)( 21, 31)( 23, 27)( 24, 35)( 25, 37)( 29, 40)
        ( 30, 42)( 33, 45)( 34, 47)( 38, 52)( 39, 54)( 41, 56)( 43, 59)
        ( 48, 64)( 49, 66)( 51, 68)( 55, 72)( 57, 75)( 60, 79)( 61, 62)
        ( 63, 81)( 65, 82)( 67, 83)( 70, 85)( 73, 89)( 74, 78)( 76, 77)
        ( 80, 95)( 84, 99)( 87,103)( 91, 97)( 93, 98)( 94,109)( 96,110)
        (100,112)(101,104)(102,105)(111,118)(113,120)(116,117), 
      (  1,  3,  6, 10, 17, 25)(  2,  4,  7, 12, 18, 27)(  5,  8, 14, 21, 32,
          44)(  9, 15, 23, 34, 48, 65)( 13, 19, 29, 41, 57, 76)
        ( 16, 24, 36, 50, 59, 78)( 20, 30, 43, 60, 80, 96)( 22, 33, 46, 62,
          47, 63)( 26, 38, 53, 66, 64, 31)( 28, 39, 55, 73, 90, 99)
        ( 35, 49, 67, 75, 92,107)( 37, 51, 69, 72, 88,104)( 42, 58, 77, 93,
         108,118)( 45, 61, 68, 84,100,113)( 52, 70, 86,102,115,120)
        ( 54, 71, 87, 83, 79, 94)( 56, 74, 91,106,117,109)( 81, 97,103)
        ( 82, 98,111)( 85,101,114)( 89,105,116,110,112,119) ] ],
[ 11, 40320, 0, "2", [ [ 56, 1 ], [ 14, 1 ], [ 28, 1 ], [ 21, 1 ] ], 1, 
  "Sym(8)", [ "A", 8, 1 ], 
  [ (  1,  2,  4,  7)(  3,  6, 10, 14, 21, 32, 48, 57)(  5,  9, 13, 19, 29,
          44, 66, 89)(  8, 12, 17, 26, 39, 58, 82, 85)( 11, 16, 24, 25, 38,
          56, 72, 95)( 15, 23, 35, 53, 27, 41, 61, 83)( 18, 28, 42, 63)
        ( 20, 31, 46, 68, 91,110,108,118)( 22, 34, 51, 73, 49, 71, 94, 30)
        ( 33, 50)( 36, 54, 77, 64, 86, 43, 65, 87)( 37, 55, 79,101)
        ( 40, 60, 78,100)( 45, 67, 90,106)( 47, 70, 93,111, 88,107,116, 98)
        ( 52, 75, 97, 76, 99,114,115,117)( 62, 84,104,112,120, 81,103,105)
        ( 69, 92, 80,102, 96,113,109,119), 
      (  1,  3)(  2,  5)(  4,  8)(  6, 11)(  7,  9)( 10, 15)( 12, 18)( 13, 20)
        ( 14, 22)( 16, 25)( 17, 27)( 19, 30)( 21, 33)( 23, 36)( 24, 37)
        ( 26, 40)( 28, 43)( 29, 45)( 31, 47)( 32, 49)( 34, 52)( 35, 48)
        ( 38, 57)( 39, 59)( 41, 62)( 42, 64)( 44, 60)( 46, 69)( 50, 72)
        ( 51, 74)( 53, 76)( 54, 78)( 55, 80)( 56, 81)( 58, 67)( 61, 82)
        ( 63, 85)( 65, 88)( 66, 71)( 68, 86)( 70, 77)( 73, 96)( 75, 98)
        ( 79, 94)( 83, 92)( 84,105)( 87,106)( 89,108)( 90,109)( 91, 99)
        ( 93,111)( 95,112)( 97,101)(100,115)(102,116)(103,113)(104,117)
        (107,110)(114,119)(118,120) ] ],
[ 12, 979200, 1, "2", [ [ 68, 1 ], [ 51, 1 ] ], 1, "PSp(4, 4)", 
  [ "B", [ 2, 4 ], 1 ], 
  [ (  1,115, 59, 18, 29, 46,103, 94, 36, 19,119, 78, 57,  2,110, 64, 34)
        (  3,101, 43, 32, 56,106, 91, 21, 14,116,100,  5, 84, 49, 79, 61, 24)
        (  4, 12, 89, 55, 77, 33,105, 98,104, 85, 67, 20, 62, 40, 72, 13, 95)
        (  6, 97, 44, 17, 39, 86, 82,  8, 76,113, 42,117, 25, 75,  9,109,102)
        (  7, 28, 16, 81, 10, 69, 22,112,107,118, 88, 65, 48, 80, 35, 26, 66)
        ( 11, 50, 27, 52, 23, 51,111, 90, 41,108, 92, 15, 99, 71, 83, 63, 47)
        ( 30, 96, 70, 38, 58,114, 60, 37, 93, 73,120, 45, 53, 87, 74, 54, 31),
      (  1, 84, 73, 29, 96)(  2, 67, 47, 15, 64,102, 98, 42, 44, 19)(  3, 93)
        (  4, 51,  9, 72, 31)(  5, 83, 71, 57, 92)(  6, 46, 81, 23, 62, 34,
         111, 91, 59, 66)(  7, 41, 25, 24, 33, 48, 27, 36,118, 80)
        (  8, 21, 32,108, 53, 63, 35, 54,103, 43)( 10,107, 87,104, 52,105, 20,
         74, 79, 90)( 12, 61,115, 99, 17, 95, 26, 50, 86,113)( 13, 89, 22, 56,
         68)( 14, 85)( 16,106, 39, 69,112, 88, 70, 76,116, 49)
        ( 18, 94, 82,114,100)( 28, 30, 58,110, 38, 37,120, 40,119, 65)
        ( 45,109,117, 55, 97)( 60, 77)( 75, 78) ] ],
[ 13, 1958400, 0, "2", [ [ 68, 1 ], [ 51, 1 ] ], 1, "PSp(4, 4).2", 
  [ "B", [ 2, 4 ], 1 ], 
  [ (  1, 15,  8, 93,  3, 41,  9, 98)(  2, 33, 36,102, 42, 51, 96, 72)
        (  4, 27, 48, 60, 85, 35, 57, 80)(  5, 92, 24, 67, 32,108,  7, 71)
        (  6, 99, 26, 90, 39,106, 22,116)( 10, 95, 17,114, 61,111, 97, 74)
        ( 11, 12, 23, 69,112, 76,119, 66)( 13, 89, 79, 65, 20, 45, 34, 88)
        ( 14, 77, 44, 73, 53, 83, 21, 47)( 16, 86, 91, 59, 50, 62, 37, 56)
        ( 18,110, 68, 52,117,100, 40,120)( 25, 54)( 28, 46, 81, 55, 82, 78,
         109,105)( 29,103, 43, 64,118, 63, 84, 31)( 30, 38, 75,107, 70,115,
         104, 87)( 49, 58, 94,113), 
      (  1, 16, 99, 10, 90, 44)(  2, 58, 89, 21, 42, 29, 85, 50, 46, 25, 43,
          93)(  3, 38, 70, 12, 28, 27, 24, 49, 81, 22, 69, 19)
        (  4, 65, 61, 41, 84, 71)(  5, 13,117,109,103,113, 64, 23,116, 62, 77,
         88)(  6, 86, 36, 98, 11, 52, 45, 66, 31, 57, 40, 30)(  7, 73, 17, 55,
         96, 72, 67, 53, 68,104, 32, 14)(  8,102, 47, 20,101, 94)
        (  9,112, 15, 87,120, 18, 80, 97, 54,110, 82,106)( 26, 79, 34, 75)
        ( 33,119,111, 92, 59, 95, 63,114,105, 60,107, 76)( 35,100, 91, 37, 83,
         115)( 51, 56, 78)( 74,108,118) ] ],
[ 14, 1451520, 1, "2", [ [ 56, 1 ], [ 63, 1 ] ], 1, "PSp(6, 2)", 
  [ "B", [ 3, 2 ], 1 ], 
  [ (  1,  2,  4,  7, 12, 20, 30, 46, 69, 90, 85, 99,114,108,116)
        (  3,  6, 10, 17, 27, 41, 61, 81,103, 33, 51, 72, 94, 55, 25)
        (  5,  9, 15, 24, 37, 56, 59, 47, 53, 74, 96, 95,111,117, 77)
        (  8, 14, 22, 34, 52, 73, 38, 57, 71, 93, 31, 48, 45, 68, 89)
        ( 11, 19, 23, 36, 54, 75, 98,110,109, 13, 21, 32, 49, 35, 50)
        ( 16, 26, 39, 58, 76,100, 82, 65, 87,106, 67, 42, 63, 84, 80)
        ( 18, 29, 44, 66, 88, 70, 92, 62, 83,104,102, 28, 43, 64, 86)
        ( 40, 60, 79,101,115,118,119,120, 97,113,112, 91,105,107, 78), 
      (  1,  3)(  2,  5)(  4,  8)(  6, 11)(  7, 13)(  9, 16)( 10, 18)( 12, 19)
        ( 14, 23)( 15, 25)( 17, 28)( 20, 31)( 21, 33)( 22, 35)( 24, 38)
        ( 26, 40)( 27, 42)( 29, 45)( 30, 47)( 32, 50)( 34, 53)( 36, 55)
        ( 37, 52)( 39, 59)( 41, 62)( 43, 65)( 44, 67)( 46, 51)( 48, 70)
        ( 49, 71)( 54, 76)( 56, 72)( 57, 77)( 58, 78)( 60, 80)( 61, 82)
        ( 63, 85)( 64, 68)( 66, 81)( 69, 91)( 73, 95)( 74, 97)( 75, 99)
        ( 79,102)( 83,105)( 84, 98)( 86,103)( 87,106)( 88,107)( 89,104)
        ( 90,108)( 92,101)( 93,109)( 94,110)( 96,112)(100,114)(111,118)
        (113,119)(115,116)(117,120) ] ],
[ 15, 47377612800, 1, "2", [ [ 119, 1 ] ], 2, "PSp(8, 2)", 
  [ "B", [ 4, 2 ], 1 ], 
  [ (  2,  3)(  4,  6)(  5,  8)(  7, 10)(  9, 11)( 15, 18)( 16, 20)( 17, 22)
        ( 21, 26)( 23, 29)( 25, 32)( 27, 35)( 28, 37)( 30, 40)( 31, 42)
        ( 34, 45)( 38, 50)( 39, 52)( 43, 57)( 48, 55)( 49, 62)( 51, 65)
        ( 56, 70)( 60, 75)( 61, 69)( 63, 79)( 64, 80)( 68, 85)( 73, 83)
        ( 74, 88)( 77, 86)( 78, 93)( 84, 95)( 89, 96)( 90, 97)(100,108)
        (102,106)(104,111)(107,110)(109,114)(112,116)(113,115)(117,119)
        (118,120), (  1,  2,  4,  7)(  3,  5,  9, 12, 15, 19, 25, 33)
        (  6, 10, 13, 16, 21, 27, 36, 48)(  8, 11, 14, 17, 23, 30, 41, 55)
        ( 18, 24, 31, 43, 58, 73, 90,101)( 20, 26, 34, 46, 60, 76, 32, 44)
        ( 22, 28, 38, 51, 66, 83, 97,105)( 29, 39, 53, 68)( 35, 47, 61, 77,
          92,102,108,114)( 37, 49, 63, 79, 93, 80, 94, 85)( 40, 54, 69, 86,
          99,107,113,118)( 42, 56, 71, 88, 70, 87, 75, 91)( 45, 59, 74, 57,
          72, 89,100,109)( 50, 64, 81, 95,103,110,115,119)( 52, 67, 84, 98,
         106,111,116,120)( 62, 78, 65, 82, 96,104,112,117) ] ],
[ 16, 174182400, 1, "2", [ [ 56, 1 ], [ 63, 1 ] ], 1, "O+(8, 2)", 
  [ "D", [ 4, 2 ], 1 ], 
  [ (  1, 72, 82, 22, 85, 78, 69, 51,114,110, 49, 74)(  2, 35,116,108,113,112,
         5, 14, 48, 41, 89, 91)(  3, 94, 64, 83, 71,103,111, 73, 31, 15, 98,
          80)(  4, 11, 56, 70, 96, 50, 21, 60, 12, 30, 99, 39)
        (  6, 53,105, 88, 32, 68, 66, 38, 16,102,118, 97)(  7,115, 45, 76, 61,
         34, 27, 33, 79,117,119, 25)(  8,106, 77, 65,  9, 62, 92, 26, 81, 40,
          36, 37)( 10, 24,107, 44, 93, 86, 90, 95, 58, 59, 13, 17)
        ( 18, 28, 67, 23, 29,109, 42,104, 20, 47, 19,100)( 43,120, 63, 87, 52,
         101, 46, 54, 57, 75, 84, 55), 
      (  1, 50, 56, 14, 64)(  2, 34, 22, 21, 52, 70,117, 25, 18, 38, 78, 84,
          90, 54,  9)(  3, 19, 45)(  4,101, 71, 81, 98)(  5,104,109,110, 77,
          46, 16, 31, 32, 39,116, 48, 12, 36,112)(  6,114, 83, 95,119, 80, 93,
         60, 63, 59, 41, 26, 23, 44, 11)(  7, 96,102, 87, 15, 24, 61, 37,  8,
          99, 47, 27, 51, 94, 57)( 10, 53,107)( 13,108,106, 88, 33)
        ( 17,115, 89)( 20, 58, 30,105, 97, 49,118, 67, 74, 55, 43, 76, 28, 85,
         69)( 29, 86, 75, 65, 62)( 35, 68,100, 42,120)( 40,103,113, 79, 82)
        ( 66,111, 92, 72, 73) ] ],
[ 17, 348364800, 0, "2", [ [ 56, 1 ], [ 63, 1 ] ], 1, "PSO+(8, 2)", 
  [ "D", [ 4, 2 ], 1 ], 
  [ (  1, 53, 45, 63, 57,  3, 69, 19, 77, 91, 35, 24)(  2, 75, 10,110,113, 70,
         119,115, 48, 28, 55, 32)(  4, 84,102, 68, 49, 56, 18, 14, 26,  8, 71,
         29)(  5, 46, 73, 20, 82, 90, 40,108, 54, 66,103, 31)(  6,105,106,120,
         78, 85, 60,  7,117, 17, 51,107)(  9, 74,100, 12, 15, 36, 50,112, 43,
          61, 13, 93)( 11, 16, 94,111, 47, 72, 67, 39, 86, 34,104, 52)
        ( 21,109,118, 65, 23, 92, 33, 41, 25, 38, 22, 87)( 27, 44, 76, 42, 89,
         81, 83, 98, 96, 97,101, 88)( 30, 95,116, 99, 80, 59, 37, 62, 64, 79,
          58,114), (  1,118,107, 63)(  2, 48, 19, 15, 91, 29, 88, 77)
        (  3, 33, 13,112,  9, 61,100,117, 37, 99, 86, 35, 78, 51, 46, 42, 96,
         106,  7, 68, 84, 75, 21, 38)(  4, 10, 69, 92,114, 59, 80, 85, 14, 20,
         53, 79, 40, 17, 11, 56, 58, 55, 49, 44, 72,  6,115, 81)
        (  5, 65, 12, 52, 36,120, 25,102, 31,108, 18, 70, 22, 90,104, 27, 54,
          87,116, 34, 16, 32,110, 45)(  8,109, 94, 57, 47, 62, 24, 39)
        ( 23, 30, 71,103, 28, 83,113,101)( 26,105, 76, 95)( 41,119, 82)
        ( 43, 97, 98)( 50, 73, 67,111, 64, 60)( 66, 93, 89, 74) ] ],
[ 18, 1814400, 1, "2", [ [ 35, 1 ], [ 63, 1 ], [ 21, 1 ] ], 1, "Alt(10)", 
  [ "A", 10, 1 ], 
  [ (  1, 55,109, 78, 66, 61, 89, 84, 12)(  2, 13,  6, 58, 56, 68, 49,114, 59)
        (  3, 35,118,105,115, 99,117, 15, 54)(  4, 93, 39, 90, 83, 28, 36, 73,
         102)(  5,  8, 10, 60, 18, 75, 20, 81, 97)(  7,113,107,116, 23, 21,
          82, 44, 80)(  9, 57, 27, 24, 47, 17, 64, 25,112)( 11, 77, 45,119,
         108, 76, 22,110, 72)( 14, 70, 96, 40, 43, 42, 52,111, 63)
        ( 16, 37, 46, 69,100, 87, 88, 32, 86)( 19, 38, 65,103,120,104, 85, 92,
         41)( 26, 91, 95, 74,101, 51, 94, 48, 30)( 29, 62,106)
        ( 31, 71, 53, 98, 79, 34, 33, 50, 67), 
      (  1, 41, 44, 14, 82, 91, 90, 10)(  2, 84, 20, 96, 73, 80, 16, 12)
        (  3,  4, 94, 42,113,110,104, 71)(  5,  9, 79, 69, 98, 83, 47, 57)
        (  6, 30, 29, 60, 33, 67, 24, 23)(  7,119, 70, 95, 92,120, 74,100)
        (  8, 17, 40, 53, 89, 93, 72, 87)( 11, 58, 61, 97, 86, 68, 51, 56)
        ( 13, 46, 15, 76, 28,103, 49,112)( 18,107,109,114,111, 25, 78, 31)
        ( 19, 48, 43, 54, 34, 66, 27, 75)( 21, 88, 59, 64, 32,108, 38, 65)
        ( 22, 63, 37, 36, 55,117,106, 35)( 26, 99,116, 77)( 39,105, 62,118,
          81,101, 50,115)( 45, 52, 85,102) ] ],
[ 19, 3628800, 0, "2", [ [ 35, 1 ], [ 63, 1 ], [ 21, 1 ] ], 1, "Sym(10)", 
  [ "A", 10, 1 ], 
  [ (  1,  2,  3,  4,  5,  7,  9, 13, 18, 24)(  6,  8, 11, 15, 21, 28, 38, 47,
         57, 30)( 10, 14, 19, 26, 34, 42, 53, 64, 75, 84)( 12, 17, 23, 31, 32,
         40, 50, 61, 37, 46)( 16, 22, 29, 39, 49, 59, 70, 60, 71, 80)
        ( 20, 27, 36, 44, 55, 66, 77, 48, 58, 68)( 25, 33, 41, 52, 63, 74, 83,
         92, 98,102)( 35, 43, 54, 65, 76, 69, 79, 86, 89, 94)( 45, 56, 67, 78,
         85, 51, 62, 72, 81, 88)( 73, 82, 90, 95, 99,103,106,109,112,115)
        ( 87, 93, 96,100,104,107,110,113,116,118)( 91, 97,101,105,108,111,114,
         117,119,120), (  4,  6)(  7, 10)(  8, 12)( 11, 16)( 14, 20)( 18, 25)
        ( 22, 30)( 24, 32)( 26, 35)( 27, 37)( 28, 34)( 36, 45)( 38, 48)
        ( 39, 44)( 40, 51)( 49, 60)( 58, 69)( 62, 73)( 71, 75)( 74, 84)
        ( 79, 87)( 81, 89)( 82, 91)( 86, 92)( 90, 96)( 94, 99)(100,105)
        (102,104) ] ],
[ 20, 10461394944000, 1, "2", [ [ 91, 1 ], [ 28, 1 ] ], 1, "Alt(16)", 
  [ "A", 16, 1 ], 
  [ (  1, 86, 15, 76,118, 45,105, 72,111,  4,103, 10, 32, 75,106,116, 63,119,
          36, 17, 87, 89, 66, 97,113, 33, 34, 92, 42,104, 80, 57, 61, 41, 52,
          12, 83, 35,115, 46,109, 37,  6, 68,  8, 74, 13, 28, 44, 73, 51,  3,
          85, 14, 64, 69, 20, 59, 90, 67, 19, 21, 96)(  2, 50, 24, 94, 78, 56,
         43)(  5, 81, 23, 25, 39,120, 31,107, 38)(  7, 98,114, 70, 71,102, 79,
         9, 27)( 11, 26,117,101, 29, 40, 62, 65, 53)( 16, 49, 18, 54, 93, 84,
          88, 55, 47)( 22, 60,100, 91,108, 99,110)( 30, 77,112, 82, 95, 48, 58
         ), (  1, 43)(  2, 58, 36, 59, 73, 69, 16, 68)(  3, 67, 19, 31,107,
          53,  5, 38)(  4, 50, 30, 44, 65, 86, 12, 52)(  6, 37,  9, 51)
        (  7, 21, 15, 94, 10, 32,120, 17)(  8, 85, 24, 76,118, 39,117, 27)
        ( 11, 45)( 13, 62,102, 35,119, 33, 80, 57)( 14, 26, 90,103)
        ( 18, 34, 40, 48,115, 22, 54,109)( 20, 60, 25, 77)( 23, 47, 63, 99,
         110, 46, 93,114)( 29, 79, 55, 97,113, 61, 71, 84)( 41, 70)
        ( 42, 96, 81,108, 82, 78, 98, 66)( 49,111, 72,112, 74, 95, 89, 75)
        ( 56, 87, 64,104)( 83, 91,100, 92)(101,116,106,105) ] ],
[ 21, 20922789888000, 0, "2", [ [ 91, 1 ], [ 28, 1 ] ], 1, "Sym(16)", 
  [ "A", 16, 1 ], 
  [ (  1,  2,  3,  5,  7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57, 65)
        (  4,  6,  8, 11, 14, 18, 22, 27, 32, 38, 44, 51, 58, 66, 74, 73)
        (  9, 12, 15, 19, 23, 28, 33, 39, 45, 52, 59, 67, 75, 83, 82, 90)
        ( 16, 20, 24, 29, 34, 40, 46, 53, 60, 68, 76, 84, 92, 91, 99,107)
        ( 25, 30, 35, 41, 47, 54, 61, 69, 77, 85, 93,101,100,108,113,117)
        ( 36, 42, 48, 55, 62, 70, 78, 86, 94,102, 98,106,112,116,119,120)
        ( 49, 56, 63, 71, 79, 87, 95,103,109, 81, 89, 97,105,111,115,118)
        ( 64, 72, 80, 88, 96,104,110,114), 
      (  2,  4)(  6,  9)( 12, 16)( 20, 25)( 30, 36)( 42, 49)( 56, 64)( 65, 73)
        ( 72, 81)( 74, 82)( 83, 91)( 89, 98)( 92,100)(101,106) ] ],
[22, Factorial(120)/2,1,"2",[[119,1]],118, "Alt(120)", ["A",120, 1], "Alt"],
[23, Factorial(120),0,"2",[[119, 1]],120, "Sym(120)", ["A",120, 1], "Sym"]];
PRIMGRP[121]:= 
[[ 1, 363, 2, "1", [ [ 3, 40 ] ], 1, "11^2:3", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^5 ] ] ] ],
[ 2, 484, 2, "1", [ [ 4, 30 ] ], 1, "11^2:4", [ "Z", 11, 2 ], 
  [ [ [ Z(11)^5, 0*Z(11) ], [ 0*Z(11), Z(11)^5 ] ], 
      [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, 0*Z(11) ] ] ] ],
[ 3, 726, 2, "1", [ [ 6, 20 ] ], 1, "11^2:6", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^0 ] ] ] ],
[ 4, 726, 2, "1", [ [ 3, 10 ], [ 6, 15 ] ], 1, "11^2:D_6", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^5 ] ], 
      [ [ Z(11)^0, 0*Z(11) ], [ Z(11)^5, Z(11)^5 ] ] ] ],
[ 5, 968, 2, "1", [ [ 4, 10 ], [ 8, 10 ] ], 1, "11^2:D_8", [ "Z", 11, 2 ], 
  [ [ [ Z(11)^0, 0*Z(11) ], [ 0*Z(11), Z(11)^5 ] ], 
      [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, 0*Z(11) ] ] ] ],
[ 6, 968, 2, "1", [ [ 8, 15 ] ], 1, "11^2:8", [ "Z", 11, 2 ], 
  [ [ [ Z(11)^5, 0*Z(11) ], [ 0*Z(11), Z(11)^5 ] ], 
      [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^0, Z(11)^3 ] ] ] ],
[ 7, 968, 2, "1", [ [ 8, 15 ] ], 1, "11^2:Q_8", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, 0*Z(11) ] ], 
      [ [ Z(11)^7, Z(11)^7 ], [ Z(11)^7, Z(11)^2 ] ] ] ],
[ 8, 1210, 2, "1", [ [ 5, 10 ], [ 10, 7 ] ], 1, "11^2:D_10", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^8 ] ], 
      [ [ Z(11)^0, 0*Z(11) ], [ Z(11)^8, Z(11)^5 ] ] ] ],
[ 9, 1452, 2, "1", [ [ 12, 10 ] ], 1, "11^2:12", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^9 ] ], 
      [ [ Z(11)^9, Z(11)^6 ], [ Z(11), Z(11)^4 ] ] ] ],
[ 10, 1452, 2, "1", [ [ 12, 10 ] ], 1, "11^2:Q_12", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^5 ] ], 
      [ [ Z(11)^5, Z(11)^9 ], [ Z(11)^7, Z(11)^0 ] ] ] ],
[ 11, 1452, 2, "1", [ [ 6, 10 ], [ 12, 5 ] ], 1, "11^2:D_12", [ "Z", 11, 2 ], 
  [ [ [ Z(11)^0, 0*Z(11) ], [ Z(11)^0, Z(11)^5 ] ], 
      [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^0 ] ] ] ],
[ 12, 1815, 2, "1", [ [ 15, 8 ] ], 1, "11^2:15", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^3, Z(11)^9 ] ] ] ],
[ 13, 1936, 2, "1", [ [ 16, 5 ], [ 8, 5 ] ], 1, "11^2:SD_16", [ "Z", 11, 2 ], 
  [ [ [ Z(11)^0, 0*Z(11) ], [ Z(11)^8, Z(11)^5 ] ], 
      [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^0, Z(11)^8 ] ] ] ],
[ 14, 2420, 2, "1", [ [ 20, 1 ], [ 10, 10 ] ], 1, "11^2:(2 x D_10)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^2 ] ], [ [ Z(11)^0, 0*Z(11) ], 
          [ Z(11)^2, Z(11)^5 ] ] ] ],
[ 15, 2420, 2, "1", [ [ 20, 6 ] ], 1, "11^2:(5:4)", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, 0*Z(11) ] ], 
      [ [ Z(11)^5, Z(11) ], [ Z(11)^5, Z(11)^0 ] ] ] ],
[ 16, 2420, 2, "1", [ [ 20, 6 ] ], 1, "11^2:20", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^7, 0*Z(11) ] ], 
      [ [ 0*Z(11), Z(11)^3 ], [ Z(11)^0, 0*Z(11) ] ] ] ],
[ 17, 2904, 2, "1", [ [ 12, 10 ] ], 1, "11^2:D_24", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^9 ] ], 
      [ [ Z(11)^0, 0*Z(11) ], [ Z(11)^9, Z(11)^5 ] ] ] ],
[ 18, 2904, 2, "1", [ [ 24, 5 ] ], 1, "11^2:24", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^0, Z(11)^4 ] ], 
      [ [ Z(11)^5, 0*Z(11) ], [ 0*Z(11), Z(11)^5 ] ] ] ],
[ 19, 2904, 2, "1", [ [ 24, 5 ] ], 1, "11^2:Q_24", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, 0*Z(11) ] ], 
      [ [ Z(11), Z(11)^7 ], [ Z(11)^7, Z(11)^8 ] ] ] ],
[ 20, 2904, 2, "1", [ [ 24, 5 ] ], 1, "11^2:(Q_8:3)", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^5 ] ], 
      [ [ Z(11)^6, Z(11)^0 ], [ Z(11)^2, Z(11)^8 ] ] ] ],
[ 21, 3630, 2, "1", [ [ 30, 4 ] ], 1, "11^2:30", [ "Z", 11, 2 ], 
  [ [ [ Z(11)^8, 0*Z(11) ], [ 0*Z(11), Z(11)^8 ] ], 
      [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^7, Z(11)^6 ] ] ] ],
[ 22, 3630, 2, "1", [ [ 15, 2 ], [ 30, 3 ] ], 1, "11^2:(5 x D_6)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11), Z(11)^3 ] ], [ [ Z(11)^9, Z(11) ], 
          [ 0*Z(11), Z(11)^4 ] ] ] ],
[ 23, 4840, 2, "1", [ [ 40, 2 ], [ 20, 2 ] ], 1, "11^2:(5 x D_8)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^4, 0*Z(11) ] ], [ [ 0*Z(11), Z(11)^6 ], 
          [ Z(11)^5, 0*Z(11) ] ] ] ],
[ 24, 4840, 2, "1", [ [ 20, 6 ] ], 1, "11^2:(5:D_8)", [ "Z", 11, 2 ], 
  [ [ [ Z(11)^0, 0*Z(11) ], [ Z(11)^0, Z(11)^5 ] ], 
      [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, 0*Z(11) ] ] ] ],
[ 25, 4840, 2, "1", [ [ 40, 3 ] ], 1, "11^2:(5 x Q_8)", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, 0*Z(11) ] ], 
      [ [ Z(11)^0, Z(11)^5 ], [ Z(11)^5, Z(11)^5 ] ] ] ],
[ 26, 4840, 2, "1", [ [ 40, 3 ] ], 1, "11^2:40", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^0, Z(11)^8 ] ], 
      [ [ 0*Z(11), Z(11)^2 ], [ Z(11)^2, Z(11)^0 ] ] ] ],
