Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W irredsol.grp GAP group library Mark Short #W Burkhard Höfling ## ## #Y Copyright (C) 1993, Murdoch University, Perth, Australia ## ## This file contains the functions and data for the irreducible solvable ## matrix group library. It contains exactly one member for each of the ## 372 conjugacy classes of irreducible solvable subgroups of $GL(n,p)$ ## where $1 < n$, $p$ is a prime, and $p^n < 256$. ## ## By well known theory, this data also doubles as a library of primitive ## solvable permutation groups of non-prime degree <256. ## ## This file contains the data from Mark Short's thesis, plus two groups ## missing from that list, subsequently discovered by Alexander Hulpke. ## ############################################################################# ## #V PrimitiveIndexIrreducibleSolvableGroup ## InstallValue(PrimitiveIndexIrreducibleSolvableGroup, [,,,[1,2],,,,[1,2],[1,2,3,4,5,6,7],,,,,,, [1,2,3,4,5,6,7,8,9,10],,,,,,,,, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19],, [1,2,3,4,5,6,7,8,9],,,,,[1,2],,,,,,,,,,,,,,,,, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 21,22,23,24,25,26,27,28,29],,,,,,,,,,,,,,, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38, 39,40],,,,,,,,,,,,,,,,, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38, 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56, 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74, 75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92, 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108], ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42],,,, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 21,22],,,[1,2],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38, 39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60, # the two missing ones (in increasing order) 74,75], ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]); ############################################################################# ## #V IrredSolJSGens[] . . . . . . . . . . . . . . . generators for the groups ## ## 'IrredSolJSGens[<n>][<p>][<k>]' is a generating set for the <k>-th ## JS-maximal of GL(<n>,<p>). ## This generating set is polycyclic, i.e. forms an AG-system for the group. ## A JS-maximal is a maximal irreducible solvable subgroup of GL(<n>,<p>) ## (for a few exceptional small values of n and p this group isn't maximal). ## Every group in the library is generated with reference to the generating ## set of one of these JS-maximals, called its guardian (a group may be a ## subgroup of several JS-maximals but it only has one guardian). ## InstallValue(IrredSolJSGens, [ [], # GL(1,*) [ # GL(2,*) [], # GL(2,1) [ # GL(2,2) [], # 1-th JS-maximal [ # 2-th JS-maximal [[1,0],[1,1]]*Z(2)^0, [[0,1],[1,1]]*Z(2)^0 ]], [ # GL(2,3) [ # 1-th JS-maximal [[0,1],[1,0]]*Z(3)^0, [[2,0],[0,1]]*Z(3)^0, [[1,0],[0,2]]*Z(3)^0 ], [ # 2-th JS-maximal [[1,0],[2,2]]*Z(3)^0, [[0,1],[1,2]]*Z(3)^0 ], [ # 3-th JS-maximal [[1,2],[0,2]]*Z(3)^0, [[1,2],[0,1]]*Z(3)^0, [[0,2],[1,0]]*Z(3)^0, [[1,1],[1,2]]*Z(3)^0, [[2,0],[0,2]]*Z(3)^0 ]], [], # GL(2,4) [ # GL(2,5) [ # 1-th JS-maximal [[0,1],[1,0]]*Z(5)^0, [[2,0],[0,1]]*Z(5)^0, [[1,0],[0,2]]*Z(5)^0 ], [ # 2-th JS-maximal [[1,0],[4,4]]*Z(5)^0, [[0,1],[3,4]]*Z(5)^0 ], [], # 3-th JS-maximal [ # 4-th JS-maximal [[1,4],[4,4]]*Z(5)^0, [[3,4],[3,1]]*Z(5)^0, [[0,2],[2,0]]*Z(5)^0, [[2,0],[0,3]]*Z(5)^0, [[2,0],[0,2]]*Z(5)^0 ]], [], # GL(2,6) [ # GL(2,7) [ # 1-th JS-maximal [[0,1],[1,0]]*Z(7)^0, [[3,0],[0,1]]*Z(7)^0, [[1,0],[0,3]]*Z(7)^0 ], [ # 2-th JS-maximal [[1,0],[6,6]]*Z(7)^0, [[0,1],[4,6]]*Z(7)^0 ], [ # 3-th JS-maximal [[4,1],[4,3]]*Z(7)^0, [[6,2],[3,0]]*Z(7)^0, [[0,6],[1,0]]*Z(7)^0, [[2,3],[3,5]]*Z(7)^0, [[3,0],[0,3]]*Z(7)^0 ]], [], # GL(2,8) [], # GL(2,9) [], # GL(2,10) [ # GL(2,11) [ # 1-th JS-maximal [[0,1],[1,0]]*Z(11)^0, [[2,0],[0,1]]*Z(11)^0, [[1,0],[0,2]]*Z(11)^0 ], [ # 2-th JS-maximal [[1,0],[10,10]]*Z(11)^0, [[0,1],[4,10]]*Z(11)^0 ], [ # 3-th JS-maximal [[4,5],[8,7]]*Z(11)^0, [[4,7],[8,6]]*Z(11)^0, [[0,10],[1,0]]*Z(11)^0, [[1,3],[3,10]]*Z(11)^0, [[2,0],[0,2]]*Z(11)^0 ]], [], # GL(2,12) [ # GL(2,13) [ # 1-th JS-maximal [[0,1],[1,0]]*Z(13)^0, [[2,0],[0,1]]*Z(13)^0, [[1,0],[0,2]]*Z(13)^0 ], [ # 2-th JS-maximal [[1,0],[12,12]]*Z(13)^0, [[0,1],[11,12]]*Z(13)^0 ], [], # 3-th JS-maximal [ # 4-th JS-maximal [[3,10],[10,10]]*Z(13)^0, [[2,3],[2,10]]*Z(13)^0, [[0,5],[5,0]]*Z(13)^0, [[5,0],[0,8]]*Z(13)^0, [[2,0],[0,2]]*Z(13)^0 ]]], [ # GL(3,*) [], # GL(3,1) [ # GL(3,2) [], # 1-th JS-maximal [ # 2-th JS-maximal [[1,0,0],[0,0,1],[1,1,1]]*Z(2)^0, [[0,1,0],[0,0,1],[1,0,1]]*Z(2)^0 ]], [ # GL(3,3) [ # 1-th JS-maximal [[0,1,0],[1,0,0],[0,0,1]]*Z(3)^0, [[0,1,0],[0,0,1],[1,0,0]]*Z(3)^0, [[2,0,0],[0,1,0],[0,0,1]]*Z(3)^0, [[1,0,0],[0,2,0],[0,0,1]]*Z(3)^0, [[1,0,0],[0,1,0],[0,0,2]]*Z(3)^0 ], [ # 2-th JS-maximal [[1,0,0],[2,0,1],[0,2,2]]*Z(3)^0, [[0,1,0],[0,0,1],[2,0,1]]*Z(3)^0 ]], [], # GL(3,4) [ # GL(3,5) [ # 1-th JS-maximal [[0,1,0],[1,0,0],[0,0,1]]*Z(5)^0, [[0,1,0],[0,0,1],[1,0,0]]*Z(5)^0, [[2,0,0],[0,1,0],[0,0,1]]*Z(5)^0, [[1,0,0],[0,2,0],[0,0,1]]*Z(5)^0, [[1,0,0],[0,1,0],[0,0,2]]*Z(5)^0 ], [ # 2-th JS-maximal [[1,0,0],[3,2,2],[1,4,2]]*Z(5)^0, [[0,1,0],[0,0,1],[3,0,4]]*Z(5)^0 ]]], [ # GL(4,*) [], # GL(4,1) [ # GL(4,2) [], # 1-th JS-maximal [ # 2-th JS-maximal [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]*Z(2)^0, [[1,0,0,0],[1,1,0,0],[0,0,1,0],[0,0,0,1]]*Z(2)^0, [[0,1,0,0],[1,1,0,0],[0,0,1,0],[0,0,0,1]]*Z(2)^0, [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,1,1]]*Z(2)^0, [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,1]]*Z(2)^0 ], [], # 3-th