[ 27, 5808, 2, "1", [ [ 24, 5 ] ], 1, "11^2:SD_48", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, 0*Z(11) ] ], 
      [ [ Z(11)^0, 0*Z(11) ], [ Z(11)^4, Z(11)^5 ] ] ] ],
[ 28, 5808, 2, "1", [ [ 24, 5 ] ], 1, "11^2:(Q_8:D_6)", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^0 ] ], 
      [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^0, Z(11)^3 ] ] ] ],
[ 29, 6050, 2, "1", [ [ 25, 2 ], [ 50, 1 ], [ 10, 2 ] ], 1, 
  "11^2:(5 x D_10)", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^4, 0*Z(11) ] ], 
      [ [ Z(11)^6, 0*Z(11) ], [ Z(11)^5, Z(11) ] ] ] ],
[ 30, 7260, 2, "1", [ [ 60, 1 ], [ 30, 2 ] ], 1, "11^2:(5 x D_12)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^3, Z(11)^4 ] ], [ [ Z(11)^8, Z(11)^9 ], 
          [ 0*Z(11), Z(11)^3 ] ] ] ],
[ 31, 7260, 2, "1", [ [ 60, 2 ] ], 1, "11^2:(5 x Q_12)", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^3, Z(11)^4 ] ], 
      [ [ Z(11)^7, Z(11) ], [ Z(11)^3, Z(11)^2 ] ] ] ],
[ 32, 7260, 2, "1", [ [ 60, 2 ] ], 1, "11^2:60", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, 0*Z(11) ] ], 
      [ [ Z(11)^5, Z(11)^4 ], [ Z(11)^9, Z(11)^5 ] ] ] ],
[ 33, 9680, 2, "1", [ [ 80, 1 ], [ 40, 1 ] ], 1, "11^2:(5 x SD_16)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^3, 0*Z(11) ] ], [ [ Z(11)^2, 0*Z(11) ], 
          [ Z(11)^4, Z(11)^7 ] ] ] ],
[ 34, 12100, 2, "1", [ [ 50, 2 ], [ 20, 1 ] ], 1, "11^2:(10 x D_10)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^4, 0*Z(11) ] ], [ [ Z(11)^2, Z(11)^7 ], 
          [ Z(11)^6, Z(11)^9 ] ] ] ],
[ 35, 12100, 2, "1", [ [ 100, 1 ], [ 20, 1 ] ], 1, "11^2:(5 x (5:4))", 
  [ "Z", 11, 2 ], 
  [ [ [ Z(11)^0, 0*Z(11) ], [ 0*Z(11), Z(11)^2 ] ], [ [ 0*Z(11), Z(11)^0 ], 
          [ Z(11)^5, 0*Z(11) ] ] ] ],
[ 36, 14520, 2, "1", [ [ 60, 2 ] ], 1, "11^2:(5 x D_24)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^7, Z(11)^0 ] ], [ [ Z(11)^3, 0*Z(11) ], 
          [ Z(11)^3, Z(11)^8 ] ] ] ],
[ 37, 14520, 2, "1", [ [ 120, 1 ] ], 2, "11^2:120", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^2, Z(11)^9 ] ], 
      [ [ Z(11)^0, Z(11) ], [ Z(11)^3, Z(11) ] ] ] ],
[ 38, 14520, 2, "1", [ [ 120, 1 ] ], 2, "11^2:(5 x Q_12)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^9, 0*Z(11) ] ], [ [ Z(11)^2, Z(11)^6 ], 
          [ Z(11)^7, Z(11)^7 ] ] ] ],
[ 39, 14520, 2, "1", [ [ 120, 1 ] ], 2, "11^2:(5 x (Q_8 :C_3))", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^3, Z(11)^9 ] ], [ [ Z(11)^8, Z(11)^8 ], 
          [ Z(11)^8, Z(11)^0 ] ] ] ],
[ 40, 24200, 2, "1", [ [ 100, 1 ], [ 20, 1 ] ], 1, "11^2:(10 x D_20)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^4, 0*Z(11) ] ], [ [ Z(11)^7, Z(11)^9 ], 
          [ Z(11)^8, Z(11) ] ] ] ],
[ 41, 29040, 2, "1", [ [ 120, 1 ] ], 2, "11^2:(10 x D_24)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11), 0*Z(11) ] ], [ [ Z(11)^6, Z(11)^3 ], 
          [ Z(11)^9, Z(11)^3 ] ] ] ],
[ 42, 29040, 2, "1", [ [ 120, 1 ] ], 2, "11^2:(5 x (Q_8:D_6))", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^3, Z(11)^4 ] ], [ [ Z(11)^5, Z(11)^3 ], 
          [ Z(11), 0*Z(11) ] ] ] ],
[ 43, 159720, 0, "1", [ [ 120, 1 ] ], 2, "ASL(2, 11)", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, Z(11)^3 ] ], 
      [ [ Z(11)^6, Z(11)^2 ], [ Z(11)^7, Z(11) ] ] ] ],
[ 44, 319440, 0, "1", [ [ 120, 1 ] ], 2, "11^2:(SL(2, 11):2)", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^0, Z(11)^8 ] ], [ [ Z(11)^6, Z(11)^3 ], 
          [ Z(11)^7, Z(11)^5 ] ] ] ],
[ 45, 798600, 0, "1", [ [ 120, 1 ] ], 2, "11^2:(5 x SL(2, 11))", 
  [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11), 0*Z(11) ] ], [ [ Z(11)^7, 0*Z(11) ], 
          [ Z(11)^9, Z(11) ] ] ] ],
[ 46, 1597200, 0, "1", [ [ 120, 1 ] ], 2, "AGL(2, 11)", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^0, Z(11)^3 ] ], 
      [ [ Z(11)^2, Z(11)^7 ], [ Z(11)^3, Z(11)^6 ] ] ] ],
[ 47, 871200, 0, "4c", [ [ 100, 1 ], [ 20, 1 ] ], 1, 
  "PSL(2, 11) wreath Sym(2)", [ "L", [ 2, 11 ], 2 ], 
  [ (  1, 48, 41, 61,109, 80, 73, 22,112, 31)(  2, 26, 34, 50,107, 58, 76, 88,
         117, 20)(  3, 70, 44,116,108)(  4, 37, 39,105,102, 69, 77,121,119,  9
         )(  5, 92, 38, 94,104, 91, 71, 99,115, 97)(  6,103, 36, 72,110,113,
          75, 11,114, 42)(  7, 15, 35, 28,100, 47, 74, 66,120, 86)
        (  8, 59, 43, 83,106, 14, 68, 33,111, 53)( 10, 81, 40, 17,101, 25, 67,
         55,118, 64)( 12, 46, 30, 56, 54, 85, 62, 21, 79, 29)( 13, 24, 23, 45,
         52, 63, 65, 87, 84, 18)( 16, 90, 27, 89, 49, 96, 60, 98, 82, 95)
        ( 19, 57, 32, 78, 51), (  1,100)(  2,106, 10,101,  7,109)
        (  3,108,  4,102,  9,103)(  5,110,  6,104, 11,105)(  8,107)
        ( 12,111, 78, 23, 67, 45)( 13,117, 87, 24, 73, 54)( 14,119, 81, 25,
          75, 48)( 15,113, 86, 26, 69, 53)( 16,121, 83, 27, 77, 50)
        ( 17,115, 88, 28, 71, 55)( 18,120, 79, 29, 76, 46)( 19,118, 85, 30,
          74, 52)( 20,114, 80, 31, 70, 47)( 21,112, 84, 32, 68, 51)
        ( 22,116, 82, 33, 72, 49)( 34, 89, 56)( 35, 95, 65)( 36, 97, 59)
        ( 37, 91, 64)( 38, 99, 61)( 39, 93, 66)( 40, 98, 57)( 41, 96, 63)
        ( 42, 92, 58)( 43, 90, 62)( 44, 94, 60) ] ],
[ 48, 125452800, 0, "4c", [ [ 100, 1 ], [ 20, 1 ] ], 1, "M_11 wreath Sym(2)", 
  [ "Spor", "M(11)", 2 ], 
  [ (  1, 42, 27,  3, 97, 26, 47, 89, 37, 49)(  2, 64, 28, 69, 99,103, 51, 78,
         43, 16)(  4, 53, 23, 36, 93)(  5,  9, 31, 25, 91, 92, 48, 45, 34, 38)
        (  6, 75, 33,102, 95, 81, 54, 12, 35, 60)(  7, 86, 32, 14, 90, 59, 50,
         67, 44,104)(  8,119, 30,113, 96,114, 52,111, 41,115)( 10, 20, 24, 58,
         94, 70, 55,100, 40, 82)( 11,108, 29, 80, 98, 15, 46, 56, 39, 71)
        ( 13, 57, 61, 72, 77,110,106, 84, 87, 21)( 17, 68, 66,105, 73, 88,109,
         18, 79, 65)( 19,112, 63,116, 74,121,107,117, 85,120)( 22,101, 62, 83,
         76), (  1, 51,  5, 46,  6, 45,  7, 49,  2, 50)(  3, 53, 11, 54,  4,
          47,  9, 55, 10, 48)(  8, 52)( 12, 40, 16, 35, 17, 34, 18, 38, 13, 39
         )( 14, 42, 22, 43, 15, 36, 20, 44, 21, 37)( 19, 41)( 23,106, 27,101,
          28,100, 29,104, 24,105)( 25,108, 33,109, 26,102, 31,110, 32,103)
        ( 30,107)( 56, 62, 60, 57, 61)( 58, 64, 66, 65, 59)( 67,117, 71,112,
          72,111, 73,115, 68,116)( 69,119, 77,120, 70,113, 75,121, 76,114)
        ( 74,118)( 78, 84, 82, 79, 83)( 80, 86, 88, 87, 81)( 89, 95, 93, 90,
          94)( 91, 97, 99, 98, 92) ] ],
[ 49, 237783237120, 1, "2", [ [ 120, 1 ] ], 2, "PSL(5, 3)", 
  [ "L", [ 5, 3 ], 1 ], 
  [ (  1, 70,  6)( 10, 69,101)( 11, 18, 47)( 14,120, 85)( 15, 36,109)
        ( 16, 29, 50)( 21,100, 60)( 22, 39, 28)( 23, 96,110)( 25, 44, 83)
        ( 26, 57, 82)( 27, 92, 68)( 31,107,116)( 33, 99, 58)( 34, 56, 64)
        ( 35,105, 45)( 37, 40, 52)( 42, 84, 65)( 43, 98, 67)( 46, 74,121)
        ( 54, 59, 55)( 61,115, 93)( 62, 80,113)( 66,118,119)( 75,102, 89)
        ( 78, 87, 94)( 86,106,112), (  1,  5,  4,  3,  2)(  6, 69,  9,  8,  7)
        ( 10,100, 20, 19, 18)( 11, 46,120, 13, 12)( 14, 84, 41, 40, 36)
        ( 15,108,107, 30, 29)( 16, 49, 48, 47, 17)( 21, 59, 53, 52, 39)
        ( 22, 27, 67, 97, 96)( 23,109, 35, 44, 24)( 25, 82, 56, 33, 57)
        ( 26, 81, 80, 61, 92)( 28, 38, 37, 51, 50)( 31,115, 60, 99, 32)
        ( 34, 63, 62,112,105)( 42, 64, 55, 58, 98)( 43, 66,118, 65, 83)
        ( 45,104,103,102, 74)( 68, 91, 90, 89,101)( 70,121, 73, 72, 71)
        ( 75, 88, 87, 77, 76)( 78, 93,114,113, 79)( 85,119,117,116,106)
        ( 86,111,110, 95, 94) ] ],
[ 50, 796675461120000, 0, "4c", [ [ 100, 1 ], [ 20, 1 ] ], 1, 
  "Alt(11) wreath Sym(2)", [ "A", 11, 2 ], 
  [ (  1, 12, 17, 61, 59,  4)(  2,100, 16, 72, 65, 37,  7, 23, 14, 83, 66, 92,
         8, 45, 13,105, 60, 70, 10, 34, 18, 28, 58, 81, 11, 89, 19, 50, 57,
         103,  5, 67, 21, 39, 62, 26,  3, 78, 22, 94, 63, 48)(  6, 56, 15)
        (  9,111, 20,116, 64,114)( 24,102, 82, 77, 98, 41, 51)
        ( 25, 80, 88, 99, 96, 52, 46,101,104, 71, 76, 43, 40, 29)
        ( 27, 69, 87, 44, 95, 30, 47, 79,110, 93, 74, 54, 35,106)
        ( 31,113, 86,121, 97,118, 53,112,108,115, 75,120, 42,117)
        ( 32, 36, 84, 33, 91, 85, 55, 90,107, 49, 68,109, 38, 73), 
      (  1, 12,100, 56, 34, 67, 45)(  2, 18,102, 64, 41, 76, 50, 11, 15,101,
          62, 36, 75, 52, 10, 17,110, 59, 35, 73, 47,  9, 19,109, 61, 44, 70,
          46,  7, 14,108, 63, 43, 72, 55,  4, 13,106, 58, 42, 74, 54,  6, 22,
         103, 57, 40, 69, 53,  8, 21,105, 66, 37, 68, 51,  3, 20,107, 65, 39,
          77, 48)(  5, 16,104, 60, 38, 71, 49)( 24, 29, 25, 31, 30, 32, 28,
          33, 26)( 78,111, 89)( 79,117, 91, 86,118, 98, 83,121, 92)
        ( 80,119, 96, 87,116, 99, 81,112, 95)( 82,115, 93)( 84,113, 97, 85,
         120, 94, 88,114, 90) ] ],
[ 51, 1593350922240000, 0, "4c", [ [ 100, 1 ], [ 20, 1 ] ], 1, 
  "Alt(11)^2.2^2", [ "A", 11, 2 ], 
  [ (  1, 19, 54, 67, 17, 65, 77, 94, 57, 88, 97,112, 81, 42,115,103, 40, 27,
         102,  7, 30, 47)(  2, 85, 53,111, 15, 43, 71,105, 62, 33, 91)
        (  3,  8, 52, 45, 12, 21, 76, 72, 61, 66, 99, 90, 79, 86,119,114, 37,
          38,104,106, 29, 25)(  4, 41, 49,100, 18, 32, 69,  6, 63, 55, 89, 13,
         87, 75,116, 59, 44, 93,101, 84, 31,113)(  5,107, 51, 23, 14, 10, 74,
          50, 56, 22, 98, 68, 83, 64,121, 92, 35, 82,108,117, 26, 36)
        (  9,118, 48, 34, 16,109, 73, 28, 58, 11, 96, 46, 78, 20,120, 70, 39,
          60,110, 95, 24, 80), 
      (  2, 56)(  3, 12,  4, 45,  8,100,  5, 34,  6, 23)(  7, 78, 10, 89,  9,
          67)( 11,111)( 13, 59, 46, 63,101, 60, 35, 61, 24, 58)
        ( 14, 15, 48, 52,107,104, 38, 39, 28, 25)( 16, 37, 50, 30,102)
        ( 17, 26, 47, 19,103, 49, 41,105, 27, 36)( 18, 81, 54, 96,108, 71, 40,
         83, 32, 91, 20, 70, 51, 85,109, 93, 42, 72, 29, 80, 21, 92, 53, 74,
         106, 82, 43, 94, 31, 69)( 22,114, 55,118,110,115, 44,116, 33,113)
        ( 62, 79, 65, 90, 64, 68)( 66,112)( 73, 84, 87, 98, 97, 75)
        ( 76, 95, 86)( 77,117, 88,120, 99,119) ] ],
[ 52, 1593350922240000, 0, "4c", [ [ 100, 1 ], [ 20, 1 ] ], 1, "Alt(11)^2.4", 
  [ "A", 11, 2 ], 
  [ (  1, 77, 30, 21, 97,  3, 44, 24, 65, 92, 47, 34, 68, 63, 15, 53)
        (  2, 66, 26, 54, 89, 69, 41, 13, 64,  4, 55, 23, 76, 96, 14, 42)
        (  5, 88, 27, 87, 93, 80, 38, 79, 60, 81, 49, 78, 71, 85, 16, 86)
        (  6,110, 28,109, 94,102, 39,101, 61,103, 50,100, 72,107, 17,108)
        (  7,121, 29,120, 95,113, 40,112, 62,114, 51,111, 73,118, 18,119)
        (  8, 22, 31, 10, 99, 25, 43, 90, 58, 37, 46, 56, 70, 52, 12, 75)
        (  9, 11, 33, 32, 98, 91, 36, 35, 57, 59, 48, 45, 67, 74, 19, 20)
        ( 83,104)( 84,115)(106,116), 
      (  1, 40, 11, 36,  4, 38,  8, 35,  6, 43,  9, 34,  7, 44,  3, 37,  5,
          41,  2, 39, 10, 42)( 12, 95, 33,102, 59, 49, 19, 90, 28,109, 64, 45,
         18, 99, 25,103, 60, 52, 13, 94, 32,108, 56, 51, 22, 91, 26,104, 63,
          46, 17, 98, 31,100, 62, 55, 14, 92, 27,107, 57, 50, 21, 97, 23,106,
          66, 47, 15, 93, 30,101, 61, 54, 20, 89, 29,110, 58, 48, 16, 96, 24,
         105, 65, 53)( 67, 84,121, 69, 81,115, 74, 79,116, 76, 86,111, 73, 88,
         113, 70, 82,118, 68, 83,120, 75, 78,117, 77, 80,114, 71, 85,112, 72,
          87,119) ] ],
[ 53, 3186701844480000, 0, "4c", [ [ 100, 1 ], [ 20, 1 ] ], 1, 
  "Sym(11) wreath Sym(2)", [ "A", 11, 2 ], 
  [ (  1, 33, 48, 71,  6, 66, 54, 38,  3, 88, 52,104)(  2, 22, 51, 93)
        (  4, 77, 50, 60, 10, 44, 47, 82,  8,110, 45, 27)(  5, 11, 55, 49)
        (  7, 99, 46, 16)(  9,121, 53,115)( 12, 29, 92, 68, 17, 62, 98, 35,
          14, 84, 96,101)( 13, 18, 95, 90)( 15, 73, 94, 57, 21, 40, 91, 79,
          19,106, 89, 24)( 20,117, 97,112)( 23, 26, 70, 72, 61, 65, 43, 36,
          80, 85,107,100)( 25, 81, 74,105, 56, 32, 37, 69, 83, 63,109, 34)
        ( 28, 59, 76, 39, 58, 87, 41,102, 78, 30,103, 67)( 31,114, 75,116, 64,
         120, 42,113, 86,118,108,111), 
      (  1, 77, 19, 87,113, 45, 68,107, 81, 58, 50, 24,108,  4, 66, 17, 32,119
         )(  2,110, 15, 65,116, 23, 75,  8, 88, 14, 54,112,100, 70, 63, 83,
          25, 53)(  3, 55, 13,109,114, 56, 72, 30, 86)(  5, 99, 16, 98,115,
          89, 71, 96, 82, 91, 49, 90,104, 92, 60, 94, 27, 97)(  6, 33, 20, 10,
         121, 12, 76,118, 78, 69, 52, 79,102, 48, 57,105, 26, 64)
        (  7, 44, 18, 43,117, 34, 73, 41, 84, 36, 51, 35,106, 37, 62, 39, 29,
          42)(  9, 11, 22, 21,120,111, 67, 74, 85, 80, 47, 46,101,103, 59, 61,
         28, 31)( 38, 95) ] ],
[54, Factorial(121)/2,1,"2",[[120,1]],119, "Alt(121)", ["A",121, 1], "Alt"],
[55, Factorial(121),0,"2",[[120, 1]],121, "Sym(121)", ["A",121, 1], "Sym"],
[ 56, 14520, 0, "1", [ [ 120, 1 ] ], 2, "11^2:(2.Alt(5))", [ "Z", 11, 2 ], 
  [ [ [ 0*Z(11), Z(11)^0 ], [ Z(11)^5, 0*Z(11) ] ], 
      [ [ 0*Z(11), Z(11) ], [ Z(11)^4, Z(11)^2 ] ] ] ],
[ 57, 72600, 0, "1", [ [ 120, 1 ] ], 2, "11^2:(5 x 2.Alt(5))", 
  [ "Z", 11, 2 ], 
  [ [ [ Z(11)^0, 0*Z(11) ], [ Z(11)^3, Z(11)^8 ] ], [ [ 0*Z(11), Z(11)^0 ], 
          [ Z(11)^9, 0*Z(11) ] ] ] ]];
PRIMGRP[122]:= 
[[ 1, 885720, 1, "2", [ [ 121, 1 ] ], 2, "PSL(2, 11^2)", 
  [ "L", [ 2, 121 ], 1 ], 
  [ (  1,122, 63, 28, 10, 86, 18, 23, 99, 39, 46, 89,113,111, 68)
        (  2,106, 56, 27, 76, 61,  8, 24, 35, 54,110, 15,103, 34, 79)
        (  3, 62,116,117, 43, 83, 74, 41, 70,105, 20, 40, 82, 51, 60)
        (  4,  9, 22, 47,115, 84, 66, 33, 45, 14, 69, 16, 93, 49,101)
        (  5, 31, 30, 94, 42,108, 75,109, 77,114, 58,120, 97, 72, 21)
        (  6, 50, 29, 78, 81,121,  7, 44, 32, 57, 13, 67,100, 91,119)
        ( 11, 55, 88,107, 92, 17, 38, 59, 98, 52, 12, 19, 26, 36, 80)
        ( 25,104, 90, 53, 85, 64, 37, 48, 95, 71,112, 73,118, 96, 65), 
      (  1,  5, 53, 10, 40,111,101, 85, 22, 97,106, 69, 59, 82, 35, 93, 21,
          75, 16, 31, 71,  9, 12, 50, 66, 67, 78, 84,105, 61,118, 33, 62,121,
           4, 11, 47, 28,  8,113, 55, 29,122,  3, 95, 45, 37, 34, 70, 74, 77,
          44, 58, 57, 15, 54, 43, 36, 14, 19, 56)(  2, 87, 98,112, 18,120,108,
         119, 83, 25,104, 32, 17, 42, 41, 96, 88, 64,115, 63, 20, 81, 89, 13,
           6, 30,109, 86, 72, 24, 68, 49, 80, 90, 38,110, 91, 65,114,107, 92,
         103, 94,100,  7, 46, 52, 73,102,116, 79, 39, 76, 48, 27, 99, 60, 26,
          51, 23,117) ] ],
[ 2, 1771440, 0, "2", [ [ 121, 1 ] ], 3, "PGL(2, 11^2)", 
  [ "L", [ 2, 121 ], 1 ], 
  [ (  1, 50,119, 35, 70, 27, 43, 22, 52, 39, 53, 48, 63, 40, 67, 12, 33,122,
         100, 32, 29, 71, 11, 89,112, 55, 75,  5,120, 18,  9, 25, 97,103, 86,
         107, 59,111,104, 66, 76, 83,  2,  3,114,109, 23, 82, 31,102, 57,101,
         116, 85, 38,  8, 14, 21, 87, 44, 15)(  4, 93, 98, 64, 26, 78, 54, 60,
         108, 96, 17, 90, 16, 45,110, 34, 58, 24, 94, 95, 79, 13,118, 41, 65,
           7, 73, 47, 81, 92,117, 10, 68, 74, 49, 46, 77,115,  6,113, 69, 56,
          99, 28, 61, 37, 42, 84, 80, 30, 19,106, 36, 72,105, 88,121, 62, 91,
          20, 51), (  1,116,118, 34, 37, 13,104, 63, 60, 31, 51, 36, 24,100,
          65, 73, 85,117, 81, 12, 10, 93, 84, 22, 88,114, 50, 39,  2, 99, 83,
           4, 92, 69, 94,115, 86, 41, 45, 95)(  3,  6, 16, 18, 27,107,120, 20,
         19, 25,111,  5, 58, 40, 97, 53, 71, 57, 96, 52,108, 56, 30, 54, 14,
          28, 35,102, 32, 46, 11, 29, 91,112, 75, 68,103, 44,101, 98)
        (  7, 90, 59, 42, 70,110, 66, 55, 26,119, 82, 38, 87, 77, 43, 48,109,
          79, 21, 15,121, 47, 17, 33, 49, 76, 89,  8,106,105,  9, 78,113, 61,
          67, 72, 62, 64, 80, 23) ] ],
[ 3, 1771440, 0, "2", [ [ 121, 1 ] ], 2, "PSigmaL(2, 11^2)", 
  [ "L", [ 2, 121 ], 1 ], 
  [ (  1, 25, 24, 60)(  2, 80,100,  7)(  3, 12, 26,105)(  4,119, 49, 92)
        (  5, 11, 15, 45)(  6, 53, 44, 58)(  8,116, 28, 30)(  9,108, 20, 61)
        ( 10, 97, 40, 81)( 13, 31,117, 82)( 14, 48, 42,107)( 16,109,115, 69)
        ( 17, 55, 21, 70)( 18, 84, 88, 79)( 19,122, 76, 98)( 22, 63, 57, 29)
        ( 23, 87, 35, 46)( 27, 71, 43, 72)( 32,118, 65, 89)( 33, 86, 39, 62)
        ( 34,112, 78, 73)( 36,120,101,102)( 37, 52, 99, 56)( 38, 74, 75,121)
        ( 41,110, 66, 95)( 47,113,104, 77)( 50,111, 68,114)( 51, 59,106, 94)
        ( 54,103, 93, 83)( 64, 91, 85, 67)( 90, 96), 
      (  1,104, 76, 70)(  2,107, 59,  6)(  3, 96, 21, 79)(  4,108, 56, 90)
        (  5,  9,122, 62)(  7, 77, 71, 60)(  8, 45,105, 48)( 10, 44, 88, 17)
        ( 11, 92, 61, 89)( 12,100, 58,120)( 13, 75, 33, 37)( 14,113,116, 87)
        ( 15, 24,117,111)( 16, 93, 68, 26)( 18, 32, 36, 81)( 19, 40,110, 73)
        ( 20, 97, 41, 84)( 22,109, 83, 27)( 23, 52, 28,121)( 25, 69,118, 30)
        ( 29, 50,103, 43)( 31, 38, 49, 57)( 34, 54, 91, 85)( 35, 46, 39, 53)
        ( 51,101, 86, 95)( 55, 66, 63,114)( 64,119, 72,102)( 65,106, 74, 67)
        ( 78,112,115, 80)( 82, 99, 98, 94) ] ],
[ 4, 1771440, 0, "2", [ [ 121, 1 ] ], 3, "PSL(2, 11^2).2_3", 
  [ "L", [ 2, 121 ], 1 ], 
  [ (  1, 97, 53, 30, 71, 29,104,118, 43, 79, 98, 92, 31, 19, 50, 88,  7, 63,
         103, 80, 94,114, 41, 87, 61, 17, 72, 66,106, 22, 55,112, 65,107, 40,
         109, 69, 81, 46, 14, 23, 21, 45, 67, 24, 90, 38, 12, 85,  9,116, 93,
         121, 25, 51,102, 15, 57,  6, 37, 74)(  2, 84, 99, 83, 27,122,  3, 34,
         39, 49,117, 75,115, 33, 54, 18, 77, 32, 28,113, 59, 91,119,120, 76,
          70, 10, 73, 35,  5,  8,  4, 95, 11, 36, 62, 56, 48, 64, 26, 47, 82,
          78, 20, 52,111,110, 60, 44, 42,108, 96, 86, 68, 58, 13, 89,105, 16,
         101,100), (  1,108, 34, 53,117,  2,110, 92, 43, 21, 20, 89, 74, 23,
         103,111,121, 31,120, 68, 45, 72,  8,116)(  3,  5, 87, 35, 16, 25, 94,
         102, 15, 63, 37, 88,122, 30, 69, 36, 76,109, 67,104, 54, 62, 44, 84)
        (  4, 24, 65, 49, 99,105, 96, 93, 42, 73, 75, 26, 33,  9, 46, 22, 81,
          17, 71, 41,112, 85,100, 61)(  6, 79, 60, 57, 38,119, 12, 78, 11, 28,
         97, 52, 40, 82, 90, 48, 64, 32, 55, 66,115, 14, 86, 18)
        (  7, 56, 77,106, 47, 91, 19, 95, 58, 27,114,107, 10,113, 98, 59, 70,
          80, 13, 39, 29, 50, 83, 51)(101,118) ] ],
[ 5, 3542880, 0, "2", [ [ 121, 1 ] ], 3, "PGammaL(2, 11^2)", 
  [ "L", [ 2, 121 ], 1 ], 
  [ (  1, 25, 52,104,101, 94, 23, 56, 36, 27, 50, 20,118, 42, 57, 59, 85, 19,
         115, 97, 91, 55, 41,117, 75,109, 34, 82, 32, 67, 13, 63,102, 71, 79,
          77, 88, 87, 70,  2, 61,121,111, 31, 48, 11, 81, 16, 80, 39, 64, 68,
          17, 21, 46,  5, 69,  4, 74, 37, 54, 96, 86, 24, 83, 15,120,119,  8,
           6, 14,105, 22, 72, 18, 53,  3, 51, 98, 10, 90, 44, 30,116,110, 92,
          66,122, 26, 28, 43, 89, 65, 35, 58, 49, 29, 62,113,106,103, 33, 60,
          84,100, 78,  9, 12, 99, 95, 40,114, 93, 45,112,108, 73, 76,  7,107),