JS-maximal [], # 4-th JS-maximal [ # 5-th JS-maximal [[1,0,0,0],[0,0,1,0],[1,0,0,1],[1,1,1,1]]*Z(2)^0, [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,1]]*Z(2)^0 ]], [ # GL(4,3) [ # 1-th JS-maximal [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]*Z(3)^0, [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]*Z(3)^0, [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]*Z(3)^0, [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]*Z(3)^0, [[2,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]*Z(3)^0, [[1,0,0,0],[0,2,0,0],[0,0,1,0],[0,0,0,1]]*Z(3)^0, [[1,0,0,0],[0,1,0,0],[0,0,2,0],[0,0,0,1]]*Z(3)^0, [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,2]]*Z(3)^0 ], [ # 2-th JS-maximal [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]*Z(3)^0, [[1,0,0,0],[2,2,0,0],[0,0,1,0],[0,0,0,1]]*Z(3)^0, [[0,1,0,0],[1,2,0,0],[0,0,1,0],[0,0,0,1]]*Z(3)^0, [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,2,2]]*Z(3)^0, [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,2]]*Z(3)^0 ], [ # 3-th JS-maximal [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]*Z(3)^0, [[1,2,0,0],[0,2,0,0],[0,0,1,0],[0,0,0,1]]*Z(3)^0, [[1,2,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]*Z(3)^0, [[0,2,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]*Z(3)^0, [[1,1,0,0],[1,2,0,0],[0,0,1,0],[0,0,0,1]]*Z(3)^0, [[1,0,0,0],[0,1,0,0],[0,0,1,2],[0,0,0,2]]*Z(3)^0, [[1,0,0,0],[0,1,0,0],[0,0,1,2],[0,0,0,1]]*Z(3)^0, [[1,0,0,0],[0,1,0,0],[0,0,0,2],[0,0,1,0]]*Z(3)^0, [[1,0,0,0],[0,1,0,0],[0,0,1,1],[0,0,1,2]]*Z(3)^0 ], [], # 4-th JS-maximal [ # 5-th JS-maximal [[1,0,0,0],[0,0,0,1],[1,2,1,2],[0,2,2,1]]*Z(3)^0, [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,2]]*Z(3)^0 ], [ # 6-th JS-maximal [[1,0,0,0],[0,1,0,0],[2,0,2,0],[0,2,0,2]]*Z(3)^0, [[0,0,1,0],[0,0,0,1],[1,0,2,0],[0,1,0,2]]*Z(3)^0, [[1,2,0,0],[0,2,0,0],[0,0,1,2],[0,0,0,2]]*Z(3)^0, [[1,2,0,0],[0,1,0,0],[0,0,1,2],[0,0,0,1]]*Z(3)^0, [[0,2,0,0],[1,0,0,0],[0,0,0,2],[0,0,1,0]]*Z(3)^0, [[1,1,0,0],[1,2,0,0],[0,0,1,1],[0,0,1,2]]*Z(3)^0 ], [ # 7-th JS-maximal [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]*Z(3)^0, [[1,0,2,0],[0,1,0,2],[0,0,2,0],[0,0,0,2]]*Z(3)^0, [[1,0,2,0],[0,1,0,2],[0,0,1,0],[0,0,0,1]]*Z(3)^0, [[0,0,2,0],[0,0,0,2],[1,0,0,0],[0,1,0,0]]*Z(3)^0, [[1,0,1,0],[0,1,0,1],[1,0,2,0],[0,1,0,2]]*Z(3)^0, [[1,2,0,0],[0,2,0,0],[0,0,1,2],[0,0,0,2]]*Z(3)^0, [[1,2,0,0],[0,1,0,0],[0,0,1,2],[0,0,0,1]]*Z(3)^0, [[0,2,0,0],[1,0,0,0],[0,0,0,2],[0,0,1,0]]*Z(3)^0, [[1,1,0,0],[1,2,0,0],[0,0,1,1],[0,0,1,2]]*Z(3)^0 ], [ # 8-th JS-maximal [[1,0,0,1],[1,1,2,1],[2,0,0,1],[2,2,2,1]]*Z(3)^0, [[2,0,2,0],[0,1,0,1],[2,2,1,1],[1,2,2,1]]*Z(3)^0, [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]*Z(3)^0, [[1,0,0,0],[0,1,0,0],[0,0,2,0],[0,0,0,2]]*Z(3)^0, [[0,2,0,0],[1,0,0,0],[0,0,0,2],[0,0,1,0]]*Z(3)^0, [[1,1,0,0],[1,2,0,0],[0,0,1,1],[0,0,1,2]]*Z(3)^0, [[2,0,0,0],[0,2,0,0],[0,0,2,0],[0,0,0,2]]*Z(3)^0 ]]], [ # GL(5,*) [], # GL(5,1) [ # GL(5,2) [], # 1-th JS-maximal [ # 2-th JS-maximal [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,1],[0,1,0,1,1]]*Z(2)^0, [[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[1,0,0,1,0]]*Z(2)^0 ]], [ # GL(5,3) [ # 1-th JS-maximal [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]*Z(3)^0, [[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0]]*Z(3)^0, [[2,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]*Z(3)^0, [[1,0,0,0,0],[0,2,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]*Z(3)^0, [[1,0,0,0,0],[0,1,0,0,0],[0,0,2,0,0],[0,0,0,1,0],[0,0,0,0,1]]*Z(3)^0, [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,2,0],[0,0,0,0,1]]*Z(3)^0, [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,2]]*Z(3)^0 ], [ # 2-th JS-maximal [[1,0,0,0,0],[0,0,0,1,0],[1,2,1,2,1],[0,2,2,0,1],[0,1,2,1,1]]*Z(3)^0, [[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[2,0,2,0,2]]*Z(3)^0 ]]], [ # GL(6,*) [], # GL(6,1) [ # GL(6,2) [], # 1-th JS-maximal [], # 2-th JS-maximal [ # 3-th JS-maximal [[0,0,1,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0], [0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]*Z(2)^0, [[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0], [0,0,0,0,0,1],[1,0,0,0,0,0],[0,1,0,0,0,0]]*Z(2)^0, [[1,0,0,0,0,0],[1,1,0,0,0,0],[0,0,1,0,0,0], [0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]*Z(2)^0, [[0,1,0,0,0,0],[1,1,0,0,0,0],[0,0,1,0,0,0], [0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]*Z(2)^0, [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0], [0,0,1,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]*Z(2)^0, [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0], [0,0,1,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]*Z(2)^0, [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0], [0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,1,1]]*Z(2)^0, [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0], [0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,1]]*Z(2)^0 ], [], # 4-th JS-maximal [], # 5-th JS-maximal [ # 6-th JS-maximal [[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1], [1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0]]*Z(2)^0, [[1,0,0,0,0,0],[0,0,1,0,0,0],[1,1,1,0,0,0], [0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]*Z(2)^0, [[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,1,0,0,0], [0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]*Z(2)^0, [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0], [0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,1,1,1]]*Z(2)^0, [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0], [0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,1,0,1]]*Z(2)^0 ], [], # 7-th JS-maximal [ # 8-th JS-maximal [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0], [1,0,0,0,0,1],[1,1,1,0,0,1],[1,1,1,1,1,1]]*Z(2)^0, [[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0], [0,0,0,0,1,0],[0,0,0,0,0,1],[1,0,0,0,0,1]]*Z(2)^0 ], [], # 9-th JS-maximal [], # 10-th JS-maximal [ # 11-th JS-maximal [[1,0,0,0,0,0],[1,1,0,0,0,0],[0,0,1,0,0,0], [0,0,1,1,0,0],[0,0,0,0,1,0],[0,0,0,0,1,1]]*Z(2)^0, [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0], [0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,1]]*Z(2)^0, [[0,1,1,1,0,1],[1,1,1,0,1,1],[1,1,0,1,0,1], [1,0,1,1,1,1],[1,1,1,1,1,0],[1,0,1,0,0,1]]*Z(2)^0, [[0,1,1,1,1,1],[1,1,1,0,1,0],[1,1,0,1,1,1], [1,0,1,1,1,0],[0,1,0,1,1,0],[1,1,1,1,0,1]]*Z(2)^0, [[0,0,0,0,1,0],[0,0,0,0,0,1],[1,0,0,0,0,0], [0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0]]*Z(2)^0, [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0], [0,0,1,1,0,0],[0,0,0,0,1,1],[0,0,0,0,1,0]]*Z(2)^0, [[0,1,0,0,0,0],[1,1,0,0,0,0],[0,0,0,1,0,0], [0,0,1,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,1]]*Z(2)^0 ]]], [ # GL(7,*) [], # GL(7,1) [ # GL(7,2) [], # 1-th JS-maximal [ # 2-th JS-maximal [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1], [0,1,1,0,0,0,0],[0,0,0,1,1,0,0],[0,0,0,0,0,1,1]]*Z(2)^0, [[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0], [0,0,0,0,0,1,0],[0,0,0,0,0,0,1],[1,1,0,0,0,0,0]]*Z(2)^0 ]]]]); ############################################################################# ## #V IrredSolGroupList[] . . . . . . . . . . . . . . description of the groups ## ## 'IrredSolGroupList[<n>][<p>][<i>] is a list containing the information ## about the <i>-th group from GL(<n>,<p>). ## The groups are ordered with respect to the following criteria: ## 1. Increasing size ## 2. Increasing guardian number ## If two groups have the same size and guardian, they are in no particular ## order. ## ## The list 'IrredSolGroupList[<n>][<p>][<i>] contains the following info: ## Position: [1]: the size of the group ## [2]: 0 if group is linearly primitive, ## otherwise its minimal block size ## [3]: the number of the group's guardian, ## i.e. its position in 'IrredSolJSGens[<n>][<p>]', ## [4..]: the group's generators in normal form ## (with respect to its guardian's AG-system) ## InstallValue (IrredSolGroupList, [ [], # GL(1,*) [ # GL(2,*) [], # GL(2,1) [ # GL(2,2) [ 3, 0, 2, 0,1 ], [ 6, 0, 2, 1,0, 0,1 ]], # guardian [ # GL(2,3) [ 4, 1, 2, 0,2 ], [ 8, 1, 1, 1,0,0, 0,1,0, 0,0,1 ], # guardian, not max. [ 8, 0, 2, 1,1, 0,2 ], [ 8, 0, 2, 0,1 ], [ 16, 0, 2, 1,0, 0,1 ], # guardian, not max. [ 24, 0, 3, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ], [ 48, 0, 3, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ]], # guardian [], # GL(2,4) [ # GL(2,5) [ 3, 0, 2, 0,8 ], [ 6, 0, 2, 1,0, 0,8 ], [ 6, 