      (  1, 51,110, 45,111, 94, 74, 47, 63, 28, 70, 19, 34, 15, 84, 38, 81,
          67, 60,121)(  2, 89, 90, 91, 46,101, 44,  4, 71, 61, 43,100, 48, 31,
         59,118, 49,122,107, 22)(  3,  5, 55,117,109,  6, 16, 11, 39,105, 35,
          10, 26,  8,  7, 86, 82, 52,  9, 69)( 12, 72, 27,103, 42, 18, 98,108,
         80, 77, 56, 37, 88, 97,120, 40, 96, 83, 78, 25)( 13, 66, 57, 53, 24,
         116, 30, 95,119, 92, 41, 20,114,106, 64,113,112,102, 62, 65)
        ( 14, 76, 79,115, 17, 50, 99, 75, 68, 85, 36, 87, 73, 32,104, 54, 29,
          58, 93, 23) ] ],
[6, Factorial(122)/2,1,"2",[[121,1]],120, "Alt(122)", ["A",122, 1], "Alt"],
[7, Factorial(122),0,"2",[[121, 1]],122, "Sym(122)", ["A",122, 1], "Sym"]];
PRIMGRP[123]:= 
[[1, Factorial(123)/2,1,"2",[[122,1]],121, "Alt(123)", ["A",123, 1], "Alt"],
[2, Factorial(123),0,"2",[[122, 1]],123, "Sym(123)", ["A",123, 1], "Sym"]];
PRIMGRP[124]:= 
[[1, Factorial(124)/2,1,"2",[[123,1]],122, "Alt(124)", ["A",124, 1], "Alt"],
[2, Factorial(124),0,"2",[[123, 1]],124, "Sym(124)", ["A",124, 1], "Sym"]];
PRIMGRP[125]:= 
[[ 1, 1500, 2, "1", [ [ 4, 4 ], [ 6, 2 ], [ 12, 8 ] ], 1, "5^3:Alt(4)", 
  [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^2, 
              Z(5)^2, Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5)^0, 0*Z(5), 0*Z(5) ], 
          [ Z(5)^2, Z(5)^2, Z(5)^2 ] ] ] ],
[ 2, 3000, 2, "1", [ [ 4, 4 ], [ 6, 2 ], [ 24, 1 ], [ 12, 6 ] ], 1, 
  "5^3:Sym(4)", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^2, Z(5)^2, Z(5)^2 ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2, Z(5)^2 ], 
          [ 0*Z(5), Z(5)^0, 0*Z(5) ] ] ] ],
[ 3, 3000, 2, "1", [ [ 12, 2 ], [ 24, 3 ], [ 6, 2 ], [ 8, 2 ] ], 1, 
  "5^3:Sym(4)", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^0, Z(5)^2, Z(5)^0 ] ], 
      [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^2 ], 
          [ Z(5)^2, Z(5)^0, Z(5)^2 ] ] ] ],
[ 4, 3000, 2, "1", [ [ 12, 4 ], [ 24, 2 ], [ 6, 2 ], [ 8, 2 ] ], 1, 
  "5^3:(2 wreath Alt(3))", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^2, 0*Z(5), 0*Z(5) ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^0, 0*Z(5), 0*Z(5) ], 
          [ 0*Z(5), Z(5)^2, 0*Z(5) ] ] ] ],
[ 5, 3875, 2, "1", [ [ 31, 4 ] ], 1, "5^3:31", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5), Z(5)^3, Z(5)^0 ], 
          [ Z(5)^0, Z(5)^2, 0*Z(5) ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^0, Z(5)^2, 0*Z(5) ], 
          [ 0*Z(5), Z(5)^0, Z(5) ] ] ] ],
[ 6, 6000, 2, "1", [ [ 12, 1 ], [ 24, 2 ], [ 48, 1 ], [ 16, 1 ] ], 1, 
  "5^3:(4 x Alt(4))", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5) ], 
          [ Z(5)^0, 0*Z(5), 0*Z(5) ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^2, 0*Z(5), 0*Z(5) ], 
          [ 0*Z(5), Z(5)^3, 0*Z(5) ] ] ] ],
[ 7, 6000, 2, "1", [ [ 12, 3 ], [ 24, 1 ], [ 48, 1 ], [ 16, 1 ] ], 1, 
  "5^3:2^2:Q_12", [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^0, Z(5)^3, Z(5) ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5)^2, 0*Z(5), 0*Z(5) ], 
          [ Z(5)^3, Z(5)^0, Z(5) ] ] ] ],
[ 8, 6000, 2, "1", [ [ 12, 1 ], [ 48, 1 ], [ 16, 4 ] ], 1, "5^3:4^2:3", 
  [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), 
              Z(5)^3 ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^0, 0*Z(5), 0*Z(5) ] ] ] ],
[ 9, 6000, 2, "1", [ [ 12, 2 ], [ 24, 3 ], [ 6, 2 ], [ 8, 2 ] ], 1, 
  "5^3:(2 x Sym(4))", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^2, 0*Z(5), 0*Z(5) ] ], 
      [ [ Z(5)^2, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^2 ], 
          [ 0*Z(5), Z(5)^0, 0*Z(5) ] ] ] ],
[ 10, 7750, 2, "1", [ [ 62, 2 ] ], 1, "5^3:62", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^2, Z(5)^0, Z(5)^2 ] ], 
      [ [ Z(5), Z(5)^3, 0*Z(5) ], [ 0*Z(5), Z(5), Z(5)^3 ], 
          [ Z(5), Z(5)^3, Z(5)^2 ] ] ] ],
[ 11, 11625, 2, "1", [ [ 31, 4 ] ], 1, "5^3:31:3", [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ 0*Z(5), Z(5)^2, Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5), 0*Z(5), Z(5)^2 ], 
          [ Z(5)^2, Z(5)^2, 0*Z(5) ] ] ] ],
[ 12, 12000, 2, "1", [ [ 12, 1 ], [ 24, 2 ], [ 48, 1 ], [ 16, 1 ] ], 1, 
  "5^3:(4 x Sym(4))", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5), 0*Z(5), 0*Z(5) ] ], 
      [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^3 ], 
          [ 0*Z(5), Z(5)^3, 0*Z(5) ] ] ] ],
[ 13, 12000, 2, "1", [ [ 12, 1 ], [ 48, 1 ], [ 32, 2 ] ], 1, 
  "5^3:(2 x 4^2:3)", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5), Z(5)^0, 0*Z(5) ], 
          [ Z(5)^0, Z(5), Z(5) ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^0, Z(5)^2, Z(5)^0 ], 
          [ 0*Z(5), Z(5)^2, Z(5)^0 ] ] ] ],
[ 14, 12000, 2, "1", [ [ 12, 1 ], [ 48, 1 ], [ 32, 2 ] ], 1, "5^3:4^2:Sym(3)",
  [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5), Z(5)^2, 0*Z(5) ], [ Z(5)^3, 0*Z(5), 
              Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^0, 0*Z(5), 0*Z(5) ] ] ] ],
[ 15, 12000, 2, "1", [ [ 12, 1 ], [ 48, 1 ], [ 16, 4 ] ], 1, "5^3:4^2:Sym(3)",
  [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^3, 
              Z(5)^2, Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5), 0*Z(5), Z(5)^3 ], 
          [ Z(5)^0, Z(5), Z(5) ] ] ] ],
[ 16, 15500, 2, "1", [ [ 124, 1 ] ], 2, "AGL(1, 5^3)", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), Z(5)^3, Z(5)^0 ], 
          [ Z(5)^3, Z(5), Z(5)^2 ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^3, Z(5), Z(5)^2 ], 
          [ Z(5)^3, Z(5)^0, Z(5)^0 ] ] ] ],
[ 17, 23250, 2, "1", [ [ 62, 2 ] ], 1, "5^3:(2 x 91:3)", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5)^3, 0*Z(5), Z(5)^2 ], 
          [ Z(5)^0, Z(5)^3, 0*Z(5) ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ 0*Z(5), Z(5), Z(5)^3 ], 
          [ Z(5)^3, Z(5)^0, Z(5)^3 ] ] ] ],
[ 18, 24000, 2, "1", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, "5^3:4^2:Q_12", 
  [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^0, 
              Z(5)^2, Z(5)^2 ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5)^3, Z(5), 0*Z(5) ], 
          [ Z(5)^3, 0*Z(5), Z(5)^0 ] ] ] ],
[ 19, 24000, 2, "1", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "5^3:(4 wreath Alt(3))", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5), 0*Z(5), 0*Z(5) ] ], 
      [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5)^0, Z(5)^2, Z(5) ], 
          [ Z(5)^0, Z(5), 0*Z(5) ] ] ] ],
[ 20, 24000, 2, "1", [ [ 12, 1 ], [ 48, 1 ], [ 32, 2 ] ], 1, 
  "5^3:(2 x 4^2:Sym(3))", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5)^3, 0*Z(5), 0*Z(5) ], 
          [ 0*Z(5), 0*Z(5), Z(5)^3 ] ], 
      [ [ Z(5)^3, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ 0*Z(5), Z(5), 0*Z(5) ] ] ] ],
[ 21, 46500, 2, "1", [ [ 124, 1 ] ], 2, "AGammaL(1, 5^3)", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5)^0, Z(5)^3, Z(5)^3 ], 
          [ 0*Z(5), 0*Z(5), Z(5) ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^0, 0*Z(5) ], 
          [ Z(5)^2, Z(5)^3, Z(5)^2 ] ] ] ],
[ 22, 48000, 2, "1", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "5^3:(GL(1, 5) wreath Sym(3))", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5)^3, 0*Z(5), 0*Z(5) ], 
          [ Z(5)^0, 0*Z(5), Z(5) ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^0, Z(5)^3, Z(5)^0 ], 
          [ Z(5)^0, 0*Z(5), Z(5) ] ] ] ],
[ 23, 46500000, 0, "1", [ [ 124, 1 ] ], 2, "ASL(3, 5)", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), Z(5), Z(5)^0 ], 
          [ Z(5)^0, Z(5)^3, Z(5)^2 ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5), Z(5), Z(5)^2 ], 
          [ 0*Z(5), Z(5)^3, Z(5)^3 ] ] ] ],
[ 24, 93000000, 0, "1", [ [ 124, 1 ] ], 2, "5^3:(SL(3, 5):2)", [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^2, Z(5)^0, Z(5)^0 ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5), Z(5)^2, Z(5)^2 ], 
          [ Z(5)^3, Z(5)^3, Z(5)^3 ] ] ] ],
[ 25, 186000000, 0, "1", [ [ 124, 1 ] ], 2, "AGL(3, 5)", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5)^2, Z(5), Z(5) ], 
          [ Z(5)^0, Z(5)^3, Z(5)^0 ] ], 
      [ [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^2, Z(5)^2, Z(5)^0 ], 
          [ Z(5)^0, Z(5)^2, Z(5)^3 ] ] ] ],
[ 26, 648000, 0, "4c", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "Alt(5) wreath 3", [ "A", 5, 3 ], 
  [ (  1, 36, 62, 70, 10, 81, 88, 73,125,109, 79, 28, 47,117, 19)
        (  2, 41, 12, 66, 15, 56, 90, 58,100,108, 99,103, 49,102, 44)
        (  3, 46,112, 69,  5, 31, 87, 68, 25,106, 89, 53, 50,107, 94)
        (  4, 26, 37, 67, 20,  6, 86, 63, 75,110, 84, 78, 48,122,119)
        (  7, 91, 13, 71,115, 59, 80, 33, 97,118, 24,101, 39, 52, 45)
        (  8, 96,113, 74,105, 34, 77, 43, 22,116, 14, 51, 40, 57, 95)
        (  9, 76, 38, 72,120)( 11, 61, 65, 60, 85, 83, 98,123,124,104, 29, 27,
         42, 17, 16)( 18, 21,111, 64, 55, 35, 82, 93, 23,121,114, 54, 30, 32,
          92), (  1, 47, 84, 11, 48, 59, 16, 50,109)(  2, 97, 89, 13, 73, 69,
          20,125,104)(  3, 72, 94, 15,123, 54, 17,100,114)(  4, 22, 99, 14,
          23, 74, 19, 25,124)(  5,122, 79, 12, 98, 64, 18, 75,119)
        (  6, 46, 34)(  7, 96, 39,  8, 71, 44, 10,121, 29)(  9, 21, 49)
        ( 26, 32, 81, 36, 33, 56, 41, 35,106)( 27, 82, 86, 38, 58, 66, 45,110,
         101)( 28, 57, 91, 40,108, 51, 42, 85,111)( 30,107, 76, 37, 83, 61,
          43, 60,116)( 52, 92, 90,113, 53, 67, 95,115,103)( 55,117, 80,112,
          78, 62, 93, 65,118)( 63, 68, 70,120,105,102, 77, 87, 88) ] ],
[ 27, 1296000, 0, "4c", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, "Alt(5)^3.6", 
  [ "A", 5, 3 ], 
  [ (  1, 22,102,  3, 12, 52,  4,  7, 77,  5, 17, 27)(  6, 97,105, 18, 37, 51,
         24,107, 78, 15, 67, 29)(  8, 87, 55, 19, 32, 76, 25,117, 28, 11, 72,
         104)(  9, 82, 80, 20, 42, 26, 21,122,103, 13, 62, 54)
        ( 10, 92, 30, 16, 47,101, 23,112, 53, 14, 57, 79)( 31, 96,125,118, 38,
         61, 74,109, 83, 90, 70, 44)( 33, 86, 75,119)( 34, 81,100,120, 43, 36,
         71,124,108, 88, 65, 69)( 35, 91, 50,116, 48,111, 73,114, 58, 89, 60,
          94)( 39, 56, 99,110, 93, 40, 66, 49,106, 98,115, 68)
        ( 41, 46,121,123,113, 63, 64, 59, 84, 85, 95, 45), 
      (  1, 80, 91, 51, 77, 86, 26, 78, 96,101, 79, 81)(  2, 90, 41, 53, 97,
         111, 29, 83, 21,105, 94, 56)(  3,100,116, 54, 82, 11, 30, 93, 71,102,
         89, 31)(  4, 85, 16, 55, 92, 61, 27, 88, 46,103, 99,106)
        (  5, 95, 66, 52, 87, 36, 28, 98,121,104, 84,  6)(  7, 15, 45, 68, 72,
         112, 39, 33, 23,125,119, 59)(  8, 25,120, 69, 57, 12, 40, 43, 73,122,
         114, 34)(  9, 10, 20, 70, 67, 62, 37, 38, 48,123,124,109)
        ( 13, 50,118, 74,107, 14, 35, 18, 75,117, 64, 32)( 17, 65, 42, 63, 47,
         113, 49,108, 24,110, 19, 60)( 22,115, 44, 58) ] ],
[ 28, 1296000, 0, "4c", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "Alt(5) wreath Sym(3)", [ "A", 5, 3 ], 
  [ (  1,122, 13,120,  9,101, 22,113, 20,109)(  2,112, 15,110,  6,121, 23,118,
         19,104)(  3,117, 14,105,  7,111, 25,108, 16,124)(  4,102, 12,115, 10,
         106, 21,123, 18,119)(  5,107, 11,125,  8,116, 24,103, 17,114)
        ( 26, 72, 38, 70, 34, 51, 47, 63, 45, 59)( 27, 62, 40, 60, 31, 71, 48,
         68, 44, 54)( 28, 67, 39, 55, 32, 61, 50, 58, 41, 74)( 29, 52, 37, 65,
         35, 56, 46, 73, 43, 69)( 30, 57, 36, 75, 33, 66, 49, 53, 42, 64)
        ( 76, 97, 88, 95, 84)( 77, 87, 90, 85, 81, 96, 98, 93, 94, 79)
        ( 78, 92, 89, 80, 82, 86,100, 83, 91, 99), 
      (  1,  6,  7, 57, 62, 65, 90, 80, 76)(  2, 56, 12, 60, 87, 55, 86,  5,
          81)(  3, 31, 17, 58, 37, 70, 88, 30, 91)(  4,106, 22, 59,112, 75,
          89,105, 96)(  8, 32, 67, 63, 40, 95, 78, 26, 16)(  9,107, 72, 64,
         115,100, 79,101, 21)( 10, 82, 52, 61, 15, 85, 77, 51, 11)
        ( 13, 35, 92, 53, 36, 20, 83, 27, 66)( 14,110, 97, 54,111, 25, 84,102,
         71)( 18, 33, 42, 68, 38, 45, 93, 28, 41)( 19,108, 47, 69,113, 50, 94,
         103, 46)( 23, 34,117, 73, 39,120, 98, 29,116)( 24,109,122, 74,114,
         125, 99,104,121)( 44,118, 48)( 49,119,123) ] ],
[ 29, 1296000, 0, "4c", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "Alt(5)^3.Sym(3)", [ "A", 5, 3 ], 
  [ (  1, 44, 11, 45,  6, 43)(  2, 49, 12, 50,  7, 48)(  3, 29, 14, 40, 10, 33
         )(  4, 39, 15, 35,  8, 28)(  5, 34, 13, 30,  9, 38)( 16, 41)( 17, 46)
        ( 18, 26, 19, 36, 20, 31)( 21, 42)( 22, 47)( 23, 27, 24, 37, 25, 32)
        ( 51, 94,111, 70, 81,118)( 52, 99,112, 75, 82,123)( 53, 79,114, 65,
          85,108)( 54, 89,115, 60, 83,103)( 55, 84,113)( 56, 93,101, 69, 86,
         120)( 57, 98,102, 74, 87,125)( 58, 78,104, 64, 90,110)( 59, 88,105)
        ( 61, 95,106, 68, 76,119)( 62,100,107, 73, 77,124)( 63, 80,109)
        ( 66, 91,116)( 67, 96,117, 71, 92,121)( 72, 97,122), 
      (  1,104,122, 17, 94, 98, 13, 39, 46)(  2,119, 97, 18, 89, 48, 11, 29,
         121)(  3,114, 47, 16, 79,123, 12, 44, 96)(  4,124, 22, 19, 99, 23,
          14, 49, 21)(  5,109, 72, 20, 84, 73, 15, 34, 71)(  6, 54,125,  7,
          69,100,  8, 64, 50)(  9, 74, 25)( 10, 59, 75)( 26,101,102,117, 92,
          93, 88, 38, 36)( 27,116, 77,118, 87, 43, 86, 28,111)
        ( 30,106, 52,120, 82, 68, 90, 33, 61)( 31, 51,105,107, 67, 95, 83, 63,
         40)( 32, 66, 80,108, 62, 45, 81, 53,115)( 35, 56, 55,110, 57, 70, 85,
         58, 65)( 37, 41, 76,103,112, 42, 91, 78,113) ] ],
[ 30, 2592000, 0, "4c", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "Alt(5)^3.2^2.3", [ "A", 5, 3 ], 
  [ (  1, 24, 18, 15,  2, 21, 19, 13,  5, 22, 16, 14,  3, 25, 17, 11,  4, 23,
          20, 12)(  6,  9,  8, 10,  7)( 26, 74, 43, 65, 27, 71, 44, 63, 30,
          72, 41, 64, 28, 75, 42, 61, 29, 73, 45, 62)( 31, 59, 33, 60, 32, 56,
         34, 58, 35, 57)( 36, 54, 48, 70, 37, 51, 49, 68, 40, 52, 46, 69, 38,
          55, 47, 66, 39, 53, 50, 67)( 76, 99, 93, 90, 77, 96, 94, 88, 80, 97,
         91, 89, 78,100, 92, 86, 79, 98, 95, 87)( 81, 84, 83, 85, 82)
        (101,124,118,115,102,121,119,113,105,122,116,114,103,125,117,111,104,
         123,120,112)(106,109,108,110,107), 
      (  1, 53,108,115, 11, 51, 58,110, 15)(  2, 78,118,112, 86, 66, 57, 85,
          20)(  3,103,113,111, 61, 56, 60, 10,  5)(  4, 28,123,114, 36, 71,
          59, 35, 25)(  6, 55,  8,105, 13,101, 63,106, 65)(  7, 80, 18,102,
          88,116, 62, 81, 70)(  9, 30, 23,104, 38,121, 64, 31, 75)
        ( 12, 76, 68,107, 90, 16, 52, 83,120)( 14, 26, 73,109, 40, 21, 54, 33,
         125)( 17, 77, 93,117, 87, 91, 67, 82, 95)( 19, 27, 98,119, 37, 96,
          69, 32,100)( 22, 79, 43,122, 89, 41, 72, 84, 45)( 24, 29, 48,124,
          39, 46, 74, 34, 50)( 42, 97, 94)( 44, 47, 99) ] ],
[ 31, 2592000, 0, "4c", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "Alt(5)^3.D_12", [ "A", 5, 3 ], 
  [ (  1,110, 68, 46,  9, 65, 91, 32, 54,111, 83, 72)(  2,105,118, 48, 24, 15,
         95, 42, 29,114, 88, 97)(  3,125, 18, 50, 19, 40, 94, 37, 79,112, 78,
         122)(  4,115, 93, 47)(  5,120, 43, 49, 14, 90, 92, 27,104,113, 98, 22
         )(  6, 60, 66, 31, 59, 61, 81, 57, 51,106, 58, 71)(  7, 55,116, 33,
          74, 11, 85, 67, 26,109, 63, 96)(  8, 75, 16, 35, 69, 36, 84, 62, 76,
         107, 53,121)( 10, 70, 41, 34, 64, 86, 82, 52,101,108, 73, 21)
        ( 12, 80,117, 28,124, 13,100, 17, 30,119, 38, 99)( 20, 45, 44, 39, 89,
         87, 77,102,103,123, 23, 25), (  1, 43, 61, 27, 91, 40)(  2, 93, 65)
        (  3, 68, 62, 77, 95, 15)(  4,118, 64,102, 94,115)(  5, 18, 63, 52,
          92, 90)(  6, 48, 56, 47, 81, 50)(  7, 98, 60, 22, 83, 75)
        (  8, 73, 57, 97, 85, 25)(  9,123, 59,122, 84,125)( 10, 23, 58, 72,
          82,100)( 11, 28, 66, 37, 76, 45)( 12, 78, 70)( 13, 53, 67, 87, 80,
          20)( 14,103, 69,112, 79,120)( 16, 38, 51, 42, 86, 30)( 17, 88, 55)
        ( 19,113, 54,117, 89,105)( 21, 33, 71, 32, 96, 35)( 24,108, 74,107,
          99,110)( 26, 41, 36)( 29,116, 39,101, 44,111)( 31, 46)( 34,121)
        ( 49,106)(104,119,114)(109,124) ] ],
[ 32, 5184000, 0, "4c", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "Sym(5) wreath 3", [ "A", 5, 3 ], 
  [ (  1, 12,  5, 14)(  2, 15,  4, 11)(  3, 13)(  6, 17, 10, 19)
        (  7, 20,  9, 16)(  8, 18)( 21, 22, 25, 24)( 26, 87, 55, 39, 76, 62,
          30, 89, 51, 37, 80, 64)( 27, 90, 54, 36, 77, 65, 29, 86, 52, 40, 79,
         61)( 28, 88, 53, 38, 78, 63)( 31, 92, 60, 44, 81, 67, 35, 94, 56, 42,
         85, 69)( 32, 95, 59, 41, 82, 70, 34, 91, 57, 45, 84, 66)
        ( 33, 93, 58, 43, 83, 68)( 46, 97, 75, 49, 96, 72, 50, 99, 71, 47,100,
         74)( 48, 98, 73)(101,112,105,114)(102,115,104,111)(103,113)
        (106,117,110,119)(107,120,109,116)(108,118)(121,122,125,124), 
      (  1, 98, 70, 27,113, 59)(  2,123, 60, 26, 88, 69)(  3, 73, 55, 28, 63,
          54)(  4, 23, 75, 30, 38, 64)(  5, 48, 65, 29, 13, 74)
        (  6, 96, 95, 42,112,109)(  7,121, 85, 41, 87,119)(  8, 71, 80, 43,
          62,104)(  9, 21,100, 45, 37,114)( 10, 46, 90, 44, 12,124)
        ( 11, 99, 20, 47,115, 34)( 14, 24, 25, 50, 40, 39)( 15, 49)
        ( 16, 97,120, 32,111, 84)( 17,122,110, 31, 86, 94)( 18, 72,105, 33,
          61, 79)( 19, 22,125, 35, 36, 89)( 51, 78, 68, 52,103, 58)
        ( 56, 76, 93, 67,102,108)( 57,101, 83, 66, 77,118)( 81, 91, 92,117,
         107,106)( 82,116) ] ],
[ 33, 5184000, 0, "4c", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "Alt(5)^3.Sym(4)", [ "A", 5, 3 ], 
  [ (  1, 45,113, 79, 47, 58)(  2, 35, 13, 80, 37, 83)(  3, 30, 38, 78, 27, 33
         )(  4, 50, 63, 76, 42,108)(  5, 40, 88, 77, 32,  8)(  6, 20,115, 89,
          97, 57)(  7, 10, 15, 90, 87, 82)(  9, 25, 65, 86, 92,107)
        ( 11, 95,112, 84, 22, 60)( 12, 85)( 14,100, 62, 81, 17,110)
        ( 16,120,114, 99, 72, 56)( 18,105, 39, 98, 52, 31)( 19,125, 64, 96,
          67,106)( 21, 70,111, 94,122, 59)( 23, 55, 36, 93,102, 34)
        ( 24, 75, 61, 91,117,109)( 26, 43,103, 29, 48, 53)( 41,118,104, 49,
          73, 51)( 44,123, 54, 46, 68,101)( 66,116,119,124, 74, 71)( 69,121), 
      (  1, 47, 60, 14, 77, 71, 34, 90)(  2, 72, 59, 89, 76, 46, 35, 15)
        (  3,122, 58,114, 78,121, 33,115)(  4, 97, 56, 39, 80, 21, 32, 65)
        (  5, 22, 57, 64, 79, 96, 31, 40)(  6, 37, 55, 24, 82, 61, 29,100)
        (  7, 62, 54, 99, 81, 36, 30, 25)(  8,112, 53,124, 83,111, 28,125)
        (  9, 87, 51, 49, 85, 11, 27, 75)( 10, 12, 52, 74, 84, 86, 26, 50)
        ( 13,102, 73,109, 88,101, 48,110)( 16, 42, 70, 19, 92, 66, 44, 95)
        ( 17, 67, 69, 94, 91, 41, 45, 20)( 18,117, 68,119, 93,116, 43,120)
        ( 23,107, 63,104, 98,106, 38,105)(103,123,108,113) ] ],
[ 34, 5184000, 0, "4c", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "Alt(5)^3.Sym(4)", [ "A", 5, 3 ], 
  [ (  1, 93,112, 25, 81,119,  2, 98,111, 20, 82,124)(  3, 88,115, 10, 84,104)
        (  4, 78,113, 15, 85,109)(  5, 83,114)(  6, 94,102, 23, 86,120,  7,
          99,101, 18, 87,125)(  8, 89,105)(  9, 79,103, 13, 90,110)
        ( 11, 95,107, 24, 76,118, 12,100,106, 19, 77,123)( 14, 80,108)
        ( 16, 92,122, 21, 91,117, 22, 96,116, 17, 97,121)( 26, 43, 37, 50, 31,
         44, 27, 48, 36, 45, 32, 49)( 28, 38, 40, 35, 34, 29)( 30, 33, 39)
        ( 41, 42, 47, 46)( 51, 68, 62, 75, 56, 69, 52, 73, 61, 70, 57, 74)
        ( 53, 63, 65, 60, 59, 54)( 55, 58, 64)( 66, 67, 72, 71), 
      (  1, 80, 94, 64, 38, 46)(  2, 85,119, 62, 33,121)(  3,100, 19, 65, 43,
          71)(  4, 90, 44, 61, 28, 96)(  5, 95, 69, 63, 48, 21)
        (  6,105, 92, 59,113, 47)(  7,110,117, 57,108,122)(  8,125, 17, 60,
         118, 72)(  9,115, 42, 56,103, 97)( 10,120, 67, 58,123, 22)
        ( 11, 30, 91, 54, 88, 49)( 12, 35,116, 52, 83,124)( 13, 50, 16, 55,
          93, 74)( 14, 40, 41, 51, 78, 99)( 15, 45, 66, 53, 98, 24)( 18, 75)
        ( 20, 70, 68, 73, 23, 25)( 26, 76, 79, 89, 39, 36)( 27, 81,104, 87,
          34,111)( 29, 86)( 31,101, 77, 84,114, 37)( 32,106,102, 82,109,112) 
     ] ],
[ 35, 10368000, 0, "4c", [ [ 12, 1 ], [ 48, 1 ], [ 64, 1 ] ], 1, 
  "Sym(5) wreath Sym(3)", [ "A", 5, 3 ], 
  [ (  1, 97,  8, 74, 43, 51, 92,  6, 99, 33, 54, 42)(  2, 22, 23, 73, 68, 66,
         91, 81, 84, 34, 29, 27)(  3, 72, 18, 71, 93, 56, 94, 31, 79, 32,  4,
          47)(  5,122, 13, 75,118, 61, 95,106, 89, 35,104, 37)
        (  7, 24, 48, 53, 67, 16, 96, 83, 59, 44, 26, 77)(  9, 49, 28, 52, 17,
         21, 98, 58, 69, 41, 76, 82)( 10,124, 38, 55,117, 11,100,108, 64, 45,
         101, 87)( 12, 25,123, 63, 70,116, 86, 85,109, 39, 30,102)
        ( 14, 50,103, 62, 20,121, 88, 60,119, 36, 80,107)( 15,125,113, 65,120,
         111, 90,110,114, 40,105,112)( 19, 46, 78, 57), 
      (  1, 71,  6, 96, 16,121)(  2, 74, 10, 97, 19,125)(  3, 73,  8, 98, 18,
         123)(  4, 75,  7, 99, 20,122)(  5, 72,  9,100, 17,124)( 11, 46)
        ( 12, 49, 15, 47, 14, 50)( 13, 48)( 22, 24, 25)( 26, 61, 31, 86, 41,
         111)( 27, 64, 35, 87, 44,115)( 28, 63, 33, 88, 43,113)
        ( 29, 65, 32, 89, 45,112)( 30, 62, 34, 90, 42,114)( 37, 39, 40)
        ( 51, 56, 81, 91,116,101)( 52, 59, 85, 92,119,105)( 53, 58, 83, 93,
         118,103)( 54, 60, 82, 94,120,102)( 55, 57, 84, 95,117,104)
        ( 66,106, 76)( 67,109, 80)( 68,108, 78)( 69,110, 77)( 70,107, 79) ] ],
[36, Factorial(125)/2,1,"2",[[124,1]],123, "Alt(125)", ["A",125, 1], "Alt"],
[37, Factorial(125),0,"2",[[124, 1]],125, "Sym(125)", ["A",125, 1], "Sym"],
[ 38, 7500, 0, "1", [ [ 12, 2 ], [ 30, 2 ], [ 20, 2 ] ], 1, "5^3:Alt(5)", 
  [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^0, Z(5), 
              Z(5)^3 ] ], 
      [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5)^3, Z(5)^2, 0*Z(5) ], 
          [ Z(5)^0, 0*Z(5), Z(5)^2 ] ] ] ],
[ 39, 15000, 0, "1", [ [ 24, 1 ], [ 30, 2 ], [ 20, 2 ] ], 1, "5^3:Sym(5)", 
  [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ 0*Z(5), 
              Z(5)^2, Z(5)^0 ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5)^3, Z(5), Z(5)^0 ], 
          [ Z(5)^0, 0*Z(5), 0*Z(5) ] ] ] ],
[ 40, 15000, 0, "1", [ [ 24, 1 ], [ 30, 2 ], [ 20, 2 ] ], 1, "5^3:Sym(5)", 
  [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], [ Z(5)^2, 
              Z(5)^2, Z(5) ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5), Z(5)^0, Z(5) ], 
          [ 0*Z(5), 0*Z(5), Z(5)^3 ] ] ] ],
[ 41, 15000, 0, "1", [ [ 12, 2 ], [ 30, 2 ], [ 20, 2 ] ], 1, 
  "5^3:(2 x Alt(5))", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^2, Z(5), Z(5) ] ], 
      [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5), Z(5)^2, Z(5) ] ] ] ],
[ 42, 30000, 0, "1", [ [ 24, 1 ], [ 30, 2 ], [ 20, 2 ] ], 1, 
  "5^3:(2 x Sym(5))", [ "Z", 5, 3 ], 
  [ [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ Z(5)^2, Z(5), 0*Z(5) ], 
          [ Z(5)^0, Z(5)^3, Z(5)^3 ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^2, Z(5), Z(5) ] ] ] ],
[ 43, 30000, 0, "1", [ [ 24, 1 ], [ 60, 1 ], [ 40, 1 ] ], 1, 
  "5^3:(4 x Alt(5))", [ "Z", 5, 3 ], 
  [ [ [ Z(5), 0*Z(5), 0*Z(5) ], [ 0*Z(5), Z(5), 0*Z(5) ], 
          [ Z(5), 0*Z(5), Z(5)^3 ] ], 
      [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5), Z(5)^3, Z(5)^2 ] ] ] ],
[ 44, 30000, 0, "1", [ [ 12, 2 ], [ 60, 1 ], [ 40, 1 ] ], 1, "5^3:(2:Sym(5))",
  [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ Z(5)^2, 0*Z(5), 0*Z(5) ], [ Z(5)^3, 
              Z(5)^0, Z(5) ] ], 
      [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5), Z(5), Z(5)^0 ] ] ] ],
[ 45, 60000, 0, "1", [ [ 24, 1 ], [ 60, 1 ], [ 40, 1 ] ], 1, 
  "5^3:(4 x Sym(5))", [ "Z", 5, 3 ], 
  [ [ [ 0*Z(5), Z(5)^0, 0*Z(5) ], [ 0*Z(5), 0*Z(5), Z(5)^0 ], 
          [ Z(5)^2, Z(5)^2, Z(5)^2 ] ], 
      [ [ Z(5)^0, 0*Z(5), 0*Z(5) ], [ 0*Z(5), Z(5)^2, 0*Z(5) ], 
          [ Z(5)^2, Z(5)^0, Z(5) ] ] ] ]];
PRIMGRP[126]:= 
[[ 1, 1814400, 1, "2", [ [ 100, 1 ], [ 25, 1 ] ], 1, "Alt(10)", 
  [ "A", 10, 1 ], 
  [ (  1,104,108,106, 34, 63,113, 25, 73)(  2,115, 21,111,124,105, 27, 28,  8)
        (  3, 77, 61,114, 13, 93, 12, 98, 87)(  4, 20, 57, 90, 33,123, 65, 39,
         64)(  5, 36,120, 92, 11, 42, 54, 47, 29)(  6, 80, 72, 48, 60, 89,121,
         125, 81)(  7, 16, 41, 76,103,110, 23, 50, 46)(  9, 22,122, 35, 67,
          44, 14,116, 45)( 10, 38, 85,102, 82, 37, 18, 95,107)
        ( 15, 69, 17, 59, 52,126, 91, 99, 26)( 19, 84, 62, 74, 49,109,112, 53,
         94)( 24, 55,101, 32, 79, 51,118, 43,119)( 30, 68, 96, 40, 86, 83, 88,
         70, 58)( 31, 71, 97, 56,100, 78, 75, 66,117), 
      (  1, 37, 65, 87, 66, 25, 91, 39, 68, 79)(  2, 76, 74, 40,  5)
        (  3, 27, 82, 72, 95, 36, 81, 62, 47, 78)(  4,114, 57, 41, 58, 28, 44,
         14,  7, 15)(  6,102,122,108,107, 29,124, 10, 32,117)(  8,121,112, 60,
         116, 42, 75, 77,119, 88)(  9, 89, 55, 59, 64)( 11, 17, 12, 26, 22,
          43, 97, 19, 83,115)( 13, 30,120, 31, 20, 45, 90, 18, 21, 61)
        ( 16,105, 54, 49,106, 92, 24, 33, 73,118)( 23, 50, 69, 98, 51, 99, 84,
         35, 53, 52)( 34, 85, 48, 67, 70,100, 38, 86, 71,111)( 46, 93,113, 94,
         101)( 56, 80,103,104, 63)( 96,123,126,110,109) ] ],
[ 2, 3628800, 0, "2", [ [ 100, 1 ], [ 25, 1 ] ], 1, "Sym(10)", 
  [ "A", 10, 1 ], 
  [ (  1,  2,  4,  6, 10, 16, 23, 33, 46, 62)(  3,  5,  8, 13, 19, 28, 40, 54,
         71, 85)(  7, 12, 18, 27, 38, 52, 67, 82, 32, 45)(  9, 15, 22, 31, 14,
         21, 30, 44, 59, 75)( 11, 17, 25, 35, 49)( 20, 29, 42, 56, 73, 81, 94,
         36, 50, 66)( 24, 34, 47, 64, 39, 53, 69, 48, 65, 80)( 26, 37, 51, 68,
         83, 96,108,116,120,123)( 41, 55, 72, 86, 99, 70, 84, 98,105,113)
        ( 43, 58, 74, 87, 95,107,115,119,122,125)( 57, 63, 79, 92,104)
        ( 60, 76, 88,101,112, 93,106,111,118, 89)( 61, 77, 90,102, 78, 91,103,
         114, 97,110)(109,117,121,124,126), 
      (  1,  3)(  4,  7)(  5,  9)(  6, 11)(  8, 14)( 13, 20)( 16, 24)( 17, 26)
        ( 22, 32)( 25, 36)( 27, 39)( 28, 41)( 29, 43)( 34, 48)( 42, 57)
        ( 44, 60)( 45, 61)( 46, 63)( 50, 67)( 53, 70)( 55, 64)( 62, 78)
        ( 65, 81)( 71, 84)( 76, 89)( 80, 93)( 82, 95)( 83, 97)( 86,100)
        ( 92,105)( 96,109)( 98,111)(101,113)(108,115)(114,119) ] ],
[ 3, 126000, 1, "2", [ [ 125, 1 ] ], 2, "PSU(3, 5)", [ "2A", [ 2, 5 ], 1 ], 
  [ (  1,117,115, 41, 89,120, 17, 88, 25, 16)(  2, 96, 63, 22, 55, 11, 14, 15,
         77, 39)(  3, 90, 10, 48, 27, 50,126, 75,111, 93)(  4, 94, 45, 36,109,
         122, 42, 53, 81, 84)(  5,105, 86,125, 28,  8, 18,102, 23, 64)
        (  6, 70, 76, 31, 59, 74, 40, 51, 98, 12)(  7,123,101, 33, 66,110,114,
         37, 24, 85)(  9, 99, 61, 57,124,106, 44, 91, 19, 35)( 13, 67, 47, 30,
         32)( 20, 78,107, 69, 38, 26, 80, 49,118, 82)( 21,121, 71, 83, 62, 58,
         56, 65,113,103)( 34,112,119,104, 68, 87, 46, 97, 73, 52)
        ( 43,116, 95, 54, 79, 60, 72,100,108, 92), 
      (  1,  3, 61,120, 92, 99, 33, 11, 43, 82)(  2,119, 22, 16, 17, 28,112,
          25, 98,  7)(  4, 39,  9,125, 90,123, 46,122, 27, 68)
        (  5, 13, 91, 93, 30,115, 36, 64,116, 26)(  6,104, 56, 38, 44, 75, 88,
         41, 53, 60)(  8,108,114, 55, 35, 73, 19,106, 97,107)( 10, 24, 14, 95,
         102, 76, 71,126, 54, 67)( 12,121, 50,103, 66, 29, 77, 65, 84, 58)
        ( 15, 87, 48, 45, 23, 94, 62, 49, 79, 72)( 18,118, 70, 96,111, 32, 85,
         31, 52,124)( 20, 59, 86,105, 81)( 21, 74, 89, 34, 57, 69, 51, 40,109,
         100)( 37,117, 78, 47,101, 63, 80,110,113, 42) ] ],
[ 4, 252000, 0, "2", [ [ 125, 1 ] ], 2, "PSigmaU(3, 5)", 
  [ "2A", [ 2, 5 ], 1 ], 
  [ (  1, 95,108,100, 20, 96,126, 73)(  2,109, 71, 76,106, 12, 33, 86)
        (  3, 82, 22, 31, 47, 28, 69, 80)(  4, 88, 63, 40, 38, 19,101,110)
        (  5,120,  6, 87, 54, 60, 51, 59)(  7, 57, 52, 42,125, 68,115, 13)
        (  8, 15, 41, 11, 90, 81, 85, 53)(  9, 39, 98, 26, 45,112, 27, 43)
        ( 14, 44, 32, 16,104, 30,119, 17)( 18,116,102, 35, 46, 89, 74,118)
        ( 21, 72,121, 77, 49,117, 58,124)( 23, 84,103, 48, 70, 34, 29, 25)
        ( 24, 55,114,111,113,105, 92, 66)( 36, 78, 79,123, 37, 93, 91, 61)
        ( 50, 62, 99, 94)( 56,122, 67, 83,107, 64, 75, 65), 
      (  1,  7,  2, 90, 95, 87)(  3,124, 34, 11,113, 55)(  4,  8, 91,111, 64,
          31)(  5, 66,120, 57, 19, 83)(  6, 65, 37, 46, 52,121)
        (  9,100,125, 48,112,102)( 10, 88,104, 75, 81, 56)( 12, 89, 43)
        ( 13, 82,119, 92, 99,123)( 14, 60,110, 18,118, 15)( 16,107, 80, 59,
          39, 98)( 17, 63, 86, 58,108, 41)( 20, 50,103,117, 23, 21)
        ( 22, 35, 36, 93, 53, 33)( 24, 25, 96, 32, 49, 79)( 26, 71, 70, 76,
         106, 67)( 27, 68, 44, 74, 61, 40)( 28, 85, 42)( 29, 69,115,105, 72,
          47)( 30, 78,126, 38,122, 97)( 45, 51,101, 84, 73, 62)
        ( 54,109, 94, 77,114,116) ] ],
[ 5, 378000, 0, "2", [ [ 125, 1 ] ], 2, "PGU(3, 5)", [ "2A", [ 2, 5 ], 1 ], 
  [ (  1, 77, 86, 28,110, 78,123,106)(  2, 50, 83, 81,124, 58, 10, 11)
        (  3, 51,109, 29, 19, 16, 75, 97)(  4, 61, 76, 89)(  5, 71, 23, 46,
          72, 14, 47,  7)(  6,119, 17, 22, 31, 32, 41, 63)(  8,125, 49, 36,
          27, 30, 33, 90)(  9,113, 12,105,117,115, 57, 42)( 13, 48, 35, 24,
          43,108,126,107)( 15, 40, 53, 38, 66, 20, 92,116)( 18, 91, 98, 87,
          96, 37, 79,104)( 21, 45, 44, 84, 59, 74, 95, 88)( 25,122,100,112,
          64,118, 55, 52)( 26, 67, 39,102, 73, 60, 56, 54)( 34,103, 68, 85,
          70, 62,120, 80)( 65,121, 93,114, 94, 99, 82,111), 
      (  1,123,102,111, 55, 23, 48, 61, 80, 74,105,109,120, 51,103)
        (  2, 90,  9, 18,107, 81,122, 22,115,119, 82,  7, 10, 94, 78)
        (  3, 42, 98, 54, 14, 40, 91, 93, 29,124, 72, 59, 20, 92, 76)
        (  4, 62,126, 39,110)(  5, 77, 30, 69, 67, 38,117, 99, 85,108, 26, 46,
         37, 21, 89)(  8, 50, 44, 24, 52, 83, 73, 47, 88, 75, 19, 53, 71, 86,
          56)( 11, 95, 66, 63, 87, 31,104,118, 28, 25,113, 15, 58, 70,106)
        ( 12,101, 41, 49, 60,125, 65,112, 96,116, 33, 13, 68, 84,100)
        ( 16, 43, 17, 57,114, 79, 45,121, 36, 97, 32, 64, 34, 27, 35) ] ],
[ 6, 756000, 0, "2", [ [ 125, 1 ] ], 2, "PGammaU(3, 5)", 
  [ "2A", [ 2, 5 ], 1 ], 
  [ (  1, 20, 47,  3,103,113,121, 64,  4, 88, 70, 25, 31, 27, 39, 19, 56, 28,
          80, 96, 35, 13, 61, 18)(  2, 57, 44, 63, 45,118,123, 87,  9, 81, 90,
         107,106, 48, 15,  8, 11,114, 24,122, 53, 67,117, 32)(  5, 91, 98,109,
         65, 41, 26, 69, 33,112, 51, 54, 10, 59, 58,110,104, 68,119,125, 74,
          42, 92, 99)(  6,108, 22, 83, 89, 79,124, 66, 85, 29, 97, 84, 38, 72,
         71, 12, 30, 95,100, 50, 46, 43, 78, 77)(  7,116, 94, 55, 34, 23, 86,
          49, 93,101, 40, 36,102, 75,111,115, 76, 82, 73, 60, 62,126, 14, 16)
        ( 17, 21, 37, 52), (  1, 69,125, 96,126,  9)(  2,  3, 32, 46, 87, 73)
        (  4, 15, 97,104, 64, 78)(  5,111,112,116, 24,118)(  6,103, 80, 23,
         102,109)(  7, 35, 50, 60, 48, 53)(  8, 68, 62, 38, 86, 17)
        ( 10, 75, 99, 41,117, 92)( 11, 37,113,114, 82, 58)( 12, 49,107, 29,
          28, 39)( 13, 91, 57,105, 30,110)( 14, 98, 21, 61, 45,106)
        ( 16,124, 84)( 18, 44, 90, 65, 33, 20)( 19, 85, 27, 76, 93, 47)
        ( 22,121, 54,100, 26, 40)( 25, 94, 83, 55, 77, 36)( 31, 59, 43, 70,
         120, 81)( 34,101, 52, 72,108, 63)( 42, 66,115, 56,122,119)
        ( 51,123, 88, 74, 95, 89)( 67, 71, 79) ] ],
[ 7, 3265920, 1, "2", [ [ 45, 1 ], [ 80, 1 ] ], 1, "PSU(4, 3)", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 99, 20, 18, 86)(  2, 79,122,111, 30)(  3, 89,114, 11,124)
        (  4,  6, 35, 52, 78)(  5, 85, 46,104,  9)(  7, 23,121, 82, 34)
        (  8, 33, 37, 40,101)( 10, 24, 67, 17,116)( 12,115, 36, 39,123)
        ( 13,126, 56, 90, 48)( 14, 27, 58, 96, 49)( 15, 73, 19, 31, 66)
        ( 16, 45, 68,112, 59)( 21,100,107, 98, 70)( 22, 60, 88, 50, 64)
        ( 25,103,120, 71, 80)( 26, 92, 51, 91, 53)( 28,102,110, 32, 69)
        ( 29, 43, 63, 77, 81)( 38, 47, 65,119, 74)( 41,118, 44, 76, 61)
        ( 54, 93, 62, 75, 83)( 55, 95,125,117, 94)( 57, 97,113,108, 84)
        ( 72,109,106, 87,105), 
      (  1, 29, 38, 80, 46,118, 87)(  2,110, 75,  8,123, 44, 63)
        (  3,121, 22, 21, 20, 32,  4)(  5, 36, 45, 81, 67, 10, 33)
        (  6, 58, 78, 30, 99, 77, 34)(  7,111, 65,112, 73, 62, 98)
        (  9, 40, 94, 16, 86, 26, 19)( 11, 59,122, 56, 24,100, 53)
        ( 12, 72, 39, 27,126, 93,117)( 13, 41,113,115,120, 14, 17)
        ( 15,109,105, 70,106, 61, 55)( 18,124,108,125,104, 82, 48)
        ( 23, 49, 25, 52, 51, 54, 37)( 28, 31, 95, 96, 74,114, 60)
        ( 35,102, 89, 68, 47, 57, 79)( 42,101, 64,103, 91, 84, 76)
        ( 43, 69, 85, 83, 88,116, 90)( 50, 71, 66,119, 97, 92,107) ] ],
[ 8, 6531840, 0, "2", [ [ 45, 1 ], [ 80, 1 ] ], 1, "PSU(4, 3).2", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 79, 42, 13, 36,111,  7, 44,113,106, 77, 17, 96,112,  5,  8, 73, 95)
        (  2, 78, 84, 33, 54, 55, 53, 32, 62, 23,115, 99, 30, 56, 86,119,105,
         126)(  3, 12, 50,118, 81, 18, 39, 27, 48)(  4, 25, 70, 15,110, 72,
          74, 88, 40,109, 66, 52,100, 59, 98,124,122, 64)(  6, 71, 68, 31, 43,
         123, 91, 61,114, 80, 97, 35,125,101, 57, 47,117, 38)(  9,102, 16)
        ( 10,120, 69, 20,107,121, 22, 26, 83)( 11,103, 14, 67, 46,108,116, 24,
         63)( 19, 82,104, 93, 29, 34, 41, 51, 89)( 21, 92, 87)
        ( 28, 76, 58, 94, 45, 90)( 37, 85)( 49, 75, 60), 
      (  1, 58, 10, 59, 91,108)(  2, 43,120, 77,109, 82)(  3, 44, 24, 92, 73,
          16)(  4,107, 79,101, 81, 23)(  5, 20, 89,111,  9, 11)
        (  6, 31, 13, 52, 64, 74)(  7, 29, 25,113, 18, 84)(  8, 12, 99, 95,
          50, 66)( 14, 71, 34, 75, 97, 69)( 15, 54,118, 36,114, 46)
        ( 17, 22, 72, 30, 39, 76)( 19, 93,122, 67, 83, 88)( 21, 45, 33,104,
          98, 42)( 26, 65, 48)( 27, 49, 51)( 28, 68, 96,115, 85,124)
        ( 32, 86,103, 57, 61, 63)( 35,119, 80, 37,126, 70)( 38,102,112, 56,
         121,100)( 40, 62, 78,125, 53, 94)( 41,123, 55, 60,105,117)
        ( 47,116,110, 90, 87,106) ] ],
[ 9, 6531840, 0, "2", [ [ 45, 1 ], [ 80, 1 ] ], 1, "PSU(4, 3).2", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 72, 40, 79,107, 67, 89, 60, 86,126,  8, 47)(  2, 68, 75, 27, 77, 73,
         55, 49, 34, 13,117, 52)(  3, 43, 41, 31, 53, 81,123, 16,114, 23, 61,
         112)(  4,101, 94, 21, 58, 26, 54, 12, 14, 91, 95, 99)
        (  5,125, 65,119,122, 93, 82, 64,121, 62, 63,  9)(  6,113, 87, 17, 35,
         56, 97, 15, 96, 66,116, 45)(  7, 11, 84, 36, 38, 33, 19, 98, 46, 92,
          24,118)( 10, 29,105, 85, 59,111,108, 88, 90, 74,109, 22)
        ( 18,124, 70, 37, 39, 51)( 20, 83, 28, 78)( 25, 42)( 30, 76,106, 69,
         104,100, 48,110, 50,115, 57, 32)( 44,102)( 71,103,120), 
      (  1, 93, 98)(  2, 28, 40, 71, 68,  6)(  3, 10, 95, 79, 91, 52)
        (  4, 92,  9, 42, 73,  8)(  5,112, 99)(  7,119,100,115,104, 27)
        ( 11, 94, 69,110,108, 64)( 12, 31, 85, 41, 37,124)( 13, 46, 89, 47,
         109, 25)( 14, 30, 70, 32, 43, 81)( 15,101, 17, 77,102, 50)
        ( 16, 62,125, 24, 61,126)( 18, 58, 76, 33, 53, 26)( 19,107, 21, 22,
          82, 67)( 20, 66, 78,113, 45,120)( 23,103, 80, 83,114,116)
        ( 29, 55,117, 63, 74, 86)( 34, 56, 49, 35, 60, 97)( 36,123, 84, 57,
         111, 65)( 38, 54, 59)( 39, 87,105, 96, 90, 44)( 48,121,118)
        ( 51,122, 88, 75,106, 72) ] ],
[ 10, 6531840, 0, "2", [ [ 45, 1 ], [ 80, 1 ] ], 1, "PSU(4, 3).2", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 10, 38,109,115, 90, 31)(  2,101, 74, 65, 98, 13, 33)
        (  3, 39, 59, 70, 60,  5, 27)(  4, 91, 11,116, 14, 57, 92)
        (  6,110, 40,100, 47, 25, 37)(  7, 75, 24, 16, 97, 61,106)
        (  8,111,105, 56,123, 71, 21)(  9, 20, 54, 51, 29, 32, 50)
        ( 12,121, 80, 89, 66,107, 63)( 15, 35, 55, 53, 67, 41, 79)
        ( 17, 18,117,122, 28, 78, 52)( 19, 96,103, 42,114, 46, 43)
        ( 22, 48,113, 58, 82, 94, 68)( 23,102, 49, 30, 73,112, 77)
        ( 26,126, 87, 86, 69, 45, 76)( 34,108, 85, 81,104,124, 72)
        ( 36, 83,125, 99, 84, 88,120)( 44, 93,118,119, 62, 95, 64), 
      (  1, 18, 46, 90, 61, 70,  7,105)(  2, 93,123,  4, 59, 66,110, 47)
        (  3,104, 55,121, 76, 31,109,  6)(  5,115, 72, 10, 35,  8, 30, 75)
        (  9, 86, 67, 27, 17, 91, 54, 88)( 11, 58, 98, 50, 28,106, 20, 95)
        ( 12, 44, 83, 68,100, 39, 38, 49)( 13, 97, 40, 23, 29, 65, 21, 57)
        ( 14,108,113, 69, 81, 34, 62,107)( 15, 26, 94, 74,119, 41,112, 52)
        ( 16, 36, 43, 92,126,118, 79, 33)( 19,111, 53, 51, 84, 22, 89, 37)
        ( 24, 77, 32,124, 78,117,101,102)( 25, 80,120, 42)( 45,122, 87, 63)
        ( 48, 73,116,114, 60, 85, 82, 99)( 56,125, 96, 64) ] ],
[ 11, 13063680, 0, "2", [ [ 45, 1 ], [ 80, 1 ] ], 1, "PSU(4, 3).2^2", 
  [ "2A", [ 3, 3 ], 1 ], 
  [ (  1, 69, 23, 68, 86, 90, 75, 47,100, 59)(  2, 89, 88,119, 44, 91, 22, 40,
         5, 78)(  3, 61,114, 48, 24, 29,105, 74, 14, 39)(  4, 32,115, 18, 10,
          57,117, 73, 19,107)(  6, 49, 76, 53, 55, 17, 12, 13,111,110)
        (  7,109,121, 77,108, 37,123,  9,101, 41)(  8, 51, 21, 15,124, 85, 46,
         27, 35, 38)( 11, 98, 87,126, 36)( 16,118, 28, 20, 56)
        ( 25, 95, 33, 63, 71)( 26, 84, 99, 81,102, 34, 70, 52, 60, 83)
        ( 30, 94, 54, 97, 82)( 31, 62,104,116,112)( 42, 79, 45,106,122, 80,
          43, 96, 58, 64)( 50, 92,125,103,120)( 65,113, 67, 93, 66), 
      (  1, 32,100, 93, 27, 86, 96, 31, 53, 75, 38, 28, 29,117)
        (  2,108, 54, 13, 68,105, 36, 82, 71, 25, 79,  3, 17, 66)
        (  4, 10, 47, 85, 60, 43, 98, 12, 73,104, 61,110,119, 14)
        (  5, 72, 18, 91, 64,102,114, 70, 41, 19, 20,  8, 94, 50)