0, 2, 0,4 ], [ 8, 1, 1, 1,2,0, 0,1,-1 ], [ 8, 1, 1, 1,0,0, 0,1,-1 ], [ 8, 1, 2, 0,3 ], [ 12, 0, 2, 1,0, 0,4 ], [ 12, 0, 2, 1,2, 0,4 ], [ 12, 0, 2, 0,2 ], [ 16, 1, 1, 1,1,0, 0,1,-1, 0,1,1 ], [ 16, 1, 1, 1,0,0, 0,1,-1, 0,1,1 ], [ 24, 0, 2, 1,1, 0,2 ], [ 24, 0, 2, 1,0, 0,2 ], [ 24, 0, 2, 0,1 ], [ 24, 0, 4, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ], [ 32, 1, 1, 1,0,0, 0,1,0, 0,0,1 ], # guardian, not max. [ 48, 0, 2, 1,0, 0,1 ], # guardian [ 48, 0, 4, 2,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ], [ 96, 0, 4, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ]], # guardian [], # GL(2,6) [ # GL(2,7) [ 4, 1, 2, 0,12 ], [ 6, 1, 1, 1,0,0, 0,2,-2 ], [ 8, 1, 1, 1,0,0, 0,3,0, 0,0,3 ], [ 8, 0, 2, 1,3, 0,12 ], [ 8, 0, 2, 0,6 ], [ 12, 1, 1, 1,3,0, 0,3,3, 0,2,-2 ], [ 12, 1, 1, 1,0,0, 0,3,3, 0,2,-2 ], [ 12, 1, 2, 0,4 ], [ 16, 0, 2, 1,0, 0,6 ], [ 16, 0, 2, 0,3 ], [ 16, 0, 2, 1,3, 0,6 ], [ 18, 1, 1, 1,0,0, 0,2,-2, 0,2,2 ], [ 24, 1, 1, 1,0,0, 0,3,0, 0,0,3, 0,2,-2 ], [ 24, 1, 1, 1,0,0, 0,3,0, 0,0,3, 0,2,2 ], [ 24, 0, 2, 0,2 ], [ 24, 0, 2, 1,3, 0,4 ], [ 24, 0, 3, 0,1,0,0,2, 0,0,1,0,0, 0,0,0,1,0 ], [ 24, 0, 3, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ], [ 32, 0, 2, 1,0, 0,3 ], [ 36, 1, 1, 1,3,0, 0,3,3, 0,2,-2, 0,2,2 ], [ 36, 1, 1, 1,0,0, 0,3,3, 0,2,-2, 0,2,2 ], [ 48, 0, 2, 1,3, 0,2 ], [ 48, 0, 2, 0,1 ], [ 48, 0, 2, 1,0, 0,2 ], [ 48, 0, 3, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ], [ 72, 1, 1, 1,0,0, 0,3,0, 0,0,3, 0,2,-2, 0,2,2 ], # guardian [ 72, 0, 3, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,2 ], [ 96, 0, 2, 1,0, 0,1 ], # guardian [ 144, 0, 3, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,2] # guardian ], [], # GL(2,8) [], # GL(2,9) [], # GL(2,10) [ # GL(2,11) [ 3, 0, 2, 0,40 ], [ 4, 1, 2, 0,30 ], [ 6, 0, 2, 0,20 ], [ 6, 0, 2, 1,0, 0,40 ], [ 8, 1, 1, 1,0,0, 0,5,0, 0,0,5 ], [ 8, 0, 2, 0,15 ], [ 8, 0, 2, 1,5, 0,30 ], [ 10, 1, 1, 1,0,0, 0,2,-2 ], [ 12, 0, 2, 0,10 ], [ 12, 0, 2, 1,5, 0,20 ], [ 12, 0, 2, 1,0, 0,20 ], [ 15, 0, 2, 0,8 ], [ 16, 0, 2, 1,0, 0,15 ], [ 20, 1, 1, 1,0,0, 0,5,5, 0,2,-2 ], [ 20, 1, 1, 1,5,0, 0,5,5, 0,2,-2 ], [ 20, 1, 2, 0,6 ], [ 24, 0, 2, 1,0, 0,10 ], [ 24, 0, 2, 0,5 ], [ 24, 0, 2, 1,5, 0,10 ], [ 24, 0, 3, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ], [ 30, 0, 2, 0,4 ], [ 30, 0, 2, 1,0, 0,8 ], [ 40, 1, 1, 1,0,0, 0,5,0, 0,0,5, 0,2,2 ], [ 40, 1, 1, 1,0,0, 0,5,0, 0,0,5, 0,2,-2 ], [ 40, 0, 2, 1,5, 0,6 ], [ 40, 0, 2, 0,3 ], [ 48, 0, 2, 1,0, 0,5 ], [ 48, 0, 3, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ], [ 50, 1, 1, 1,0,0, 0,2,-2, 0,2,2 ], [ 60, 0, 2, 1,0, 0,4 ], [ 60, 0, 2, 1,5, 0,4 ], [ 60, 0, 2, 0,2 ], [ 80, 0, 2, 1,0, 0,3 ], [ 100, 1, 1, 1,0,0, 0,5,5, 0,2,-2, 0,2,2 ], [ 100, 1, 1, 1,5,0, 0,5,5, 0,2,-2, 0,2,2 ], [ 120, 0, 2, 1,0, 0,2 ], [ 120, 0, 2, 0,1 ], [ 120, 0, 2, 1,5, 