        (  6, 77, 92,101, 76,121, 49,122, 37, 63, 42, 84,115, 78)
        (  7, 52,103, 51, 90, 89, 97, 99, 80, 23, 87, 30,120, 48)
        (  9, 65, 26, 16, 88, 40,118,109,116, 44, 22,111, 45, 46)
        ( 11,113,106,123, 35, 57,125,124, 21, 33,107, 24, 34, 58)
        ( 15, 83, 69, 67, 55, 62,112, 81, 95, 59, 74, 39, 56,126) ] ],
[ 12, 181440, 1, "2", [ [ 5, 1 ], [ 60, 1 ], [ 40, 1 ], [ 20, 1 ] ], 1, 
  "Alt(9)", [ "A", 9, 1 ], 
  [ (  2, 41, 42)(  3, 51,106)(  4,120, 24)(  5,121, 29)(  6,113, 57)
        (  7,125, 72)(  9, 16, 15)( 10,124, 23)( 11, 36, 95)( 13, 21, 88)
        ( 14, 56,103)( 18, 25, 80)( 19, 28, 94)( 20, 46, 52)( 22, 55,116)
        ( 26, 39, 58)( 27, 75,100)( 31, 63, 37)( 33, 40,107)( 34, 47,117)
        ( 35, 90, 81)( 38, 60, 65)( 43, 45, 91)( 44, 84, 86)( 48, 62, 53)
        ( 54, 76, 71)( 59, 77, 83)( 68, 79, 92)( 74, 97, 87)( 82,115,101)
        ( 89,102,122)( 93, 98,111)( 96,108, 99)(104,105,112)(119,126,123), 
      (  1,116,106, 20, 90, 86, 88, 83, 85, 65)(  2,101,107, 51, 34,105, 19,
          56, 43, 21)(  3, 13,112,115,103)(  4, 80, 54, 26, 93,119, 74, 31,
          35,121)(  5, 36, 37, 79, 17, 57, 94, 53, 61, 27)(  6, 82, 48, 67,
         100, 98, 95, 76, 68, 64)(  7,104,124,  8,102, 14, 96, 24, 16, 87)
        (  9, 18,125, 41, 23,118,122, 33,108,126)( 10, 50, 69, 38,109,110, 89,
         62, 49,113)( 11, 72, 59, 12, 73,114, 70, 66, 22, 99)( 25, 63, 39, 29,
         123)( 28, 40, 45, 47, 42)( 30, 55, 91, 46, 58, 44,117, 77, 32, 60)
        ( 52, 92, 78, 75, 84)( 71, 81,111,120, 97) ] ],
[ 13, 362880, 0, "2", [ [ 5, 1 ], [ 60, 1 ], [ 40, 1 ], [ 20, 1 ] ], 1, 
  "Sym(9)", [ "A", 9, 1 ], 
  [ (  1,  2,  4,  7, 11, 17, 25, 35, 48)(  3,  6, 10, 15, 22, 32, 45, 60, 76)
        (  5,  9, 14, 20, 30, 42, 56, 71, 86)(  8, 13, 19, 29, 40, 54, 68, 84,
         99)( 12, 18, 27, 37, 51, 65, 82, 96,110)( 16, 24, 34, 28, 39, 53, 67,
         83, 98)( 21, 31, 44, 58, 74, 81, 95,109,118)( 23, 33, 46, 61, 77, 90,
         97,111,119)( 26, 36, 49, 50, 64, 80, 93,107,101)( 38, 52, 66, 73, 88,
         102,113,117,122)( 41, 55, 69, 59, 75, 89,104,116,114)
        ( 43, 57, 72, 87,100, 94,108, 70, 85)( 47, 63, 79, 92,106,112,120,124,
         126)( 62, 78, 91,105,103,115,121,123,125), 
      (  1,  3)(  2,  5)(  4,  8)(  7, 12)( 10, 16)( 14, 21)( 15, 23)( 17, 26)
        ( 18, 28)( 27, 38)( 29, 41)( 30, 43)( 31, 32)( 33, 47)( 36, 50)
        ( 44, 59)( 46, 62)( 48, 52)( 55, 70)( 57, 73)( 64, 81)( 65, 75)
        ( 68, 78)( 71, 85)( 80, 94)( 82, 97)( 83, 84)( 87,101)( 88,103)
        ( 93,104)( 96,109)( 98,112)(102,114)(107,117)(118,123) ] ],
[ 14, 976500, 1, "2", [ [ 125, 1 ] ], 2, "PSL(2, 5^3)", 
  [ "L", [ 2, 125 ], 1 ], 
  [ (  1, 11, 36, 90, 55, 69,104, 58, 18,  5,112, 67, 41, 16, 50, 28, 75, 31,
         102, 22, 53, 15, 19, 98, 27, 32,126,122, 24, 99, 21)(  2, 56, 81, 91,
         71,119, 68, 96, 92, 60, 65,120, 73, 77, 39, 70,116, 61, 17, 64, 42,
          76, 51, 25,106, 87, 74, 34,114, 23, 37)(  3, 35,  4, 13,118, 33,125,
         63, 49,  8, 47, 45, 84, 43, 29, 93, 59,100, 79, 88, 57, 89, 95, 52,
         108,121, 46, 97,110, 40,123)(  6,117, 12, 72, 44, 94, 83,109,  9,124,
         48, 20, 80,101, 86,115,107, 54, 66, 85, 62, 10, 78, 14, 82, 30,  7,
          26, 38,111,103), (  1,116, 62, 61, 24,123,115, 95, 15, 56, 68, 58,
          34, 98, 99, 87, 27,124, 33, 67,103, 20, 23, 50, 46,100, 26,112,120,
           7,101)(  2, 96,109,117, 77,  3, 57, 53, 80, 83,126, 36, 70,105, 76,
         16,  4,  5, 69, 45, 35, 47, 88,  8,114,106, 79, 42, 41,113,102)
        (  6, 66, 19, 25, 54, 13,121, 64, 55, 12, 86, 51, 93, 44, 60, 18, 71,
          65,104, 74,122, 11, 73, 40,111, 89,119, 75, 82, 31, 81)
        ( 10, 52, 17, 91, 48, 39,108, 90, 49, 78, 84, 37, 97, 22, 72, 21, 28,
         110, 14,118, 63, 30, 92,107, 29,125, 38, 32, 85, 43, 59) ] ],
[ 15, 1953000, 0, "2", [ [ 125, 1 ] ], 3, "PGL(2, 5^3)", 
  [ "L", [ 2, 125 ], 1 ], 
  [ (  1,115, 83, 35, 32, 71, 44, 40, 19, 81,106, 52, 97, 20,112,119, 85,  8,
          53,125, 24, 86, 65, 61, 34, 73, 70, 22,116,104,109,117, 62, 33, 63,
          55, 92, 74, 59, 18,120, 27, 25, 79, 23,113, 91,  5, 49,  9, 41,  3,
          30, 17, 99,  4, 47, 12, 67,108,124, 36, 57,126, 11, 76, 77,103, 60,
           7, 66, 95,110, 90, 89, 37, 21, 84, 68, 16, 15,121, 10, 39, 98, 45,
           2, 28, 29, 94,105, 48, 69,107,123, 38, 93, 58,101,  6, 88, 75,102,
          64, 96, 56,100, 14,118, 82, 26, 80, 78,111, 87, 46, 31, 13, 50, 42,
          72, 43,114,122), (  1, 96,  6,102, 57, 87, 90, 41, 53, 35, 40,120,
          92, 38, 94, 86, 93, 42,103, 31,  4, 54, 64, 73, 59, 11, 50,121,109,
          52, 85,  2,  8, 99, 61,112, 70, 72,107,106,110, 89)(  3,116, 80, 18,
         122, 83, 43, 75, 22,104, 48, 19, 56, 37, 28, 68,  5, 98,119, 45,105,
          95, 24, 14, 74,126, 21,114, 51, 91, 82, 63,100, 71, 15, 97, 44, 76,
          36,123,101, 39)(  7, 58, 20,111,117, 34, 67, 10,124, 69,108, 60, 46,
         55, 65,115, 88, 16, 77, 26, 33, 25, 81, 27,125, 79, 84, 66, 78, 29,
          32, 62, 17,113, 23,118, 30,  9, 13, 12, 47, 49) ] ],
[ 16, 2929500, 0, "2", [ [ 125, 1 ] ], 2, "PSigmaL(2, 5^3)", 
  [ "L", [ 2, 125 ], 1 ], 
  [ (  1, 94, 86, 38,107, 65, 87, 67,  5)(  2, 93, 24,105, 11, 17, 43, 34, 72)
        (  3, 98, 19, 51,  4, 33, 69, 76, 63)(  6, 58, 21,  7,124,111, 49,103,
         53)(  8, 68,125,106,104,112, 81, 73,115)(  9, 71, 18, 35, 16, 22, 31,
         123,101)( 10, 41, 46, 78, 45, 39, 42, 88,117)( 12, 44, 29, 60,126,
          52,120, 30, 96)( 13, 80, 23, 89,114, 48,110,119, 37)
        ( 14,113, 83, 56, 59, 55, 57, 91,108)( 15, 66, 50, 40, 47, 79, 26,118,
         100)( 20,109, 85, 84, 70,121, 61, 75,116)( 25, 97,122, 62, 36, 82,
         102, 90, 95)( 27, 74, 54, 92, 77, 32, 99, 64, 28), 
      (  1, 92, 99,119,  4, 73, 64, 53,109, 97, 77,104, 31, 18, 41)
        (  2,102,118, 42, 16, 74, 39, 44,111,101, 43,  5,100,105, 21)
        (  3, 66, 90, 82,112, 23, 36, 88, 49, 87, 68,  7, 65, 34, 60)
        (  6,125, 96, 94, 72,106,115, 19, 37, 83, 75,124, 85, 69, 27)
        (  8, 61, 32, 22, 29, 78, 63, 50,110, 86, 12, 76, 51, 59, 56)
        ( 10, 28, 17, 93, 46,113, 58, 30, 47, 81,120, 80,122, 55, 25)
        ( 11,121, 84, 95, 54)( 13,114, 67, 33, 98, 91, 70,116, 14, 26, 89, 52,
         123, 24,126)( 15,107, 40, 79, 38, 35, 57, 48, 71,108,117, 45, 62, 20,
         103) ] ],
[ 17, 5859000, 0, "2", [ [ 125, 1 ] ], 3, "PGammaL(2, 5^3)", 
  [ "L", [ 2, 125 ], 1 ], 
  [ (  1, 39,  3, 96, 63, 27, 65, 59, 56, 38, 94, 37,  9, 32, 89,107,124,104,
          17, 76,126,110, 25, 13, 92,108, 11, 43, 83, 73, 60,125,111,114, 72,
          19, 62,115, 69, 80, 12, 97, 26, 93,105, 15, 61, 18, 24, 22,121,106,
         102, 36, 31, 64,101, 75, 58,122, 74, 50,113, 14, 45, 20, 33, 46, 21,
          52, 79, 16,118, 70,  8,117, 91,  2, 35, 30, 90, 86, 71, 44, 42, 48,
           5, 51, 87, 99, 40, 95, 54,112,123, 77,  4, 47,120, 78, 81, 67,  6,
         119,109, 23, 55, 84,100, 53, 41, 82, 66,116, 49, 88, 68, 85,103, 34,
          57, 29, 98, 28, 10,  7), 
      (  1,126, 14, 58, 49, 17,  8, 36, 15,  3, 30,114, 75, 70, 53)
        (  2, 38, 24,125, 26, 78, 84, 63, 18, 77,121, 91, 98,111,124)
        (  4,117, 69,103, 43,118,101,115, 48,104,110, 88, 65, 60, 82)
        (  5, 44, 28,102,  9, 42, 81, 33, 25, 86, 71,105, 99, 89, 56)
        (  6, 66, 51, 73, 83, 11,108, 95, 57, 64, 79, 46, 21, 22, 50)
        (  7, 94, 34,123,120,119, 55, 27,116, 92,100, 20, 80, 40, 41)
        ( 10, 39, 68, 45, 23, 72,112, 35, 61, 97, 52,107, 54, 96, 67)
        ( 12, 31,122, 87,106)( 13,113,109, 93, 19, 74, 76, 32, 29, 90, 37, 47,
         62, 16, 85) ] ],
[18, Factorial(126)/2,1,"2",[[125,1]],124, "Alt(126)", ["A",126, 1], "Alt"],
[19, Factorial(126),0,"2",[[125, 1]],126, "Sym(126)", ["A",126, 1], "Sym"]];
PRIMGRP[127]:= 
[[ 1, 127, 3, "1", [ [ 1, 126 ] ], 1, "C(127)", [ "Z", 127, 1 ], [  ] ],
[ 2, 254, 2, "1", [ [ 2, 63 ] ], 1, "D(2*127)", [ "Z", 127, 1 ], 
  [ [ [ Z(127)^63 ] ] ] ],
[ 3, 381, 2, "1", [ [ 3, 42 ] ], 1, "127:3", [ "Z", 127, 1 ], 
  [ [ [ Z(127)^42 ] ] ] ],
[ 4, 762, 2, "1", [ [ 6, 21 ] ], 1, "127:6", [ "Z", 127, 1 ], 
  [ [ [ Z(127)^21 ] ] ] ],
[ 5, 889, 2, "1", [ [ 7, 18 ] ], 1, "127:7", [ "Z", 127, 1 ], 
  [ [ [ Z(127)^18 ] ] ] ],
[ 6, 1143, 2, "1", [ [ 9, 14 ] ], 1, "127:9", [ "Z", 127, 1 ], 
  [ [ [ Z(127)^14 ] ] ] ],
[ 7, 1778, 2, "1", [ [ 14, 9 ] ], 1, "127:14", [ "Z", 127, 1 ], 
  [ [ [ Z(127)^9 ] ] ] ],
[ 8, 2286, 2, "1", [ [ 18, 7 ] ], 1, "127:18", [ "Z", 127, 1 ], 
  [ [ [ Z(127)^7 ] ] ] ],
[ 9, 2667, 2, "1", [ [ 21, 6 ] ], 1, "127:21", [ "Z", 127, 1 ], 
  [ [ [ Z(127)^6 ] ] ] ],
[ 10, 5334, 2, "1", [ [ 42, 3 ] ], 1, "127:42", [ "Z", 127, 1 ], 
  [ [ [ Z(127)^3 ] ] ] ],
[ 11, 8001, 2, "1", [ [ 63, 2 ] ], 1, "127:63", [ "Z", 127, 1 ], 
  [ [ [ Z(127)^2 ] ] ] ],
[ 12, 16002, 2, "1", [ [ 126, 1 ] ], 2, "AGL(1, 127)", [ "Z", 127, 1 ], 
  [ [ [ Z(127) ] ] ] ],
[ 13, 163849992929280, 1, "2", [ [ 126, 1 ] ], 2, "L(7, 2)", 
  [ "L", [ 7, 2 ], 1 ], 
  [ (  1,  8)( 14,127)( 15, 57)( 20, 55)( 22, 91)( 26,125)( 27,107)( 28,112)
        ( 29, 68)( 32, 64)( 36, 88)( 38,108)( 39, 48)( 42, 53)( 43, 77)
        ( 44,116)( 46, 96)( 51,124)( 52, 85)( 54, 95)( 62,126)( 63, 90)
        ( 71,109)( 74, 87)( 75, 80)( 78,118)( 82,104)( 83,120)( 86,103)
        ( 98,113)(101,105)(122,123), 
      (  1,  7,  6,  5,  4,  3,  2)(  8,127, 13, 12, 11, 10,  9)
        ( 14,126, 61, 60, 59, 58, 57)( 15, 56, 55, 19, 18, 17, 16)
        ( 20, 54, 94, 93, 92, 91, 21)( 22, 90, 62,125, 25, 24, 23)
        ( 26,124, 50, 49, 48, 38,107)( 27,106,105,100, 99, 98,112)
        ( 28,111,110,109, 70, 69, 68)( 29, 67, 66, 65, 64, 31, 30)
        ( 32, 63, 89, 88, 35, 34, 33)( 36, 87, 73, 72, 71,108, 37)
        ( 39, 47, 46, 95, 53, 41, 40)( 42, 52, 84, 83,119,118, 77)
        ( 43, 76, 75, 79, 78,117,116)( 44,115,114,113, 97, 96, 45)
        ( 51,123,121,120, 82,103, 85)( 74, 86,102,101,104, 81, 80) ] ],
[14, Factorial(127)/2,1,"2",[[126,1]],125, "Alt(127)", ["A",127, 1], "Alt"],
[15, Factorial(127),0,"2",[[126, 1]],127, "Sym(127)", ["A",127, 1], "Sym"]];
PRIMGRP[128]:= 
[[ 1, 16256, 2, "1", [ [ 127, 1 ] ], 2, "AGL(1, 2^7)", [ "Z", 2, 7 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0 ] ] ] ],
[ 2, 113792, 2, "1", [ [ 127, 1 ] ], 2, "AGammaL(1, 2^7)", [ "Z", 2, 7 ], 
  [ [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2) ] ], 
      [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0 ] ] ] ],
[ 3, 20972799094947840, 0, "1", [ [ 127, 1 ] ], 3, "AGL(7, 2)", 
  [ "Z", 2, 7 ], 
  [ [ [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0 ], 
          [ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ] ], 
      [ [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0 ], 
          [ Z(2)^0, 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2) ], 
          [ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0 ] ] ] ],
[ 4, 1024128, 1, "2", [ [ 127, 1 ] ], 2, "PSL(2, 127)", 
  [ "L", [ 2, 127 ], 1 ], 
  [ (  3, 36, 37, 50,122, 21, 52, 11, 40,109, 26,  6,121,126,119, 33, 61, 57,
          29, 96, 24, 27, 71, 80, 45, 49, 44, 67, 48, 99, 41, 77,127, 85, 16,
         106, 66,103, 14, 63,  8,112,111, 93, 56, 58,118, 42, 72, 69, 15,113,
          17,  7, 55, 43, 78, 97, 31,108, 92, 47, 30)(  4, 54, 90, 32, 83, 64,
         87, 82, 86, 51, 60,104,107, 35,102, 74, 70, 98, 12,  5, 10,125,105,
          22, 91,120, 79,110,  9, 81, 94, 95,128,101, 84, 39, 23,100, 34, 53,
          88, 76,124,114, 18,116, 62, 59, 89, 13, 73, 75, 38, 20, 19,123, 68,
         117, 28, 65, 25,115, 46), (  1, 83,  2)(  3, 73, 81)(  4, 59,127)
        (  5, 34, 71)(  6,108, 57)(  7, 22, 32)(  8,121,106)(  9, 47, 20)
        ( 10,116,119)( 11, 78, 45)( 12, 29,114)( 13, 17, 76)( 14, 48, 27)
        ( 16, 62, 46)( 18, 49, 60)( 19, 26, 74)( 21, 30, 24)( 23, 72, 28)
        ( 25, 50, 70)( 31,113,112)( 33, 41,111)( 35, 77, 39)( 36,103, 69)
        ( 37, 79, 75)( 38, 97,101)( 40, 88, 95)( 42, 91, 86)( 43, 80,109)
        ( 44, 64, 89)( 51,120, 58)( 52, 98, 68)( 53,117,118)( 54, 65, 96)
        ( 55,110,115)( 56,122, 63)( 61,124,125)( 66,100, 87)( 67,105, 94)
        ( 82, 92,107)( 84, 93, 90)( 85,102,128)(104,123,126) ] ],
[ 5, 2048256, 0, "2", [ [ 127, 1 ] ], 3, "PGL(2, 127)", 
  [ "L", [ 2, 127 ], 1 ], 
  [ (  3,  9, 36, 81, 37, 94, 50, 95,122,128, 21,101, 52, 84, 11, 39, 40, 23,
         109,100, 26, 34,  6, 53,121, 88,126, 76,119,124, 33,114, 61, 18, 57,
         116, 29, 62, 96, 59, 24, 89, 27, 13, 71, 73, 80, 75, 45, 38, 49, 20,
          44, 19, 67,123, 48, 68, 99,117, 41, 28, 77, 65,127, 25, 85,115, 16,
          46,106,  4, 66, 54,103, 90, 14, 32, 63, 83,  8, 64,112, 87,111, 82,
          93, 86, 56, 51, 58, 60,118,104, 42,107, 72, 35, 69,102, 15, 74,113,
          70, 17, 98,  7, 12, 55,  5, 43, 10, 78,125, 97,105, 31, 22,108, 91,
          92,120, 47, 79, 30,110), (  1, 83,  2)(  3, 73, 81)(  4, 59,127)
        (  5, 34, 71)(  6,108, 57)(  7, 22, 32)(  8,121,106)(  9, 47, 20)
        ( 10,116,119)( 11, 78, 45)( 12, 29,114)( 13, 17, 76)( 14, 48, 27)
        ( 16, 62, 46)( 18, 49, 60)( 19, 26, 74)( 21, 30, 24)( 23, 72, 28)
        ( 25, 50, 70)( 31,113,112)( 33, 41,111)( 35, 77, 39)( 36,103, 69)
        ( 37, 79, 75)( 38, 97,101)( 40, 88, 95)( 42, 91, 86)( 43, 80,109)
        ( 44, 64, 89)( 51,120, 58)( 52, 98, 68)( 53,117,118)( 54, 65, 96)
        ( 55,110,115)( 56,122, 63)( 61,124,125)( 66,100, 87)( 67,105, 94)
        ( 82, 92,107)( 84, 93, 90)( 85,102,128)(104,123,126) ] ],
[6, Factorial(128)/2,1,"2",[[127,1]],126, "Alt(128)", ["A",128, 1], "Alt"],
[7, Factorial(128),0,"2",[[127, 1]],128, "Sym(128)", ["A",128, 1], "Sym"]];
PRIMGRP[129]:= 
[[ 1, 2097024, 1, "2", [ [ 128, 1 ] ], 3, "PSL(2, 2^7)", 
  [ "L", [ 2, 128 ], 1 ], 
  [ (  3,105, 48,123, 46,102, 65, 68, 61, 59, 51, 76, 20, 96,113, 95, 78,121,
          62, 80,109, 60,101, 16, 35,126, 90, 21, 98, 82,103, 55, 15,122,127,
           8, 44, 92, 14,128, 39, 69,108, 43, 17,107, 74,  7, 18, 75, 66, 57,
         114,125, 58, 25,115, 89, 24, 63, 93,  4,118, 40, 88,124,  5, 10,117,
          77, 29, 50, 34,111, 42,  6, 97,116, 31, 72, 23, 52, 70, 11, 54, 37,
          19, 36,112, 56, 81, 73, 71, 64, 67, 30, 86,  9, 84, 27,129, 12, 32,
          87, 26,110,104,119, 49, 91, 79, 38, 47, 33, 99, 85, 94, 53, 41, 83,
          13, 28, 22,106, 45,100,120), (  1,127,  2)(  3, 13, 91)(  4,111, 30)
        (  5, 27, 88)(  6,117, 19)(  7, 97,104)(  8, 39, 21)(  9, 12, 55)
        ( 10, 31, 54)( 11,119,128)( 14, 24, 65)( 15, 18,101)( 16, 28, 37)
        ( 17,102,125)( 20, 52, 59)( 22, 68,129)( 23,126, 45)( 25, 29, 26)
        ( 32, 76, 94)( 33, 90, 81)( 34, 58, 87)( 35, 95, 40)( 36,120, 78)
        ( 38, 53,105)( 41, 57, 93)( 42,107, 79)( 43, 85, 50)( 44, 74,109)
        ( 46, 86, 48)( 47, 82,112)( 49,114, 77)( 51,103,118)( 56, 83, 60)
        ( 61,121,116)( 62, 80,124)( 63, 99,115)( 64, 72, 89)( 66,123, 75)
        ( 67, 84, 92)( 69, 98,122)( 70,110,108)( 71,113,106)( 73,100, 96) ] ],
[ 2, 14679168, 0, "2", [ [ 128, 1 ] ], 3, "PGammaL(2, 2^7)", 
  [ "L", [ 2, 128 ], 1 ], 
  [ (  1, 39,111,119,105,125,  5,  9,  3, 32, 14, 89, 77, 54)(  2, 13,  8, 58,
         42, 24, 92, 23, 75, 61, 40,113, 17, 53)(  4,123, 48, 37,101, 28, 38,
         109, 19,110, 60, 67, 15, 64)(  6,114,128,104, 50, 55, 18, 26,122, 68,
         129,116,124, 34)(  7,120, 49, 27, 22, 41,121, 73, 84, 45, 30, 56, 52,
         100)( 10, 93, 94, 76, 80, 57, 95, 81, 96,103, 43, 47, 72,108)
        ( 11, 78,106, 65, 85, 25, 91, 98, 74, 99, 83, 59,112, 12)
        ( 16, 62, 31, 21,127, 36, 69, 90,115, 70, 35, 46, 79,118)
        ( 20, 51, 71,102, 97, 33, 63, 29, 66, 82, 88,117,107, 86)( 44, 87), 
      (  1, 16,126, 91, 63, 72,121, 88, 85, 83, 40,108, 52, 39)
        (  2, 66, 70,  9, 80, 78, 34, 82, 84, 28, 45, 26,  3, 53)
        (  4, 67, 55, 14, 51, 92, 12,  5,118,120,  8,112, 74,117)
        (  6, 87,109, 44, 97,122, 86,104, 60, 93, 58,125,111,106)
        (  7, 81, 56, 20,124, 75, 31,115, 68, 18,113,105, 32,101)
        ( 10, 38,102, 73, 76, 89, 71, 35,103, 11, 13, 27,128, 98)
        ( 15, 25, 57,114, 99, 33, 77, 21, 24,127,100, 62, 61, 90)
        ( 17, 46, 69, 94, 54,116,119, 41,107, 30, 42, 23, 64, 37)
        ( 19, 50, 48, 65, 43, 36, 29,123, 95,129, 49, 22, 47,110)( 59, 96) ] 
 ],
[3, Factorial(129)/2,1,"2",[[128,1]],127, "Alt(129)", ["A",129, 1], "Alt"],
[4, Factorial(129),0,"2",[[128, 1]],129, "Sym(129)", ["A",129, 1], "Sym"]];
PRIMGRP[130]:= 
[[ 1, 6065280, 1, "2", [ [ 48, 1 ], [ 81, 1 ] ], 1, "PSL(4, 3)", 
  [ "L", [ 4, 3 ], 1 ], 
  [ (  1, 67, 74,124, 27,104)(  2, 44,119, 87,  5, 16)(  3,126, 35,100, 38, 60
         )(  4,117,103)(  7, 17)(  8, 96, 29, 21, 59, 48)(  9, 26, 23)
        ( 10,121, 62, 94, 65, 54)( 11, 52, 55,109, 32, 46)( 12, 76, 61, 42,
          37, 49)( 13, 68, 77)( 14,130, 30,110,129, 31)( 18, 22,115,122, 93,
          51)( 19, 89, 84)( 20, 98,125, 43,112, 91)( 24, 83)( 25, 85, 33, 34,
          56, 66)( 28, 79,123, 73,102,118)( 36,101)( 39, 40, 80, 63,120,105)
        ( 41, 70, 71, 50, 82,116)( 45, 58, 99,127, 53, 88)( 47, 78, 97, 57,
         108, 95)( 64, 75,128)( 69, 86)( 72,111,114, 81,106,113)( 90, 92), 
      (  1,103, 60,  7, 27)(  2,105, 59, 90, 54)(  3, 74,111, 25,117)
        (  4, 56, 81,108, 44)(  5, 23, 72, 45,129)(  6, 75, 50, 57,119)
        (  8,  9,102, 78, 91)( 10, 79, 13, 89, 62)( 11, 85,114, 55,110)
        ( 12, 26, 41, 84, 77)( 14, 76, 18, 93,128)( 15, 80,113,126, 86)
        ( 16, 52, 24, 39,100)( 17, 38, 46,107, 47)( 19, 32,115, 31,104)
        ( 20,116, 34, 68, 96)( 21, 29, 40, 83,124)( 22, 97, 36,120, 51)
        ( 28, 88, 53, 70, 58)( 30, 43,125, 95, 49)( 33, 35,122,109, 87)
        ( 37, 92, 66,118, 67)( 42,127, 65,123,121)( 48,101, 73,106, 82)
        ( 61, 63,112,130, 71)( 64, 94, 98, 69, 99) ] ],
[ 2, 12130560, 0, "2", [ [ 48, 1 ], [ 81, 1 ] ], 1, "PSL(4, 3).2", 
  [ "L", [ 4, 3 ], 1 ], 
  [ (  1, 24, 20, 92, 86, 55, 16,104, 51, 76, 32, 81,107)(  2, 57,102, 78,116,
         83, 23, 95,128,  4,115, 91,127)(  3, 43,114, 15,108,  5, 13, 88, 96,
           7, 87, 37, 31)(  6,109,103, 11, 56, 85, 26, 68, 65, 64,120, 40,121)
        (  8, 39, 14, 46, 25,101, 58, 67,117, 45, 79,112, 93)(  9, 48, 33, 19,
         129, 36, 50, 89, 41, 61, 69,106, 60)( 10, 18, 30, 97, 21, 22, 90,100,
         66, 62,125,123, 12)( 17, 38, 29, 35, 71, 63,124, 44, 54, 53,130,122,
          75)( 27,126,110,113,111, 80, 82, 77, 34,118, 99, 72, 52)
        ( 28,105, 98, 84,119, 59, 74, 47, 94, 42, 49, 70, 73), 
      (  1, 12,  5,  6,117, 93,113, 95,121,128, 39,112, 17, 71, 77, 55, 25, 45
         )(  2, 87, 56, 73, 40,100, 82, 83,125, 20, 91, 57, 97, 42, 88,  4,
          36,119)(  3, 23,102, 62, 22, 38, 50, 70, 26)(  7, 18,105,110, 61,
          16, 32,127, 24, 90, 68, 76,106, 80, 98,111,126, 69)(  8, 84, 10, 67,
         65,  9, 14, 66, 34)( 11, 37, 92, 75, 53, 64,130,108, 72, 81,120,107,
          74, 54, 27,114,118, 31)( 13, 58, 41,115, 60,103)( 15, 89, 52, 21,
         116,124, 48,122, 29)( 19, 85,129, 35, 51,109, 28,123, 59)
        ( 30, 96,104)( 33, 63, 79, 78, 49, 47)( 43, 99, 86, 44, 94,101) ] ],
[ 3, 12130560, 0, "2", [ [ 48, 1 ], [ 81, 1 ] ], 1, "PGL(4, 3)", 
  [ "L", [ 4, 3 ], 1 ], 
  [ (  1,  2)(  3,117,129, 37)(  4, 82, 31, 44)(  5,110, 52,108)
        (  6,123, 61, 69)(  7, 47, 63, 91)(  8,120, 85,114)(  9,130)
        ( 10, 84, 12, 78)( 11, 94, 38, 15)( 13,128,107, 76)( 14, 53, 57, 33)
        ( 16, 34,126, 49)( 17, 50, 46,118)( 18, 98, 67,104)( 19,122, 30, 48)
        ( 20,121, 60,111)( 21, 54,106,102)( 22, 71)( 23, 74, 55, 77)
        ( 24,112, 56, 41)( 25,125, 26, 96)( 27,105, 58, 88)( 29, 68, 87,119)
        ( 32, 92, 36, 97)( 35, 66)( 39,103, 42, 62)( 40, 51,116, 80)( 43, 72)
        ( 45,115)( 59, 65, 75, 93)( 64, 83)( 70, 89,127, 86)( 73,100)
        ( 79,101,109, 81)( 90, 99,124, 95), (  1, 29,  3,120,112, 68, 11, 70)
        (  2, 62, 22, 17)(  4,106,  9, 59, 79,121, 91, 87)(  5,105, 83,107,
          56, 25,108, 99)(  6, 54, 49, 12, 24,114, 20, 89)(  7, 10,119, 33,
          71, 15, 75, 64)(  8, 98, 85, 19, 32, 34, 37,115)( 13,104, 46, 86,
          96, 60, 43, 94)( 14, 40, 51, 31,122,128,129,101)( 16, 23,113, 61,
          50,111, 84, 52)( 18, 92, 80,102, 26, 72, 38,127)( 21, 42, 35,116,
          55, 57, 44, 77)( 28,125,117,109, 58, 95, 36, 81)( 30, 47, 63, 41)
        ( 39,100,103, 67, 48,123, 73, 88)( 45, 82,130, 53)( 65, 97, 69,110)
        ( 66,126, 76,118, 93,124, 74, 90) ] ],
[ 4, 12130560, 0, "2", [ [ 48, 1 ], [ 81, 1 ] ], 1, "PSL(4, 3).2", 
  [ "L", [ 4, 3 ], 1 ], 
  [ (  2,130, 76,  7, 20, 39, 81, 75)(  3, 12, 84, 69,122,114, 10, 45)
        (  4, 92, 95, 66, 97, 99, 93, 70)(  5, 77, 44,116,111, 25, 18, 14)
        (  6, 27,100, 61, 91,101,106, 60)(  8,128, 42, 89)(  9, 17,112, 29,
         123, 87, 32, 28)( 11,127,108, 31,105,115,113, 78)( 13, 26, 98, 59,
         126, 96, 56, 22)( 15,125, 83, 94, 85,117, 37,107)( 16, 47,121, 55,
          57, 79, 24,118)( 19, 80, 82, 51, 52, 58, 73, 23)( 21,104, 64, 63,
         109,102, 86,103)( 30, 40, 53, 54)( 33, 35, 90, 62, 72,124, 74, 67)
        ( 34, 41, 68, 36,129, 49, 43,120)( 38, 48, 88, 71, 46, 65,110,119), 
      (  1, 57, 63, 88,126, 40)(  2,121,112, 37, 60,101)(  3, 81, 96,115, 50,
          98)(  4, 52,  6, 66, 54, 23)(  5, 83, 58, 12, 20,117)
        (  7,107, 73, 87, 44, 72)(  9, 31, 21, 92,122, 91)( 10, 55,102,106,
         123, 99)( 11, 17, 13, 53, 16, 82)( 14, 29, 85, 46, 59, 22)
        ( 15, 28, 67)( 18, 94,103,113,108,110)( 19, 76)( 24,114, 79)
        ( 25, 61, 64, 93,119,111)( 26, 43,129, 90, 48, 97)( 27, 47,125,130,
          95, 69)( 30, 56, 84,100, 70, 42)( 32, 77, 80)( 33, 75)( 34, 74)
        ( 35,127, 89,128, 51, 49)( 36, 71, 39)( 38,116)( 41,104,118,124, 68,
          65)( 45, 86,120)( 78,109) ] ],
[ 5, 24261120, 0, "2", [ [ 48, 1 ], [ 81, 1 ] ], 1, "PSL(4, 3).2^2", 
  [ "L", [ 4, 3 ], 1 ], 
  [ (  1, 73, 83, 50,109, 77, 63, 58)(  2, 17,  5,111)(  3, 64, 75, 26, 14,
          38,117, 49)(  4, 80, 39,108,129, 21, 96, 11)(  6, 23, 92, 93, 87,
          76, 16, 62)(  7, 88,116, 94)(  8, 10, 37, 71, 24, 85, 12, 18)
        (  9,106,114, 56, 42, 47, 25, 32)( 13, 54,105, 40,123,127,101, 69)
        ( 15, 74,119, 52)( 19, 66, 90, 82, 84, 53, 44, 78)( 20, 59, 57, 86,
          91, 36, 99, 29)( 22,115, 65, 60, 72, 45, 95,128)( 27, 46, 70, 28,
         113, 81,121,118)( 30,112, 31,100,126, 98,103,110)( 33,120, 35, 41,
          67, 48,130, 34)( 43, 51,122,124,125, 55,104, 97)( 61, 89)
        ( 68,107,102, 79), (  1, 45,112,  8, 59, 24,115,105)(  2, 75,114, 88,
          43, 46, 39, 29)(  3, 28, 66, 93,101, 15, 12, 50)(  4, 84, 14, 20,
           5, 35, 33, 92)(  6,123,124, 89, 60, 55,106, 30)(  7, 47, 13,128,
          82, 52, 87, 42)(  9,122, 78,117, 83, 61, 56, 96)( 10, 81, 97, 32,
          41, 25,125, 86)( 11,130,100,111, 53, 21, 49, 26)( 16,107,121, 74,
          73, 44, 23,127)( 17, 67, 69, 37, 72, 62,129, 48)( 18, 19, 77,108)
        ( 22,102, 64,103, 40, 99, 90,110)( 27, 54, 38,109, 91, 95, 57, 70)
        ( 31, 65, 58, 80,119,118, 98, 71)( 34,126, 68, 85, 51,116,104, 63)
        ( 36,113, 79,120) ] ],
[6, Factorial(130)/2,1,"2",[[129,1]],128, "Alt(130)", ["A",130, 1], "Alt"],
[7, Factorial(130),0,"2",[[129, 1]],130, "Sym(130)", ["A",130, 1], "Sym"]];
PRIMGRP[131]:= 
[[ 1, 131, 3, "1", [ [ 1, 130 ] ], 1, "C(131)", [ "Z", 131, 1 ], [  ] ],
[ 2, 262, 2, "1", [ [ 2, 65 ] ], 1, "D(2*131)", [ "Z", 131, 1 ], 
  [ [ [ Z(131)^65 ] ] ] ],
[ 3, 655, 2, "1", [ [ 5, 26 ] ], 1, "131:5", [ "Z", 131, 1 ], 
  [ [ [ Z(131)^26 ] ] ] ],
[ 4, 1310, 2, "1", [ [ 10, 13 ] ], 1, "131:10", [ "Z", 131, 1 ], 
  [ [ [ Z(131)^13 ] ] ] ],
[ 5, 1703, 2, "1", [ [ 13, 10 ] ], 1, "131:13", [ "Z", 131, 1 ], 
  [ [ [ Z(131)^10 ] ] ] ],
[ 6, 3406, 2, "1", [ [ 26, 5 ] ], 1, "131:26", [ "Z", 131, 1 ], 
  [ [ [ Z(131)^5 ] ] ] ],
[ 7, 8515, 2, "1", [ [ 65, 2 ] ], 1, "131:65", [ "Z", 131, 1 ], 
  [ [ [ Z(131)^2 ] ] ] ],
[ 8, 17030, 2, "1", [ [ 130, 1 ] ], 2, "AGL(1, 131)", [ "Z", 131, 1 ], 
  [ [ [ Z(131) ] ] ] ],
[9, Factorial(131)/2,1,"2",[[130,1]],129, "Alt(131)", ["A",131, 1], "Alt"],
[10, Factorial(131),0,"2",[[130, 1]],131, "Sym(131)", ["A",131, 1], "Sym"]];
PRIMGRP[132]:= 
[[ 1, 1123980, 1, "2", [ [ 131, 1 ] ], 2, "PSL(2, 131)", 
  [ "L", [ 2, 131 ], 1 ], "psl" ],
[ 2, 2247960, 0, "2", [ [ 131, 1 ] ], 3, "PGL(2, 131)", 
  [ "L", [ 2, 131 ], 1 ], "pgl" ],
[3, Factorial(132)/2,1,"2",[[131,1]],130, "Alt(132)", ["A",132, 1], "Alt"],
[4, Factorial(132),0,"2",[[131, 1]],132, "Sym(132)", ["A",132, 1], "Sym"]];
PRIMGRP[133]:= 
[[ 1, 212427600, 1, "2", [ [ 132, 1 ] ], 2, "PSL(3, 11)", 
  [ "L", [ 3, 11 ], 1 ], 
  [ (  4, 74, 66,106,112)(  5, 60,113,126,107, 19, 67, 23, 75,102)
        (  6, 71, 54, 40, 13, 20, 49, 41,116, 33)(  7, 57,  9, 45, 28, 51,109,
         48, 81, 83)(  8, 96, 10, 46,120, 36,104, 78, 25,122)( 11, 30,118, 70,
         114, 62, 35,132, 77, 24)( 12,103, 43,128,115, 29,108, 72, 80, 82)
        ( 14, 31, 50, 42, 86, 53, 52, 99, 98, 97)( 15, 76, 88,121, 87,117,127,
         38, 64, 55)( 16, 44, 27, 32, 95, 90, 91, 39, 34, 56)( 17,124,111, 21,
         58, 73,105, 65,100,133)( 18,125, 59,101, 22)( 26,110, 94, 89, 69,130,
         119, 37,131, 79)( 47, 85, 61, 92, 63, 93,123, 68,129, 84), 
      (  1, 21,103, 19, 18, 58,  8,122, 35, 89, 62, 20, 60, 59,100, 95,109,
          76,107,106, 17,130, 71,123, 86, 13,117,115, 68,113,112,105, 31, 63,
         129, 64, 41, 82, 78, 85, 54, 27, 28, 37, 14, 12, 92,110, 36, 84, 25,
          61, 23, 22, 65, 30, 15, 39, 11, 99, 90, 48, 40, 94,116, 55, 80, 45,
         119, 93, 49,104,127,102,101,111, 51, 56,118, 77,114, 75, 74,133, 47,
          98, 91, 26, 42,128, 24,126,125, 73, 88,132,  9, 53, 32, 34, 29, 46,
          10, 96, 79, 50, 43, 16, 70, 81,121, 97, 52,120,  7,108,  5,  4,  3,
           2)(  6, 67, 66,124, 33,131, 83, 87, 44, 38, 57, 69) ] ],
[2, Factorial(133)/2,1,"2",[[132,1]],131, "Alt(133)", ["A",133, 1], "Alt"],
[3, Factorial(133),0,"2",[[132, 1]],133, "Sym(133)", ["A",133, 1], "Sym"]];
PRIMGRP[134]:= 
[[1, Factorial(134)/2,1,"2",[[133,1]],132, "Alt(134)", ["A",134, 1], "Alt"],
[2, Factorial(134),0,"2",[[133, 1]],134, "Sym(134)", ["A",134, 1], "Sym"]];
PRIMGRP[135]:= 
[[ 1, 1451520, 1, "2", [ [ 56, 1 ], [ 14, 1 ], [ 64, 1 ] ], 1, "PSp(6, 2)", 
  [ "B", [ 3, 2 ], 1 ], 
  [ (  1,  2)(  3,  5)(  4,  7)(  6, 10)(  8, 13)(  9, 15)( 11, 18)( 12, 20)
        ( 14, 23)( 16, 26)( 17, 28)( 19, 31)( 21, 34)( 22, 36)( 24, 39)
        ( 25, 40)( 27, 43)( 30, 46)( 32, 47)( 33, 48)( 35, 51)( 37, 54)
        ( 38, 56)( 41, 59)( 42, 61)( 49, 65)( 50, 67)( 52, 70)( 53, 71)
        ( 55, 58)( 62, 79)( 63, 81)( 64, 83)( 66, 86)( 68, 89)( 69, 91)
        ( 72, 94)( 73, 76)( 75, 97)( 78,100)( 80,103)( 82,101)( 84,106)
        ( 85,108)( 87,111)( 88,113)( 92,110)( 93,109)( 95,112)( 96,117)
        ( 98,119)( 99,121)(102,123)(104,122)(105,124)(114,125)(116,131)
        (120,128)(127,133)(129,134), 
      (  1,  3,  6, 11, 19, 32)(  2,  4,  8, 14, 24, 31)(  5,  9, 16, 27, 26,
          42)(  7, 12, 21, 35, 52, 61)( 10, 17, 29, 45, 63, 82)
        ( 13, 22, 37, 55, 73, 95)( 15, 25, 41, 60, 78,101)( 18, 30)
        ( 20, 33, 49, 66, 87,112)( 23, 38, 57, 75, 98,120)( 28, 44, 62, 80,
          39, 46)( 34, 50, 68, 90, 79,102)( 36, 53, 72, 86,110,128)
        ( 40, 58, 76, 99, 70, 43)( 48, 64, 84,107,127,123)( 51, 69, 92,116,
          71, 93)( 54, 59, 77, 97,119,131)( 56, 74, 96,118,133,103)
        ( 65, 85,109, 67, 88,114)( 81,104, 89,115,130,135)( 83,105,125)
        ( 91,111,121)( 94,108)(100,122,113,129,106,126)(117,132)(124,134) ] ],
[ 2, 174182400, 1, "2", [ [ 70, 1 ], [ 64, 1 ] ], 1, "O+(8, 2)", 
  [ "D", [ 4, 2 ], 1 ], 
  [ (  1, 12, 54,102, 18,116,  9, 96, 70,  7,101, 95)(  2,124, 97, 49, 20, 48,
         58, 83, 91,120,115, 14)(  3, 59, 88, 47,  8,104, 86, 82, 61, 73, 50,
          38)(  4,130, 25, 28, 89, 53,100, 76, 11, 21,133, 39)
        (  5, 15, 43,106,131,121, 22, 65, 92, 99, 87,125)(  6, 60, 71, 35, 30,
         10, 55, 64, 62, 31, 66, 80)( 13, 90, 74,118,111, 23, 93,123,134,112,
         114,132)( 16, 79,107,108, 41, 56,105, 40,103, 26, 37, 27)
        ( 17, 78, 72, 67,128, 32, 34, 45, 19, 57,135, 51)( 24,110,119, 29, 63,
         129)( 33, 68, 42)( 36, 85, 98,126, 84, 52)( 44, 77, 69,109,113,122,
          75,117,127, 46, 94, 81), 
      (  1, 58, 76, 21, 49, 55, 50, 73, 31, 16, 22, 25,134,123,122)
        (  2, 52, 74,119,131,115,133, 40, 83, 41,  6, 59, 99,124, 51)
        (  3,108, 88, 86, 18, 77, 23,  9, 39, 12, 17, 53, 11,109, 84)
        (  4, 75, 33, 43,121, 61, 44, 56, 36, 47, 20, 98,101, 80,135)
        (  5, 13,104,102, 62,  8, 46, 48, 72, 28,100, 97, 54,112, 14)
        (  7,105,107, 19,118,127, 81, 68, 30, 95, 87,120,103, 37, 32)
        ( 10, 67,117, 85, 79,129, 89, 26, 63, 45,114,126, 91, 42,128)
        ( 15, 65, 38, 93,110,130,125, 60, 34, 96, 78,106, 90,132, 27)
        ( 24, 71,116, 57, 35, 92,113, 69, 29, 70,111, 64, 66, 82, 94) ] ],
[ 3, 348364800, 0, "2", [ [ 70, 1 ], [ 64, 1 ] ], 1, "PSO+(8, 2)", 
  [ "D", [ 4, 2 ], 1 ], 
  [ (  1, 70,  6, 82, 13, 37, 45, 23, 95, 64,133, 25)(  2, 40, 43, 55, 65, 87,
         80,104,118, 26, 83, 59)(  3, 33, 47, 98, 96,126)(  4, 77, 12,135, 86,
         88,100, 61, 18, 39, 28,117)(  5, 14, 76, 50,115,123)(  7, 79, 91,106,
         93, 60, 78, 11,108,105, 67, 75)(  8, 27, 62, 72, 22,127, 17,103,121,
          81, 35, 69)(  9, 30, 99,114,120, 15, 94, 10, 54, 58, 57, 92)
        ( 16, 41, 89, 97,102,131,132, 38, 49,116,113, 44)( 19, 56, 32)
        ( 20, 31,134,109, 34, 90)( 21, 63, 73, 36,101,129)( 24,130,110,125,
         119, 48, 52, 46, 42, 71, 29, 74)( 51,122,107)( 53, 68,128, 85)
        ( 66,112,111,124), (  1, 38, 39)(  2, 74, 43, 54, 97, 91,101,124, 31,
           3,130, 50)(  4, 73, 24)(  5, 15, 76,  6, 26,111, 83, 18,132, 34,
          28, 14)(  7, 47,  9, 51)(  8, 96,109, 22, 16,134, 23, 66, 99, 10,
          21, 80)( 11, 53,102)( 12, 48, 17,116, 46,114,112, 92,106, 86, 55, 35
         )( 13, 69, 87,129, 40, 85,120,100, 60, 84, 37, 52)( 19, 95, 58, 56,
         107,105,108,122,103,118, 65, 72)( 20,128, 42,113, 75,131, 90,135, 29,
         45, 59, 64)( 25, 93, 88, 62, 33, 44,104, 49, 61,125, 36, 82)
        ( 27, 81, 30, 70)( 32, 68,127)( 41, 67,121)( 57,119, 77,133,110,117)
        ( 63,123, 78, 98,115, 94)( 71, 79, 89) ] ],
[4, Factorial(135)/2,1,"2",[[134,1]],133, "Alt(135)", ["A",135, 1], "Alt"],
[5, Factorial(135),0,"2",[[134, 1]],135, "Sym(135)", ["A",135, 1], "Sym"]];
PRIMGRP[136]:= 
[[ 1, 2448, 1, "2", [ [ 18, 4 ], [ 9, 7 ] ], 1, "PSL(2, 17)", 
  [ "L", [ 2, 17 ], 1 ], 
  [ (  1,101)(  2, 79)(  3, 93)(  4, 59)(  6, 98)(  7, 50)(  8, 85)(  9, 75)
        ( 10, 31)( 11,104)( 12, 68)( 13, 46)( 14,129)( 15,100)( 16, 91)
        ( 17, 44)( 18, 77)( 19, 83)( 20, 52)( 21, 71)( 22,103)( 23, 87)
        ( 24,106)( 25, 95)( 26, 33)( 27,123)( 28,119)( 29, 38)( 30, 42)
        ( 32, 64)( 34, 65)( 35, 62)( 37, 90)( 40,130)( 41,121)( 43,117)
        ( 45,110)( 47, 56)( 48, 67)( 49,116)( 51, 96)( 53,102)( 54, 92)
        ( 55,127)( 57, 89)( 58,120)( 60,114)( 61, 69)( 63, 70)( 66, 99)
        ( 72,126)( 76, 81)( 78,131)( 80,133)( 84, 94)( 97,112)(105,125)
        (107,109)(108,124)(111,128)(113,132)(115,134)(118,136)(122,135), 
      (  1, 15, 12)(  2, 49, 93)(  3, 20, 48)(  4,120,129)(  5, 32, 61)
        (  6,125, 67)(  7, 38, 36)(  8, 23,117)(  9, 87, 22)( 10,103,104)
        ( 11, 90,102)( 13, 60, 14)( 16, 35, 66)( 17, 43, 44)( 18, 75, 98)
        ( 19, 77, 74)( 21, 33, 79)( 24,116, 51)( 25, 26, 57)( 27,115, 56)
        ( 28, 76,105)( 29,134, 89)( 30,108,110)( 31, 69, 45)( 34,106, 63)
        ( 37,126,133)( 39, 71, 80)( 40, 59,135)( 41, 88,122)( 42, 68,121)
        ( 46, 99, 55)( 47,112,131)( 50, 72, 94)( 52, 73, 78)( 53, 81,114)
        ( 54,100,118)( 58, 84,136)( 62,107, 70)( 64,127,109)( 65, 96,123)
        ( 82,101, 91)( 83,113,111)( 85,128, 92)( 86,124,119)( 97,130,132) ] ],
[ 2, 4896, 0, "2", [ [ 18, 7 ], [ 9, 1 ] ], 1, "PGL(2, 17)", 
  [ "L", [ 2, 17 ], 1 ], 
  [ (  2, 46)(  3, 45)(  4, 69)(  6, 70)(  7,107)(  8,124)(  9, 53)( 10, 47)
        ( 13, 66)( 14,105)( 15, 98)( 16,125)( 17,110)( 18,127)( 19, 94)
        ( 21, 51)( 22,112)( 23,111)( 24, 25)( 27, 37)( 28, 32)( 29, 31)
        ( 30,103)( 33,130)( 34,135)( 35,104)( 36,106)( 39, 75)( 40,122)
        ( 41,123)( 43, 76)( 44, 89)( 48, 81)( 49, 86)( 50, 54)( 52, 71)
        ( 55,134)( 56,115)( 57,114)( 58, 85)( 59, 83)( 60, 74)( 61, 73)
        ( 62,121)( 63,120)( 64, 84)( 65,128)( 67, 80)( 68, 79)( 72, 82)
        ( 77, 97)( 78,126)( 87,109)( 88,108)( 90, 99)( 91,116)( 93,132)
        ( 95,119)( 96,118)(100,131)(101,117)(102,113)(133,136), 
      (  1, 51, 53)(  2, 19, 27)(  3, 47, 69)(  4, 65, 31)(  5, 41, 37)
        (  6, 44,130)(  7,126, 30)(  8,123, 24)(  9,113,106)( 10,136, 15)
        ( 11,125, 94)( 12, 48,131)( 13,122,111)( 14, 18,124)( 16, 58,134)
        ( 17, 83, 29)( 20, 92,104)( 21,110,103)( 22, 25,129)( 23, 73, 38)
        ( 26,114,120)( 28,127, 96)( 32,101, 34)( 33, 90,109)( 35, 59,116)
        ( 36, 77,105)( 39, 52,117)( 40, 76, 95)( 42, 89,118)( 43, 79, 98)
        ( 45,102, 54)( 46, 68, 49)( 50, 71,121)( 55, 56,108)( 57,128, 81)
        ( 61, 78, 82)( 62, 88,119)( 63, 75, 85)( 64, 66, 99)( 67,115, 70)
        ( 72, 86, 91)( 74, 80,135)( 84,133, 97)( 87,112,100)( 93,132,107) ] ],
[ 3, 4080, 1, "2", [ [ 15, 7 ], [ 30, 1 ] ], 1, "PSL(2, 16)", 
  [ "L", [ 2, 16 ], 1 ], 
  [ (  1,131)(  2, 12)(  4, 67)(  5,117)(  6, 76)(  7, 49)(  8, 79)(  9,128)
        ( 10, 50)( 11, 32)( 13, 15)( 14, 24)( 16, 62)( 17,125)( 18, 36)
        ( 19, 93)( 20, 59)( 21,110)( 22, 23)( 25, 61)( 26, 88)( 27,102)
        ( 28, 96)( 29, 92)( 30, 31)( 33, 83)( 34, 82)( 37,104)( 38, 66)
        ( 39, 58)( 40, 46)( 41,118)( 42, 68)( 44, 52)( 45,130)( 47, 70)
        ( 48, 54)( 51, 89)( 55, 65)( 56, 74)( 57, 63)( 60, 64)( 69,120)
        ( 71,135)( 72,114)( 75,108)( 77, 81)( 78,122)( 80,115)( 84,107)
        ( 85, 98)( 86, 90)( 87,119)( 91,105)( 95,134)( 97,116)( 99,132)
        (100,124)(101,133)(103,136)(106,123)(112,113)(121,126)(127,129), 
      (  1, 36,100)(  2, 11, 48)(  3,130, 55)(  4, 56, 91)(  5, 99,112)
        (  6,124, 47)(  7,128, 14)(  8, 76, 24)(  9, 70, 38)( 10, 72,109)
        ( 12, 35, 58)( 13,105, 73)( 15, 45, 64)( 16, 49, 92)( 17, 85,126)
        ( 18,115, 33)( 19, 82, 65)( 20, 87, 43)( 21, 44, 75)( 22, 25,132)
        ( 23, 63,122)( 26, 62, 95)( 27, 80,101)( 28, 66,120)( 29,102, 67)
        ( 30,116,111)( 31, 94, 69)( 32, 93, 71)( 34, 50, 51)( 37,129,119)
        ( 39, 90, 52)( 40, 88,107)( 41, 54, 89)( 42, 98,103)( 46,131,113)
        ( 53,135,127)( 57, 86,114)( 59, 68,134)( 60, 78, 96)( 61,108,106)
        ( 74,117,125)( 77, 97, 79)( 81,110,104)( 83,123,136)( 84,133,118) ] ],
[ 4, 8160, 0, "2", [ [ 15, 3 ], [ 30, 3 ] ], 1, "PSL(2, 16).2", 
  [ "L", [ 2, 16 ], 1 ], 
  [ (  1, 81)(  2, 60)(  3,116)(  4,122)(  5, 13)(  6, 93)(  7, 72)( 10,113)
        ( 11, 28)( 12, 37)( 14,130)( 15, 55)( 16,112)( 17, 34)( 18,125)
        ( 19, 63)( 22, 80)( 25, 70)( 26,117)( 27,103)( 29, 64)( 30, 57)
        ( 31, 76)( 32, 77)( 33, 62)( 35,107)( 36, 98)( 38,105)( 39,118)
        ( 41, 56)( 42, 49)( 43, 97)( 44, 86)( 46, 75)( 47, 90)( 48, 79)
        ( 50, 83)( 51, 91)( 52, 61)( 53,133)( 58,126)( 59,132)( 65, 88)
        ( 66,106)( 67, 78)( 68,100)( 69, 94)( 71,102)( 73,101)( 74,121)
        ( 82, 85)( 84,111)( 87,135)( 89,123)( 92,104)( 96,131)(109,120)
        (114,124)(119,136)(127,128), (  1,122, 42, 62)(  2, 21, 57,120)
        (  3, 94, 31,128)(  4,108, 99, 33)(  5, 59, 75, 36)(  6, 55,127,  9)
        (  7, 35,115,112)(  8, 47, 63, 11)( 10, 80, 25, 79)( 12,130, 49, 17)
        ( 13,106,116,129)( 14, 71,134,105)( 15, 53, 41, 20)( 16,103, 46, 78)
        ( 18, 68)( 19,110, 64, 88)( 22, 84, 30, 86)( 23, 52)( 24, 66, 61, 72)
        ( 26, 85,135, 73)( 27, 56, 51, 95)( 28, 89,117, 92)( 29, 87, 45,104)
        ( 32, 69, 97, 91)( 34,125, 40,102)( 37,109, 81,131)( 38, 43)
        ( 39,101,119,113)( 44, 58, 98,124)( 48, 96, 83, 54)( 50,132, 74,126)
        ( 60, 82,121,136)( 65,133)( 67, 77, 93,100)( 70,123,118, 90)
        ( 76,111,107,114) ] ],
[ 5, 16320, 0, "2", [ [ 15, 1 ], [ 60, 1 ], [ 30, 2 ] ], 1, "PSigmaL(2, 16)", 
  [ "L", [ 2, 16 ], 1 ], 
  [ (  1, 49)(  2, 48)(  3,114)(  4,123)(  5,134)(  6, 14)(  7, 47)(  8, 76)
        (  9, 38)( 10, 93)( 12, 65)( 13, 25)( 15, 21)( 16, 36)( 17,126)
        ( 18, 95)( 19, 58)( 20, 61)( 22,105)( 23, 37)( 26, 33)( 27,101)
        ( 28, 97)( 29,113)( 31, 69)( 32, 72)( 34, 51)( 35, 82)( 39,127)
        ( 40,107)( 41, 54)( 43,108)( 44, 64)( 45, 75)( 46, 67)( 52, 53)
        ( 55, 57)( 56, 83)( 59,112)( 60, 96)( 62,115)( 63,119)( 66, 77)
        ( 68, 99)( 71,109)( 73,132)( 74,125)( 79,120)( 81,110)( 84,118)
        ( 86,130)( 87,106)( 90,135)( 91,136)( 92,100)( 98,103)(102,131)
        (111,116)(122,129)(124,128), 
      (  1,106, 94, 20,103, 26, 42, 90, 31, 53, 16,115)(  2, 25, 77, 13,  4,
          56,120,134, 87, 70, 89, 50)(  3,124, 27,123,102, 45,128, 39,132,129,
         60, 67)(  5, 68, 43, 76, 24, 61)(  6,113, 46, 63, 80,135, 86, 44, 78,
         91,105,  7)(  8,133, 93, 51,131, 84, 69, 52, 29,126,109,127)
        (  9, 28,112, 11,136, 54, 22,108, 73, 97, 34, 83)( 10, 59,104,117, 12,
         55, 14, 36,100, 33, 88, 30)( 15, 75,107)( 17, 57,116, 64, 85, 48, 19,
         21,118,130, 35, 96)( 18, 81, 62, 37, 38,122)( 23, 79, 98, 72,119,121,
         65, 71,101, 66, 58,125)( 32,114, 40, 74, 49, 99, 47,111, 82, 95,110,
          92) ] ],
[ 6, 47377612800, 1, "2", [ [ 135, 1 ] ], 2, "PSp(8, 2)", 
  [ "B", [ 4, 2 ], 1 ], 
  [ (  1,  2)(  3,  4)(  5,  7)(  6,  9)(  8, 12)( 10, 15)( 11, 17)( 13, 19)
        ( 14, 21)( 16, 23)( 18, 25)( 22, 29)( 24, 32)( 28, 37)( 30, 40)
        ( 31, 42)( 35, 47)( 36, 49)( 38, 52)( 39, 53)( 41, 56)( 45, 61)
        ( 46, 62)( 50, 65)( 51, 67)( 54, 69)( 55, 71)( 59, 75)( 60, 77)
        ( 63, 80)( 68, 84)( 70, 87)( 74, 91)( 78, 95)( 79, 96)( 83, 94)
        ( 85,103)( 86,105)( 90,110)( 92,112)( 99,108)(100,113)(101,117)
        (102,104)(109,122)(111,124)(114,121)(116,120)(118,125)(126,128)
        (130,133)(132,135), (  2,  3,  5,  8, 13, 20, 28, 38)(  4,  6, 10, 16,
         24, 33, 45, 52)(  7, 11, 18, 26, 35, 48, 37, 51)(  9, 14, 22, 30, 41,
         57, 61, 67)( 12, 19, 27, 36, 50, 66, 83,101)( 15, 23, 31, 43, 59, 76,
         94,114)( 17, 25, 34, 46, 63, 81, 99,117)( 21, 29, 39, 54, 70, 88,108,
         121)( 32, 44, 60, 78)( 40, 55, 72, 90, 80, 98,116,126)
        ( 42, 58, 74, 92, 56, 73, 77, 95)( 47, 64, 49, 65, 82,100,118,127)
        ( 53, 68, 85,104, 87,107,120,128)( 62, 79, 97, 75, 93,113,125,131)
        ( 69, 86,106,110, 96,115, 91,111)( 71, 89,109,123,130,134,135,112)
        ( 84,102,105,119,122,129,132,124)(133,136) ] ],
[ 7, 979200, 1, "2", [ [ 60, 1 ], [ 75, 1 ] ], 1, "PSp(4, 4)", 
  [ "B", [ 2, 4 ], 1 ], 
  [ (  1,102, 66, 64,  9, 99,114, 85, 89, 71,126,  2, 96,129, 52)
        (  3,  4, 25, 78, 80,104, 79, 47,116, 18,100,117, 13, 37, 67)
        (  5, 95, 97,134,106)(  6, 39,  8, 94, 61, 93,107, 12, 23,123, 20, 92,
         70,111, 17)(  7, 44, 58, 22,127, 33,113, 84,110, 19, 90, 63, 68, 36,
          27)( 10, 77, 45,103, 40,121,112, 46, 86, 76, 98,109, 26,108, 57)
        ( 11,128,120,131, 60)( 14, 34, 55, 31, 54, 50,105, 81, 72, 74, 62, 82,
         119,136, 56)( 15, 29,130, 28, 59,135, 87, 65, 16, 21, 83, 48, 43, 91,
         49)( 24, 32, 69, 51,122, 42, 35, 38, 75, 53,115,125, 88,118,133)
        ( 30,101,124)( 41, 73,132), 
      (  1, 77, 89, 93,125, 41)(  2, 23, 39,101,126, 70)(  3,102, 43,122, 71,
          40)(  4, 20, 88, 68, 64,130)(  5, 25,128, 74,105, 27)
        (  6, 52,  7, 96,124,133)(  8, 69, 26, 61, 62, 33)(  9,107, 79)
        ( 10, 75, 94, 11,109, 85)( 12, 35, 17)( 13, 51, 95, 83, 32, 98)
        ( 14, 90, 76, 42,103, 50)( 15,116, 99, 22, 46, 73)( 16,118,114)
        ( 18, 24,113,135, 65,117)( 19,108, 66,106, 37,132)( 21, 67,120, 57,
          34,127)( 28,100,111,136, 86,129)( 30, 60, 63)( 31,119, 36, 87, 47,
          55)( 38, 48,115, 49, 91, 59)( 44,123,131, 58, 92, 56)
        ( 45, 53, 97,104, 78, 54)( 72, 84,112)( 80, 82,121, 81,110,134) ] ],
[ 8, 1958400, 0, "2", [ [ 60, 1 ], [ 75, 1 ] ], 1, "PSp(4, 4).2", 
  [ "B", [ 2, 4 ], 1 ], 
  [ (  1, 42, 28, 93, 92, 90)(  2,118, 11, 49,114, 85)(  3, 24, 97, 87,100, 20
         )(  4, 79,110)(  5, 16,101,126, 30, 38)(  6, 88, 29, 99,  7,107)
        (  8, 26,128,105, 70, 27)(  9, 46, 82)( 10, 60, 74, 94, 63, 23)
        ( 13,123,132, 51, 14, 66)( 15,125, 65, 53, 81, 86)( 17, 47, 96,112,
          21, 73)( 18, 77,134, 50, 80, 41)( 19, 52, 71,127, 45, 34)
        ( 22, 58, 36, 78,117, 37)( 25, 75, 62, 61,109, 59)( 31,108,135,122,
          55, 76)( 32, 43,103, 83, 40,136)( 33, 69, 48, 39,115, 91)
        ( 35,130, 57, 72,133,119)( 44,121, 54,113, 89, 64)( 56,129, 98)
        ( 67,102)( 68,116, 84)(104,124)(106,120), 
      (  1,100,132,135, 23, 51, 39, 98, 79, 47)(  2, 94,114,112,130, 56, 93,
         105, 34, 68)(  3, 43,126, 66, 55)(  4, 57, 53, 27, 54, 65,122,120,
          48, 42)(  5,113, 38,  7, 74,111, 33, 21, 26,101)(  6, 37,108,  8,
          69, 46, 31,131, 90, 67)(  9,119,103,123, 10, 50, 36,125, 59, 13)
        ( 11, 70, 87, 81, 63, 12, 73,129, 78, 62)( 14, 96, 61,128, 75, 60, 88,
         80, 29,104)( 15, 91,124,109, 17, 72,107, 45, 52, 97)( 16, 99,117,133,
         85)( 18,110, 86, 32, 76)( 19,134, 58, 40, 82, 25, 92,116, 95, 30)
        ( 20,136, 64, 83, 35, 71, 22, 41, 84,106)( 24, 77,115, 28,121, 44,127,
         89,118,102) ] ],
[ 9, 197406720, 1, "2", [ [ 72, 1 ], [ 63, 1 ] ], 1, "O-(8, 2)", 
  [ "2D", [ 4, 2 ], 1 ], 
  [ (  1,114, 93, 69,107, 85, 28, 72,135,115, 31,128,131,119, 27, 67,102, 77,
          11, 83, 80)(  2, 20, 88)(  3,132, 64,133, 71, 15, 98, 19, 21, 86,
          91,  6,  7, 65, 35, 24,113,111, 58,126, 79)(  4, 16, 56, 84,108, 90,
         112, 25, 78, 14,123,  8, 62,104, 34, 59, 89, 97, 99, 51, 10)
        (  5, 47, 13, 53, 32, 74, 38, 63, 43, 49, 55, 12, 39, 37,100, 26,105,
         136,125, 42, 46)(  9, 57, 17, 33, 18, 48, 52, 92, 96,118, 95, 54, 40,
         109,106, 70, 60,103, 75, 45,127)( 22, 50,116, 30, 82, 29,124)
        ( 23,134, 36,122, 44, 81, 73)( 41,120, 66, 68,101, 76,129)
        ( 61,130,110, 94, 87,121,117), 
      (  1, 49,113,116, 58, 74)(  2, 90,130, 40,  3, 29, 57,101,100,132,  4,
          34)(  5, 26, 78, 22,127,104,108,123,136, 43, 62,133)(  6,135, 18)
        (  7,120, 36,129,124, 39,125,131, 81, 46, 12, 64)(  8,112, 97, 41, 69,
         63,117,111, 82, 19, 11, 99)(  9, 92, 13, 83,103, 79, 87, 17, 67, 93,
          38, 72)( 10, 14, 55,134,119,107)( 15, 60, 42, 44, 95, 30, 32,106,
          86, 33, 37, 50)( 16, 91, 48, 31,121, 24)( 20, 25, 51, 28, 52, 84,
          96, 35,109, 56,122, 47)( 21, 88, 59, 80, 76, 53)( 23,128, 89, 70,
          77, 45)( 27, 85,126, 71, 94,115, 98,102, 68, 75,118, 66)
        ( 54,110, 61,114, 73, 65) ] ],
[ 10, 394813440, 0, "2", [ [ 72, 1 ], [ 63, 1 ] ], 1, "PSO-(8, 2)", 
  [ "2D", [ 4, 2 ], 1 ], 
  [ (  1,134,116,135, 53,  6)(  2, 22, 71, 36, 43,111)(  3, 82, 46, 97,  4, 85
         )(  5,  9,108)(  7,132, 13, 94, 50, 69)(  8,107, 29,106, 55,103)
        ( 10, 65, 18, 77,105, 61)( 11, 90, 64, 67, 99, 20)( 12, 54, 84,127,
          49,115)( 14, 68, 41, 88,100,120)( 15,122, 52)( 16, 34, 60, 31, 38,
         117)( 17,123,119,109, 37, 70)( 19, 76,130,131, 24,126)( 21,110, 74)
        ( 23, 92, 26, 48, 51, 95)( 25, 79, 42, 35, 78, 28)( 27,101, 40,133,
          63, 30)( 33,136, 86, 44, 72, 56)( 39,104,118, 96, 98,125)
        ( 47, 62, 58, 66,124,114)( 57, 83,112, 81, 93, 75)( 59,121)
        ( 73, 89,113)( 91,128)(102,129), 
      (  1, 31, 45,113, 41, 50,124,125, 86,120, 36, 70)(  2, 73, 76,126, 25,
          75, 95, 56, 34, 78, 38, 94)(  3, 97,129, 81, 23, 68, 57, 74, 19, 46,
         44, 90)(  4, 40, 65, 55, 47, 71, 37, 22, 52, 72, 14,100)(  6,106,133)
        (  7, 93, 67, 16, 84, 87)(  8, 79, 24,134,109, 39)(  9, 27, 49,119,
         130, 96, 91, 53, 17, 83,118, 35)( 10, 77, 18, 60, 99, 64,117, 32,104,
         105,114, 48)( 11,128,135, 54, 26,132,116, 62,108,112, 89,115)
        ( 12, 98, 58,123, 82, 30)( 13,107, 80, 66,101, 20,121, 51, 85, 43,136,
         103)( 15, 63,102, 28, 29,122)( 21,110, 88, 61,127,111)
        ( 33, 69, 59, 92, 42,131) ] ],
[ 11, 177843714048000, 1, "2", [ [ 105, 1 ], [ 30, 1 ] ], 1, "Alt(17)", 
  [ "A", 17, 1 ], 
  [ (  1,127, 69, 20, 74, 43, 72,130,107, 90,103, 75)(  2,135,116, 30,100, 78)
        (  3, 46, 98,128,  4, 22, 35, 10,119, 96, 63, 14)(  5, 71, 31, 85, 83,
         64, 17, 18,123, 50, 68, 47)(  6,112, 37, 91, 73, 60, 42,136, 58,110,
         121, 97)(  7,131, 59, 38,134,  9, 32, 53,133, 92, 77, 27)
        (  8, 19, 80, 61,109, 36, 48, 13, 15,114,126, 33)( 11, 76, 51,104, 16,
         41, 39, 70, 57,102, 21, 23)( 12,118, 44,108, 65,111, 56,132, 88,101,
          84, 52)( 25, 95, 87, 40,129,124, 26, 79,125, 99, 45,122)
        ( 28,105,106, 86,115, 55, 62, 89, 94,117,113, 49)( 29, 54, 67, 66, 81,
         34)( 82, 93,120), (  1, 41,132,123, 66, 61, 12,  3,121, 76, 43,117,
          34, 35, 40, 94, 78)(  2, 55,112, 58,102, 45, 23, 15,104, 46,120,  9,
         127,105,106, 85, 14)(  4, 21, 39, 88, 83, 22, 42, 11, 65,114,110, 89,
         130,119, 68, 31, 97)(  5,100, 86, 59, 37, 16, 48, 27, 54, 75, 36, 56,
         29,136, 57, 96,108)(  6,118, 74, 50, 51, 79,  8, 63, 26, 44,111, 64,
          17, 18,133,128, 30)(  7,109, 33, 90,107, 73, 95, 87, 70,134, 24, 72,
         71, 93, 92, 77, 53)( 10, 91, 19, 82,131, 84, 67,115, 98, 47, 80, 52,
          99, 60, 49, 28,122)( 13, 20,125,135,101,124,103,129,126, 38, 62,116,
         81, 32, 69, 25,113) ] ],
[ 12, 355687428096000, 0, "2", [ [ 105, 1 ], [ 30, 1 ] ], 1, "Sym(17)", 
  [ "A", 17, 1 ], 
  [ (  1,  2,  3,  5,  7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57, 65, 73)
        (  4,  6,  8, 11, 14, 18, 22, 27, 32, 38, 44, 51, 58, 66, 74, 83, 82)
        (  9, 12, 15, 19, 23, 28, 33, 39, 45, 52, 59, 67, 75, 84, 92, 91,100)
        ( 16, 20, 24, 29, 34, 40, 46, 53, 60, 68, 76, 85, 93,102,101,109,118)
        ( 25, 30, 35, 41, 47, 54, 61, 69, 77, 86, 94,103,111,110,119,125,130)
        ( 36, 42, 48, 55, 62, 70, 78, 87, 95,104,112,117,120,126,131,134,136)
        ( 49, 56, 63, 71, 79, 88, 96,105,113,121, 99,108,116,124,129,133,135)
        ( 64, 72, 80, 89, 97,106,114,122,127, 81, 90, 98,107,115,123,128,132),
      (  2,  4)(  6,  9)( 12, 16)( 20, 25)( 30, 36)( 42, 49)( 56, 64)( 72, 81)
        ( 73, 82)( 83, 91)( 90, 99)( 92,101)(102,110)(108,117)(111,120) ] ],
[13, Factorial(136)/2,1,"2",[[135,1]],134, "Alt(136)", ["A",136, 1], "Alt"],
[14, Factorial(136),0,"2",[[135, 1]],136, "Sym(136)", ["A",136, 1], "Sym"]];
PRIMGRP[137]:= 
[[ 1, 137, 3, "1", [ [ 1, 136 ] ], 1, "C(137)", [ "Z", 137, 1 ], [  ] ],
[ 2, 274, 2, "1", [ [ 2, 68 ] ], 1, "D(2*137)", [ "Z", 137, 1 ], 
  [ [ [ Z(137)^68 ] ] ] ],
[ 3, 548, 2, "1", [ [ 4, 34 ] ], 1, "137:4", [ "Z", 137, 1 ], 
  [ [ [ Z(137)^34 ] ] ] ],
[ 4, 1096, 2, "1", [ [ 8, 17 ] ], 1, "137:8", [ "Z", 137, 1 ], 
  [ [ [ Z(137)^17 ] ] ] ],
[ 5, 2329, 2, "1", [ [ 17, 8 ] ], 1, "137:17", [ "Z", 137, 1 ], 
  [ [ [ Z(137)^8 ] ] ] ],
[ 6, 4658, 2, "1", [ [ 34, 4 ] ], 1, "137:34", [ "Z", 137, 1 ], 
  [ [ [ Z(137)^4 ] ] ] ],
[ 7, 9316, 2, "1", [ [ 68, 2 ] ], 1, "137:68", [ "Z", 137, 1 ], 
  [ [ [ Z(137)^2 ] ] ] ],
[ 8, 18632, 2, "1", [ [ 136, 1 ] ], 2, "AGL(1, 137)", [ "Z", 137, 1 ], 
  [ [ [ Z(137) ] ] ] ],
[9, Factorial(137)/2,1,"2",[[136,1]],135, "Alt(137)", ["A",137, 1], "Alt"],
[10, Factorial(137),0,"2",[[136, 1]],137, "Sym(137)", ["A",137, 1], "Sym"]];
PRIMGRP[138]:= 
[[ 1, 1285608, 1, "2", [ [ 137, 1 ] ], 2, "PSL(2, 137)", 
  [ "L", [ 2, 137 ], 1 ], "psl" ],
[ 2, 2571216, 0, "2", [ [ 137, 1 ] ], 3, "PGL(2, 137)", 
  [ "L", [ 2, 137 ], 1 ], "pgl" ],
[3, Factorial(138)/2,1,"2",[[137,1]],136, "Alt(138)", ["A",138, 1], "Alt"],
[4, Factorial(138),0,"2",[[137, 1]],138, "Sym(138)", ["A",138, 1], "Sym"]];
PRIMGRP[139]:= 
[[ 1, 139, 3, "1", [ [ 1, 138 ] ], 1, "C(139)", [ "Z", 139, 1 ], [  ] ],
[ 2, 278, 2, "1", [ [ 2, 69 ] ], 1, "D(2*139)", [ "Z", 139, 1 ], 
  [ [ [ Z(139)^69 ] ] ] ],
[ 3, 417, 2, "1", [ [ 3, 46 ] ], 1, "139:3", [ "Z", 139, 1 ], 
  [ [ [ Z(139)^46 ] ] ] ],
[ 4, 834, 2, "1", [ [ 6, 23 ] ], 1, "139:6", [ "Z", 139, 1 ], 
  [ [ [ Z(139)^23 ] ] ] ],
[ 5, 3197, 2, "1", [ [ 23, 6 ] ], 1, "139:23", [ "Z", 139, 1 ], 
  [ [ [ Z(139)^6 ] ] ] ],
[ 6, 6394, 2, "1", [ [ 46, 3 ] ], 1, "139:46", [ "Z", 139, 1 ], 
  [ [ [ Z(139)^3 ] ] ] ],
[ 7, 9591, 2, "1", [ [ 69, 2 ] ], 1, "139:69", [ "Z", 139, 1 ], 
  [ [ [ Z(139)^2 ] ] ] ],
[ 8, 19182, 2, "1", [ [ 138, 1 ] ], 2, "AGL(1, 139)", [ "Z", 139, 1 ], 
  [ [ [ Z(139) ] ] ] ],
[9, Factorial(139)/2,1,"2",[[138,1]],137, "Alt(139)", ["A",139, 1], "Alt"],
[10, Factorial(139),0,"2",[[138, 1]],139, "Sym(139)", ["A",139, 1], "Sym"]];
PRIMGRP[140]:= 
[[ 1, 1342740, 1, "2", [ [ 139, 1 ] ], 2, "PSL(2, 139)", 
  [ "L", [ 2, 139 ], 1 ], "psl" ],
[ 2, 2685480, 0, "2", [ [ 139, 1 ] ], 3, "PGL(2, 139)", 
  [ "L", [ 2, 139 ], 1 ], "pgl" ],
[3, Factorial(140)/2,1,"2",[[139,1]],138, "Alt(140)", ["A",140, 1], "Alt"],
[4, Factorial(140),0,"2",[[139, 1]],140, "Sym(140)", ["A",140, 1], "Sym"]];
PRIMGRP[141]:= 
[[1, Factorial(141)/2,1,"2",[[140,1]],139, "Alt(141)", ["A",141, 1], "Alt"],
[2, Factorial(141),0,"2",[[140, 1]],141, "Sym(141)", ["A",141, 1], "Sym"]];
PRIMGRP[142]:= 
[[1, Factorial(142)/2,1,"2",[[141,1]],140, "Alt(142)", ["A",142, 1], "Alt"],
[2, Factorial(142),0,"2",[[141, 1]],142, "Sym(142)", ["A",142, 1], "Sym"]];
PRIMGRP[143]:= 
[[1, Factorial(143)/2,1,"2",[[142,1]],141, "Alt(143)", ["A",143, 1], "Alt"],
[2, Factorial(143),0,"2",[[142, 1]],143, "Sym(143)", ["A",143, 1], "Sym"]];
PRIMGRP[144]:= 
[[ 1, 5616, 1, "2", [ [ 13, 5 ], [ 39, 2 ] ], 1, "PSL(3, 3)", 
  [ "L", [ 3, 3 ], 1 ], 
  [ (  1, 19,  9,  4, 95, 15, 32, 75)(  2, 14,128,  6,  5, 40, 65, 74)
        (  3,102, 89,134, 33, 50,144,122)(  7, 52, 16, 73,127, 67, 34, 26)
        (  8, 85,129, 24, 62, 99,120, 59)( 10, 68, 72, 37, 18, 11,106, 22)
        ( 12,117, 28,105, 60, 45, 94, 82)( 13,140, 25, 44, 53, 21,103, 61)
        ( 17,132,118, 69,124,115, 83,113)( 20, 42,116, 49,138,111, 87, 79)
        ( 23,101, 90,125, 51, 71, 35,107)( 27, 76, 88, 92,104, 54, 84,121)
        ( 29, 41,133, 30,137, 77, 57, 38)( 31, 78, 46,131,108, 81,119, 98)
        ( 36, 64,114,110, 47, 66,136,123)( 39, 91, 86, 55,135, 48, 63, 56)
        ( 43,139, 70,126,109,142,130, 58)( 80,100, 93,141, 97,143, 96,112), 
      (  1,111, 30, 19, 36, 49)(  2, 25,  6, 17, 84, 10)(  3, 55, 15,125, 59,
          38)(  4,115,130, 34, 80, 44)(  5,131, 69,136,140,124)
        (  7,122,110,120,113, 60)(  8, 61, 21, 97,102, 95)(  9, 70, 47, 48,
         133,117)( 11, 26, 43, 31,135, 64)( 12, 57,108, 91, 74,101)
        ( 13, 86,107, 90,143, 88)( 14, 85,139,144, 42,138)( 16,106, 71, 23,
          87,112)( 18, 66, 33, 50, 39, 78)( 20, 89, 73, 62,127, 76)
        ( 22,129, 51,123, 24, 83)( 27, 92,119,134, 45, 99)( 28,109, 32,105,
         126, 65)( 29,104, 77, 53,114,132)( 35, 46, 81, 94,121, 52)
        ( 37, 96, 98,128, 82, 79)( 40,116,103, 56,141, 67)( 41,137, 72,142,
          93, 68)( 54, 75,118, 58, 63,100) ] ],
[ 2, 11232, 0, "2", [ [ 13, 1 ], [ 26, 2 ], [ 39, 2 ] ], 1, "PSL(3, 3).2", 
  [ "L", [ 3, 3 ], 1 ], 
  [ (  1, 91, 88, 25, 34, 80)(  2,108, 87,120,141, 61)(  3, 51,133, 58, 84, 20
         )(  4,124, 26)(  5, 15, 50, 38, 17, 56)(  6, 13, 24,125, 37,109)
        (  7, 30, 76, 31, 28, 39)(  8, 18)(  9, 64,103,121, 45, 66)
        ( 10, 65, 42, 74, 11, 92)( 12,118, 33, 46, 97, 96)( 14,107, 78, 29,
          62, 75)( 16, 81, 19)( 21,123, 94,122, 32,129)( 22,114, 57, 89,112,
         119)( 23,111, 63, 83,110,131)( 27, 93, 77, 86, 85,116)
        ( 35,140,132, 54,137, 52)( 36, 90, 82, 67, 49, 43)( 40, 60,130,134,
         138,115)( 41, 47,106, 69, 70, 59)( 44,126,142,113, 99, 98)
        ( 53,135,136,100, 79,127)( 55,144,105,128,143, 72)( 68,102)
        ( 71, 95,139, 73,117,104), 
      (  1,142, 26,128, 87, 78)(  2, 52,118, 93, 91,112)(  3, 43, 72,114,143,
          55)(  4,133, 59)(  5,138)(  6, 40, 76,116, 65,100)(  7,126,  9, 45,
          82,117)(  8, 54, 51, 29, 15,113)( 10, 70,130, 89, 81,111)
        ( 11, 22, 36, 18,120,132)( 12,134, 39, 34,105, 95)( 13, 88, 23, 14,
         141, 47)( 16, 24,101, 67, 58,139)( 17, 73,125, 27, 25,140)
        ( 19, 85,127, 86, 56, 97)( 20, 92,129, 60, 49, 98)( 28, 62,106, 79,
          46,102)( 30,123, 64, 84, 71, 41)( 31, 42, 94, 32,131, 33)
        ( 35,104,110, 63, 50, 57)( 37, 69)( 38,107, 99,137,122,108)
        ( 44, 61, 53, 80,124, 83)( 48,135, 66, 77,119,144)( 68,115, 75, 96,
         103,136)( 74, 90,121) ] ],
[ 3, 95040, 1, "2", [ [ 11, 2 ], [ 55, 1 ], [ 66, 1 ] ], 1, "M_12", 
  [ "Spor", "M(12)", 1 ], 
  [ (  1,111)(  2, 57)(  3, 44)(  4, 74)(  5,102)(  6,123)(  7,116)(  8,101)
        ( 10, 31)( 11, 18)( 12,127)( 13, 54)( 14, 50)( 15, 53)( 16, 51)
        ( 19, 43)( 20,107)( 21,113)( 22, 62)( 24, 37)( 25, 26)( 29, 95)
        ( 30, 81)( 32, 77)( 33, 73)( 34,140)( 35,139)( 36,103)( 38, 96)
        ( 39,100)( 40, 45)( 41, 98)( 42, 92)( 47,112)( 48,124)( 49, 99)
        ( 55, 90)( 56, 93)( 58,142)( 59, 69)( 61,115)( 63,133)( 65,110)
        ( 67,138)( 70, 80)( 71, 94)( 72,120)( 75, 82)( 76,108)( 79,118)
        ( 83, 86)( 84,132)( 87,144)( 88,114)( 89,125)( 97,119)(104,134)
        (106,128)(109,121)(126,141)(129,135)(131,137), 
      (  1, 53, 69)(  2, 96, 84)(  3, 49,121)(  4,102, 37)(  5, 47, 10)
        (  6, 57, 82)(  7,117, 98)(  8,108, 90)(  9, 32, 23)( 11, 80,137)
        ( 12, 15,144)( 13,105, 21)( 14, 33, 61)( 16, 27,124)( 17, 87,115)
        ( 18, 56, 52)( 19,110, 89)( 20,135,140)( 22,134, 62)( 24,133,111)
        ( 25,131,136)( 26, 45, 74)( 28, 31, 67)( 29,126, 42)( 30, 72, 73)
        ( 34, 86,109)( 35,100, 71)( 36,142,116)( 38, 97,139)( 39, 59, 43)
        ( 40, 60,141)( 41, 93,119)( 44, 77,132)( 46, 54, 63)( 48, 79, 85)
        ( 50,112,106)( 51,143,120)( 55, 65,128)( 58, 95, 68)( 64, 94, 88)
        ( 66, 83, 75)( 70, 92,104)( 76, 91,114)( 78,138,113)( 81,107,123)
        ( 99,101,103)(118,129,127)(122,125,130) ] ],
[ 4, 190080, 0, "2", [ [ 22, 1 ], [ 55, 1 ], [ 66, 1 ] ], 1, "M_12.2", 
  [ "Spor", "M(12)", 1 ], 
  [ (  1,127)(  2, 75)(  3, 21)(  4,120)(  5, 24)(  6,101)(  7,124)(  8, 97)
        (  9, 77)( 10,132)( 11, 99)( 12,135)( 13, 29)( 14,130)( 15, 59)
        ( 16, 96)( 17,140)( 18, 39)( 19,100)( 20, 76)( 22,110)( 25, 81)
        ( 27, 51)( 28, 57)( 30, 55)( 31, 88)( 32, 67)( 33, 40)( 34, 92)
        ( 35,143)( 36, 56)( 37, 87)( 38,138)( 41,126)( 43,125)( 44, 93)
        ( 45,117)( 46, 68)( 47, 89)( 49, 98)( 50,114)( 52,109)( 53, 63)
        ( 58,118)( 60,116)( 61, 83)( 62, 90)( 64,115)( 70,139)( 71, 73)
        ( 72,119)( 78, 84)( 80,134)( 82, 86)( 85,103)( 91,102)( 94,131)
        ( 95,129)(104,106)(105,113)(107,141)(108,112)(121,144)(122,128)
        (133,142)(136,137), (  1,126, 62)(  2, 70, 30)(  3,102,135)
        (  4, 57, 94)(  5,125, 11)(  6,111, 47)(  7, 35, 40)(  8,122, 97)
        (  9, 52,143)( 10,139, 96)( 12, 63,100)( 13,130, 73)( 14, 95,107)
        ( 15,129, 18)( 16, 80, 74)( 17, 49,115)( 19, 32, 60)( 20, 92,121)
        ( 21, 37, 84)( 22, 69,112)( 23,134,118)( 24,124,142)( 25, 55, 28)
        ( 26, 90, 27)( 29, 93, 42)( 31, 67, 45)( 33, 54, 66)( 34, 83, 75)
        ( 36,133, 87)( 38,116,138)( 39,103, 41)( 43, 77, 68)( 44, 53, 89)
        ( 46, 99, 61)( 48,113,108)( 50,109, 56)( 51, 71, 81)( 58, 76,132)
        ( 59,141,123)( 64,105,136)( 65, 72, 85)( 78,104, 79)( 82, 88,137)
        ( 86,106,114)( 91,110,120)( 98,144,127)(101,117,119)(128,140,131) ] ],
[ 5, 190080, 0, "2", [ [ 22, 1 ], [ 55, 1 ], [ 66, 1 ] ], 1, "M_12.2", 
  [ "Spor", "M(12)", 1 ], 
  [ (  1,  2)(  3,  7, 16, 39)(  4,  9, 22, 50)(  5, 11, 27, 57)
        (  6, 13, 33, 52)(  8, 19, 44, 86)( 10, 25, 53, 97)( 12, 30)
        ( 14, 36, 56, 43)( 15, 38, 66,108)( 17, 34, 69, 58)( 18, 42, 83,127)
        ( 20, 41, 82, 81)( 21, 48, 26, 55)( 23, 35, 71,117)( 24, 51, 94, 75)
        ( 28, 60, 84, 54)( 29, 62,104, 61)( 31, 40, 74, 90)( 32, 65,106,116)
        ( 37, 76, 92,109)( 45, 87)( 46, 88,124,131)( 47, 64, 72,107)( 49, 91)
        ( 59, 99,111,141)( 63, 77,114,120)( 67,110,140,135)( 68,112,139,132)
        ( 70, 93,100,102)( 73,118, 85,128)( 78, 89,105,136)( 79,101,134,122)
        ( 80,125)( 95,123,113,130)( 96, 98)(103,119)(115,129,138,133)(121,143)
        (126,137,142,144), (  1,  3)(  2,  5)(  4, 10)(  6, 14)(  7, 17)
        (  8, 20)(  9, 23)( 11, 28)( 12, 31)( 13, 34)( 15, 16)( 18, 22)
        ( 19, 45)( 21, 49)( 24, 30)( 25, 54)( 26, 47)( 27, 58)( 29, 63)
        ( 32, 59)( 33, 67)( 35, 72)( 36, 74)( 37, 64)( 38, 78)( 39, 68)
        ( 40, 81)( 41, 55)( 42, 84)( 43, 85)( 44, 60)( 46, 70)( 48, 57)
        ( 50, 93)( 51, 95)( 52, 96)( 53, 75)( 56, 92)( 61, 90)( 62, 89)
        ( 65, 88)( 66,109)( 69,114)( 71, 82)( 73,119)( 76,121)( 77,102)
        ( 79,111)( 80,124)( 83,108)( 86,103)( 87,117)( 91, 94)( 97,120)
        ( 98,129)( 99,132)(100,133)(101,126)(104,131)(105,128)(106,110)
        (107,112)(113,118)(115,140)(116,130)(122,143)(123,139)(125,137)
        (127,136)(134,135)(138,141)(142,144), 
      (  1,  4, 11, 29, 49, 92)(  2,  6, 15, 27, 59,102)(  3,  8, 21, 30, 28,
          61)(  5, 12, 32, 66, 16, 40)(  7, 18, 43)(  9, 24, 52, 20, 47, 90)
        ( 10, 26, 56, 96, 63, 23)( 13, 35, 73, 95,130,128)( 14, 37, 77,123,
          58,101)( 17, 41, 22, 44, 85, 86)( 19, 46, 89, 84,108,138)
        ( 25, 48, 69,115,117,121)( 31, 64, 81,126,109,139)( 33, 68,113)
        ( 34, 70,116,141,119, 42)( 36, 75,120,112, 50, 82)( 38, 79,124)
        ( 39, 80,118, 78, 67,111)( 45, 51, 83, 72, 62,105)( 53, 98, 71, 65,
         107,134)( 54, 99, 87,125,114,142)( 55, 60,103)( 57,100, 76,122,140,
         110)( 74, 91, 93,127, 97,131)( 88, 94,129,104,135,136)
        (106,137,143,132,133,144) ] ],
[ 6, 125452800, 0, "4c", [ [ 22, 1 ], [ 121, 1 ] ], 1, "M_11 wreath Sym(2)", 
  [ "Spor", "M(11)", 2 ], 
  [ (  1, 84, 95, 14, 55,  8,120, 87, 98, 53, 68,112,135,106, 41, 69, 28,133,
          82, 47, 21, 31)(  2, 60, 92,110, 51,104,113, 63,100,137, 70, 40,141,
         34, 37, 81, 35, 13, 79, 11, 24, 91)(  3,108, 89, 62, 52,140,118, 39,
         105, 29, 61, 76,143, 22, 43,  9, 36, 85, 74, 59, 20,115)
        (  4,144, 94, 38, 57, 32,109, 75,107, 17, 67)(  5, 72, 88,134, 58, 44,
         117, 27, 97, 77, 71, 16,139, 10, 48, 93, 26, 49, 80,119, 15,103)
        (  6,132, 90,122, 54,128,114,123,102,125, 66,124,138,130, 42,129, 30,
         121, 78,131, 18,127)(  7, 12, 96, 86, 50, 56,116,111, 99,101, 65, 64,
         136,142, 46, 45, 33, 25, 73, 83, 23, 19), 
      (  1, 62, 79, 47,  6, 61, 74, 43, 11, 66, 73, 38,  7, 71, 78, 37,  2,
          67, 83, 42)(  3, 64, 81, 44, 12, 63, 76, 45,  8, 72, 75, 40,  9, 68,
         84, 39,  4, 69, 80, 48)(  5, 65, 77, 41)( 10, 70, 82, 46)
        ( 13, 50,103,143,114, 85,122, 31, 23, 54, 97,134,115, 95,126, 25, 14,
          55,107,138,109, 86,127, 35, 18, 49, 98,139,119, 90,121, 26, 19, 59,
         102,133,110, 91,131, 30)( 15, 52,105,140,120, 87,124, 33, 20, 60, 99,
         136,117, 92,132, 27, 16, 57,104,144,111, 88,129, 32, 24, 51,100,141,
         116, 96,123, 28, 21, 56,108,135,112, 93,128, 36)( 17, 53,101,137,113,
         89,125, 29)( 22, 58,106,142,118, 94,130, 34) ] ],
[ 7, 18065203200, 0, "4c", [ [ 22, 1 ], [ 121, 1 ] ], 1, "M_12 wreath Sym(2)",
  [ "Spor", "M(12)", 2 ], 
  [ (  1, 77, 35, 85,113,131,133, 17, 11, 73, 29, 95,109,125,143, 13,  5, 83,
          25, 89,119,121,137, 23)(  2, 75, 26, 87,110,123,134, 15)
        (  3, 74, 27, 86,111,122,135, 14)(  4, 84, 31, 90,118,129,136, 24,  7,
         78, 34, 93,112,132,139, 18, 10, 81, 28, 96,115,126,142, 21)
        (  6, 82, 33, 88,120,127,138, 22,  9, 76, 36, 91,114,130,141, 16, 12,
          79, 30, 94,117,124,144, 19)(  8, 80, 32, 92,116,128,140, 20)
        ( 37, 65,107, 49, 41, 71, 97, 53, 47, 61,101, 59)( 38, 63, 98, 51)
        ( 39, 62, 99, 50)( 40, 72,103, 54, 46, 69,100, 60, 43, 66,106, 57)
        ( 42, 70,105, 52, 48, 67,102, 58, 45, 64,108, 55)( 44, 68,104, 56), 
      (  1,136,122, 20, 93, 11,100,121,140, 86, 23,105)(  2, 16,129,  8, 88,
         131,104, 85,143, 98, 13,141)(  3, 40,127, 68, 94, 35,108, 49,138, 74,
         17,117)(  4,124,128, 92, 95,107, 97,133,134, 14, 21,  9)
        (  5,112,123, 44, 91, 71,106, 25,144, 50, 18, 81)(  6, 76,125,116, 87,
         47,103, 61,142, 26, 24, 57)(  7, 64,130, 32, 96, 59,102, 73,137,110,
          15, 45)( 10, 28,132, 56, 90, 83,101,109,135, 38, 19, 69)
        ( 12, 52,126, 80, 89,119, 99, 37,139, 62, 22, 33)( 27, 48, 55, 66, 82,
         29,120, 51, 42, 79, 65,118)( 30, 84, 53,114, 75, 41,115, 63, 46, 31,
          72, 58)( 34, 36, 60, 54, 78, 77,113,111, 39, 43, 67, 70) ] ],
[ 8, 114721266401280000, 0, "4c", [ [ 22, 1 ], [ 121, 1 ] ], 1, 
  "Alt(12) wreath Sym(2)", [ "A", 12, 2 ], 
  [ (  1, 65, 30,127, 13, 70,114,122, 37, 71, 90,128,133, 72, 78,129)
        (  2, 41, 35, 91, 20,142,120, 74, 45, 11, 89, 32,139, 24, 82,117)
        (  3,101, 27,103, 15,106,111, 98, 39,107, 87,104,135,108, 75,105)
        (  4, 53, 28, 55, 16, 58,112, 50, 40, 59, 88, 56,136, 60, 76, 57)
        (  5, 29, 31, 19, 22,118,110, 38, 47, 95, 92,140,144, 84, 81,  9)
        (  6,125, 25, 67, 18,130,109, 62, 42,131, 85, 68,138,132, 73, 69)
        (  7, 17, 34,115, 14, 46,119, 86, 44,143, 96, 80,141, 12, 77, 33)
        (  8,137, 36, 79, 21, 10,113, 26, 43, 23, 94,116,134, 48, 83, 93)
        ( 49, 64, 54,124)( 51,100)( 61, 66,126,121)( 63,102,123, 97), 
      (  1,138, 47, 81)(  2,136, 41, 75, 10,140, 48, 79)(  3,142, 44, 84,  7,
         134, 40, 77)(  4,137, 39, 82,  8,144, 43, 74)(  5,135, 46, 80, 12,
         139, 38, 76)(  6,143, 45, 73)(  9,133, 42, 83)( 11,141, 37, 78)
        ( 13,102, 35,129, 49, 90, 23,105, 25,126, 59, 93)( 14,100, 29,123, 58,
         92, 24,103, 26,124, 53, 87, 22,104, 36,127, 50, 88, 17, 99, 34,128,
          60, 91)( 15,106, 32,132, 55, 86, 16,101, 27,130, 56, 96, 19, 98, 28,
         125, 51, 94, 20,108, 31,122, 52, 89)( 18,107, 33,121, 54, 95, 21, 97,
         30,131, 57, 85)( 61, 66, 71, 69)( 62, 64, 65, 63, 70, 68, 72, 67)
        (109,114,119,117)(110,112,113,111,118,116,120,115) ] ],
[ 9, 229442532802560000, 0, "4c", [ [ 22, 1 ], [ 121, 1 ] ], 1, 
  "Alt(12)^2.2^2", [ "A", 12, 2 ], 
  [ (  1, 16, 62,  8,136, 69, 32,133, 21, 26)(  2,  4, 64, 68,140,141, 33, 25,
         13, 14)(  3,112, 66, 80,137,105, 27,109, 18, 74,  5,100, 63,116,138,
          81, 29, 97, 15,110,  6, 76, 65,104,135,117, 30, 73, 17, 98)
        (  7,124, 72, 92,139,129, 36, 85, 19,122, 12, 88, 67,128,144, 93, 31,
         121, 24, 86)(  9, 28, 61, 20,134)( 10, 52, 71, 44,142, 57, 35, 37,
          22, 50, 11, 40, 70, 56,143, 45, 34, 49, 23, 38)( 39,118, 54, 83, 41,
         106, 51,119, 42, 82, 53,107)( 43,130, 60, 95)( 46, 58, 59, 47)
        ( 48, 94, 55,131)( 75,113,102)( 77,101, 99,111,114, 78)
        ( 79,125,108, 87,115,126, 84, 89,103,123,120, 90)( 91,127,132, 96), 
      (  1,  5, 89, 92, 44, 40,136,142,130,127,115,120, 84, 73)
        (  2, 53, 90, 68, 45, 16,135,106,131, 31,110, 60, 78, 61,  9, 17, 87,
         104, 47, 28,134, 58,126, 67,117, 24, 75, 97, 11, 29, 86, 56, 42, 64,
         141, 22,123,103,119, 36, 74, 49,  6, 65, 93, 20, 39,100,143, 34,122,
          55,114, 72, 81, 13,  3,101, 95, 32, 38, 52,138, 70,129, 19,111,108,
          83, 25)(  4,137, 94,128, 43,112,144, 82,121,  7,113, 96, 80, 37)
        (  8, 41, 88,140, 46,124,139,118,132, 79,109, 12, 77, 85)
        ( 10,125, 91,116, 48, 76,133)( 14, 51,102, 71, 33)( 15, 99,107, 35,
          26, 50, 54, 66, 69, 21)( 18, 63,105, 23, 27, 98, 59, 30, 62, 57) ] 
 ],
[ 10, 229442532802560000, 0, "4c", [ [ 22, 1 ], [ 121, 1 ] ], 1, 
  "Alt(12)^2.4", [ "A", 12, 2 ], 
  [ (  1,134, 67,102, 46, 52,117, 77,131, 20, 87, 25,144,  7, 98, 70, 54, 45,
          76,119, 17,123, 32, 96)(  2, 62, 66, 42, 40,112,113,125,128, 92, 85,
         133,139,103,106, 58, 57, 81, 83, 23, 15, 27, 36, 12)(  3, 26, 72,  6,
         38, 64,114, 41,124,116, 89,121,140, 91, 97,142, 55,105, 82, 59, 21,
          75, 35, 24)(  4,110, 65,126, 44, 88,109,137,127,104, 94, 49,141, 79,
         107, 22, 51, 33, 84, 11, 14, 63, 30, 48)(  5,122, 68, 90, 37,136,115,
         101,130, 56, 93, 73,143, 19, 99, 34, 60,  9, 74, 71, 18, 39, 28,120)
        (  8, 86, 61,138, 43,100,118, 53,129, 80, 95, 13,135, 31,108, 10, 50,
          69, 78, 47, 16,111, 29,132), 
      (  1, 62, 19, 39, 28, 97, 71,  7, 38, 16, 99, 35)(  2, 14, 15, 27, 25,
          61, 67, 43, 40,100,107, 11)(  3, 26, 13, 63, 31, 37, 64,103, 47,  4,
         98, 23)(  5, 74, 24,135, 33,109, 68,127, 42, 88,101, 83, 12,134, 21,
         111, 32,121, 66, 91, 41, 76,108,143,  9,110, 20,123, 30, 85, 65, 79,
          48,136,105,119,  8,122, 18, 87, 29, 73, 72,139, 45,112,104,131,  6,
          86, 17, 75, 36,133, 69,115, 44,124,102, 95)( 10, 50, 22, 51, 34, 49,
         70, 55, 46, 52,106, 59)( 53, 82, 60,142, 57,118, 56,130, 54, 94)
        ( 77, 84,144,141,117,116,128,126, 90, 89)( 78, 96,137, 81,120,140,129,
         114, 92,125)( 80,132,138, 93,113) ] ],
[ 11, 458885065605120000, 0, "4c", [ [ 22, 1 ], [ 121, 1 ] ], 1, 
  "Sym(12) wreath Sym(2)", [ "A", 12, 2 ], 
  [ (  1, 81, 49,129, 97, 93, 13, 33,133, 69, 37,  9, 73, 57,121,105, 85, 21,
          25,141, 61, 45)(  2, 78, 56,130,103, 96, 23, 29,136, 62, 42,  8, 82,
         55,132,107, 89, 16, 26,138, 68, 46,  7, 84, 59,125,100, 86, 18, 32,
         142, 67, 48, 11, 77, 52,122,102, 92, 22, 31,144, 71, 41,  4, 74, 54,
         128,106, 91, 24, 35,137, 64, 38,  6, 80, 58,127,108, 95, 17, 28,134,
          66, 44, 10, 79, 60,131,101, 88, 14, 30,140, 70, 43, 12, 83, 53,124,
          98, 90, 20, 34,139, 72, 47,  5, 76, 50,126,104, 94, 19, 36,143, 65,
          40)(  3, 75, 51,123, 99, 87, 15, 27,135, 63, 39)(109,117)
        (110,114,116,118,115,120,119,113,112), 
      (  1,142, 89, 42,119, 80,103,129, 12, 22, 86, 66,111, 56, 97,141,  5,
          46, 95, 78,115,128,108, 21,  2, 70, 87, 54,109,140,101, 45, 11, 82,
          91,126,120, 20, 98, 69,  3, 58, 85,138,113, 44,107, 81,  7,130, 96,
          18,110, 68, 99, 57)(  4, 34, 88, 30,112, 32,100, 33)
        (  6,118, 92,102,117,  8,106, 93)(  9, 10, 94, 90,114,116,104,105)
        ( 13,134, 65, 39, 59, 73,139,125, 48, 23, 74, 67,123, 60)
        ( 14, 62, 63, 51, 49,133,137, 41, 47, 83, 79,127,132, 24)
        ( 15, 50, 61,135, 53, 37,143, 77, 43,131, 84, 19,122, 72)
        ( 16, 26, 64, 27, 52, 25,136, 29, 40, 35, 76, 31,124, 36)
        ( 17, 38, 71, 75, 55,121,144) ] ],
[ 12, 871200, 0, "4c", [ [ 22, 1 ], [ 121, 1 ] ], 1, 
  "PSL(2, 11) wreath Sym(2)", [ "L", [ 2, 11 ], 2 ], 
  [ (  1, 54, 67, 20, 87,100, 29,130,134, 45)(  2, 42, 61, 56, 91, 16, 27,106,
         137,129)(  3,102, 65,128, 86, 40, 25, 58,139, 21)(  4, 30, 70,140, 93
         )(  5,126, 62, 44, 85, 52, 31, 22,135,105)(  6, 66, 68, 92, 88, 28,
          34,142,141,  9)(  7, 18, 63,104, 89,124, 26, 46,133, 57)
        (  8, 90, 64, 32, 94,136, 33, 10,138, 69)( 11,114, 71,116, 95,112, 35,
         118,143,117)( 12, 78, 72, 80, 96, 76, 36, 82,144, 81)
        ( 13, 51,103, 17,123, 98, 41,121, 50, 43)( 14, 39, 97, 53,127)
        ( 15, 99,101,125,122, 38, 37, 49, 55, 19)( 23,111,107,113,131,110, 47,
         109, 59,115)( 24, 75,108, 77,132, 74, 48, 73, 60, 79)( 83,120), 
      (  1, 10, 82, 79, 55, 49)(  2, 70, 84, 19, 51,133)(  3,142, 74, 67, 60,
          13)(  4, 94, 81,103, 59, 37)(  5, 34, 80,115, 54,121)
        (  6,130, 77, 31, 56,109)(  7, 58, 73)(  8,118, 78,127, 53, 25)
        (  9,106, 83, 43, 52, 85)( 11, 46, 76, 91, 57, 97)( 12, 22, 75,139,
          50, 61)( 14, 63,144)( 15,135,134, 62, 72, 24)( 16, 87,141, 98, 71,
          48)( 17, 27,140,110, 66,132)( 18,123,137, 26, 68,120)
        ( 20,111,138,122, 65, 36)( 21, 99,143, 38, 64, 96)( 23, 39,136, 86,
          69,108)( 28, 92,117,102,131, 41)( 29, 32,116,114,126,125)
        ( 30,128,113)( 33,104,119, 42,124, 89)( 35, 44,112, 90,129,101)
        ( 40, 88, 93,105,107, 47)( 45,100, 95) ] ],
[ 13, 1742400, 0, "4c", [ [ 22, 1 ], [ 121, 1 ] ], 1, "PSL(2, 11)^2.2^2", 
  [ "L", [ 2, 11 ], 2 ], 
  [ (  1, 82, 66,121, 83, 54,122,107, 56,110, 99, 32,115,135, 29, 19,141, 41,
          16,  9, 46, 64)(  2,106, 68,109, 75, 30,127,143, 53, 14,105, 44,112,
         3, 34, 67,133, 77, 18,129, 47, 52)(  4, 10, 70, 61, 73, 78,126,131,
          59, 50, 98,104,116,111, 27, 31,139,137, 17, 21, 45, 40)
        (  5, 22, 69, 37, 76,  6,130, 71, 49, 74,102,128,119, 51, 26,103,140,
         113, 15, 33, 43,136)(  7,142, 65, 13, 81, 42,124, 11, 58, 62, 97, 80,
         114,123, 35, 55,134,101, 20,117, 39, 28)(  8,118, 63, 25, 79,138,125,
         23, 57, 38,100)( 12, 94, 72, 85, 84, 90,132, 95, 60, 86,108, 92,120,
          87, 36, 91,144, 89, 24, 93, 48, 88), 
      (  1, 84, 42,107, 94, 63,141, 20, 28,113)(  2, 60, 38, 59, 86, 51,134,
          56, 26, 53)(  3,144, 44, 35, 89)(  4,120, 37, 83, 90, 99,142, 68,
          33, 17)(  5, 12, 48, 47, 95, 87,135,140, 32, 29)(  6,108, 46, 71,
          93, 15,136,116, 25, 77)(  7,132, 43,131, 91,123,139,128, 31,125)
        (  8, 36, 41, 11, 96, 39,143, 92, 27,137)(  9, 24, 40,119, 85, 75,138,
         104, 34, 65)( 10, 72, 45, 23, 88,111,133, 80, 30,101)
        ( 13, 76,114, 97, 82, 66,105, 22, 64,117)( 14, 52,110, 49, 74, 54, 98,
         58, 62, 57)( 16,112,109, 73, 78,102,106, 70, 69, 21)( 18,100,118, 61,
         81)( 19,124,115,121, 79,126,103,130, 67,129)( 55,122) ] ],
[ 14, 1742400, 0, "4c", [ [ 22, 1 ], [ 121, 1 ] ], 1, "PSL(2, 11)^2.4", 
  [ "L", [ 2, 11 ], 2 ], 
  [ (  1, 16,111, 35,126,140, 41, 79, 62,106,  9, 24,109, 28,123,143, 42, 80,
          65,103,  2, 22,117, 36,121,136, 39, 83, 66,104,  5, 19,110, 34,129,
         144, 37, 76, 63,107,  6, 20,113, 31,122,142, 45, 84, 61,100,  3, 23,
         114, 32,125,139, 38, 82, 69,108)(  4, 15,119, 30,128,137, 43, 74, 70,
         105, 12, 13,112, 27,131,138, 44, 77, 67, 98, 10, 21,120, 25,124,135,
          47, 78, 68,101,  7, 14,118, 33,132,133, 40, 75, 71,102,  8, 17,115,
          26,130,141, 48, 73, 64, 99, 11, 18,116, 29,127,134, 46, 81, 72, 97)
        ( 49, 52, 51, 59, 54, 56, 53, 55, 50, 58, 57, 60)( 85, 88, 87, 95, 90,
         92, 89, 91, 86, 94, 93, 96), 
      (  1,102, 70,134, 21, 48, 31, 59, 75,  8,114, 61, 98, 22,144, 33, 47,
          79, 56,111)(  2, 18, 72, 26, 23, 84, 32,119, 73,104,118,133,105, 46,
         139, 57, 39,  7, 54, 63)(  3,  6, 66, 62, 14, 24, 36, 35, 83, 80,116,
         109, 97,106,142,141, 45, 43, 55, 51)(  4,126, 64,122, 16,132, 28,131,
         76,128,112,121,100,130,136,129, 40,127, 52,123)(  5, 90, 65, 86, 17,
          96, 29, 95, 77, 92,113, 85,101, 94,137, 93, 41, 91, 53, 87)
        (  9, 42, 67, 50, 15, 12, 30, 71, 74, 20,120, 25,107, 82,140,117, 37,
         103, 58,135)( 10,138, 69, 38, 19, 60, 27, 11, 78, 68,110, 13,108, 34,
         143, 81, 44,115, 49, 99)( 88,125) ] ],
[ 15, 3484800, 0, "4c", [ [ 22, 1 ], [ 121, 1 ] ], 1, 
  "PGL(2, 11) wreath Sym(2)", [ "L", [ 2, 11 ], 2 ], 
  [ (  1, 78,124, 68, 94,139, 51, 21, 36, 37, 77,112, 71,106,134,  3, 18,132,
          44, 89,115, 59,105, 26)(  2,  6,126,128, 92, 91, 55, 57, 33, 25, 73,
         76, 64, 70,142,135, 15, 24, 48, 41,113,119,107, 98)(  4, 66,130,140,
          87, 19, 60, 45, 29,109, 83,100, 62, 10,138,123, 20, 96, 43, 53,117,
          35, 97, 74)(  5,114,131,104, 86,  7, 54,129, 32, 85, 79, 52, 69, 34,
         133, 75, 16, 72, 46,137,111, 23,108, 38)(  8, 90,127, 56, 93, 31, 49,
         81, 28, 61, 82,136, 63, 22,144, 39, 17,120, 47,101,110, 11,102,122)
        (  9, 30,121, 80, 88, 67, 58,141, 27, 13, 84, 40, 65,118,143, 99, 14,
          12, 42,125,116, 95,103, 50), 
      (  1, 56, 35, 17,114,142,  2, 51, 33, 24,115,136)(  3, 57, 36, 19,112,
         133,  8, 59, 29, 18,118,134)(  4, 49, 32, 23,113,138, 10, 50, 27, 21,
         120,139)(  5, 54, 34, 14,111,141, 12, 55, 28, 13,116,143)
        (  6, 58, 26, 15,117,144,  7, 52, 25, 20,119,137)(  9, 60, 31, 16,109,
         140, 11, 53, 30, 22,110,135)( 37, 92,107,125, 78, 70, 38, 87,105,132,
         79, 64)( 39, 93,108,127, 76, 61, 44, 95,101,126, 82, 62)
        ( 40, 85,104,131, 77, 66, 46, 86, 99,129, 84, 67)( 41, 90,106,122, 75,
         69, 48, 91,100,121, 80, 71)( 42, 94, 98,123, 81, 72, 43, 88, 97,128,
          83, 65)( 45, 96,103,124, 73, 68, 47, 89,102,130, 74, 63) ] ],
[16, Factorial(144)/2,1,"2",[[143,1]],142, "Alt(144)", ["A",144, 1], "Alt"],
[17, Factorial(144),0,"2",[[143, 1]],144, "Sym(144)", ["A",144, 1], "Sym"]];
PRIMGRP[145]:= 
[[1, Factorial(145)/2,1,"2",[[144,1]],143, "Alt(145)", ["A",145, 1], "Alt"],
[2, Factorial(145),0,"2",[[144, 1]],145, "Sym(145)", ["A",145, 1], "Sym"]];
PRIMGRP[146]:= 
[[1, Factorial(146)/2,1,"2",[[145,1]],144, "Alt(146)", ["A",146, 1], "Alt"],
[2, Factorial(146),0,"2",[[145, 1]],146, "Sym(146)", ["A",146, 1], "Sym"]];
PRIMGRP[147]:= 
[[1, Factorial(147)/2,1,"2",[[146,1]],145, "Alt(147)", ["A",147, 1], "Alt"],
[2, Factorial(147),0,"2",[[146, 1]],147, "Sym(147)", ["A",147, 1], "Sym"]];
PRIMGRP[148]:= 
[[1, Factorial(148)/2,1,"2",[[147,1]],146, "Alt(148)", ["A",148, 1], "Alt"],
[2, Factorial(148),0,"2",[[147, 1]],148, "Sym(148)", ["A",148, 1], "Sym"]];
PRIMGRP[149]:= 
[[ 1, 149, 3, "1", [ [ 1, 148 ] ], 1, "C(149)", [ "Z", 149, 1 ], [  ] ],
[ 2, 298, 2, "1", [ [ 2, 74 ] ], 1, "D(2*149)", [ "Z", 149, 1 ], 
  [ [ [ Z(149)^74 ] ] ] ],
[ 3, 596, 2, "1", [ [ 4, 37 ] ], 1, "149:4", [ "Z", 149, 1 ], 
  [ [ [ Z(149)^37 ] ] ] ],
[ 4, 5513, 2, "1", [ [ 37, 4 ] ], 1, "149:37", [ "Z", 149, 1 ], 
  [ [ [ Z(149)^4 ] ] ] ],
[ 5, 11026, 2, "1", [ [ 74, 2 ] ], 1, "149:74", [ "Z", 149, 1 ], 
  [ [ [ Z(149)^2 ] ] ] ],
[ 6, 22052, 2, "1", [ [ 148, 1 ] ], 2, "AGL(1, 149)", [ "Z", 149, 1 ], 
  [ [ [ Z(149) ] ] ] ],
[7, Factorial(149)/2,1,"2",[[148,1]],147, "Alt(149)", ["A",149, 1], "Alt"],
[8, Factorial(149),0,"2",[[148, 1]],149, "Sym(149)", ["A",149, 1], "Sym"]];
PRIMGRP[150]:= 
[[ 1, 1653900, 1, "2", [ [ 149, 1 ] ], 2, "PSL(2, 149)", 
  [ "L", [ 2, 149 ], 1 ], "psl" ],
[ 2, 3307800, 0, "2", [ [ 149, 1 ] ], 3, "PGL(2, 149)", 
  [ "L", [ 2, 149 ], 1 ], "pgl" ],
[3, Factorial(150)/2,1,"2",[[149,1]],148, "Alt(150)", ["A",150, 1], "Alt"],
[4, Factorial(150),0,"2",[[149, 1]],150, "Sym(150)", ["A",150, 1], "Sym"]];