0,2 ], [ 120, 0, 3, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,2 ], [ 200, 1, 1, 1,0,0, 0,5,0, 0,0,5, 0,2,-2, 0,2,2 ],# guardian [ 240, 0, 2, 1,0, 0,1 ],# guardian [ 240, 0, 3, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,2 ]],# guardian [], # GL(2,12) [ # GL(2,13) [ 6, 1, 1, 1,0,0, 0,4,-4 ], [ 7, 0, 2, 0,24 ], [ 8, 1, 1, 1,0,0, 0,3,-3 ], [ 8, 1, 1, 1,6,0, 0,3,-3 ], [ 8, 1, 2, 0,21 ], [ 12, 1, 1, 1,0,0, 0,6,6, 0,4,-4 ], [ 12, 1, 1, 1,6,0, 0,6,6, 0,4,-4 ], [ 14, 0, 2, 0,12 ], [ 14, 0, 2, 1,0, 0,24 ], [ 16, 1, 1, 1,0,0, 0,3,-3, 0,3,3 ], [ 16, 1, 1, 1,3,0, 0,3,-3, 0,3,3 ], [ 18, 1, 1, 1,0,0, 0,4,-4, 0,4,4 ], [ 21, 0, 2, 0,8 ], [ 24, 1, 1, 1,6,0, 0,3,-3, 0,4,4 ], [ 24, 1, 1, 1,0,0, 0,3,-3, 0,4,-4 ], [ 24, 1, 1, 1,6,0, 0,3,-3, 0,4,-4 ], [ 24, 1, 1, 1,0,0, 0,3,-3, 0,4,4 ], [ 24, 1, 1, 1,0,0, 0,3,3, 0,4,-4 ], [ 24, 1, 1, 1,3,0, 0,3,3, 0,4,-4 ], [ 24, 1, 2, 0,7 ], [ 24, 0, 4, 0,1,0,0,4, 0,0,1,0,0, 0,0,0,1,0 ], [ 24, 0, 4, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ], [ 28, 0, 2, 0,6 ], [ 28, 0, 2, 1,6, 0,12 ], [ 28, 0, 2, 1,0, 0,12 ], [ 32, 1, 1, 1,0,0, 0,3,0, 0,0,3 ], [ 36, 1, 1, 1,0,0, 0,6,6, 0,4,-4, 0,4,4 ], [ 36, 1, 1, 1,6,0, 0,6,6, 0,4,-4, 0,4,4 ], [ 42, 0, 2, 0,4 ], [ 42, 0, 2, 1,0, 0,8 ], [ 48, 1, 1, 1,0,0, 0,3,-3, 0,3,3, 0,4,-4 ], [ 48, 1, 1, 1,3,0, 0,3,-3, 0,3,3, 0,4,-4 ], [ 48, 1, 1, 1,3,0, 0,3,-3, 0,3,3, 0,4,4 ], [ 48, 1, 1, 1,0,0, 0,3,-3, 0,3,3, 0,4,4 ], [ 48, 0, 4, 2,0,0,0,0, 0,1,0,0,4, 0,0,1,0,0, 0,0,0,1,0 ], [ 48, 0, 4, 2,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ], [ 56, 0, 2, 0,3 ], [ 56, 0, 2, 1,0, 0,6 ], [ 56, 0, 2, 1,3, 0,6 ], [ 72, 1, 1, 1,0,0, 0,3,3, 0,4,-4, 0,4,4 ], [ 72, 1, 1, 1,3,0, 0,3,3, 0,4,-4, 0,4,4 ], [ 72, 1, 1, 1,6,0, 0,3,-3, 0,4,-4, 0,4,4 ], [ 72, 1, 1, 1,0,0, 0,3,-3, 0,4,-4, 0,4,4 ], [ 72, 0, 4, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,4 ], [ 84, 0, 2, 1,6, 0,4 ], [ 84, 0, 2, 1,0, 0,4 ], [ 84, 0, 2, 0,2 ], [ 96, 1, 1, 1,0,0, 0,3,0, 0,0,3, 0,4,-4 ], [ 96, 1, 1, 1,0,0, 0,3,0, 0,0,3, 0,4,4 ], [ 96, 0, 4, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0 ], [ 112, 0, 2, 1,0, 0,3 ], [ 144, 1, 1, 1,3,0, 0,3,-3, 0,3,3, 0,4,-4, 0,4,4 ], [ 144, 1, 1, 1,0,0, 0,3,-3, 0,3,3, 0,4,-4, 0,4,4 ], [ 144, 0, 4, 2,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,4 ], [ 168, 0, 2, 0,1 ], [ 168, 0, 2, 1,0, 0,2 ], [ 168, 0, 2, 1,3, 0,2 ], [ 288, 1, 1, 1,0,0, 0,3,0, 0,0,3, 0,4,-4, 0,4,4 ],# guardian [ 288, 0, 4, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,4 ],# guardian [ 336, 0, 2, 1,0, 0,1 ],# guardian [ 24, 1, 1, 1,0,0, 0,4,-4, 0,6,0, 0,0,6], # BH: new group [ 72, 1, 1, 1,0,0, 0,2,0, 0,0,2] # BH: new group ]], [ # GL(3,*) [], # GL(3,1) [ # GL(3,2) [ 7, 0, 2, 0,1 ], [ 21, 0, 2, 1,0, 0,1 ]],# guardian [ # GL(3,3) [ 12, 1, 1, 0,1,0,0,0, 0,0,1,0,1, 0,0,0,1,1 ], [ 13, 0, 2, 0,2 ], [ 24, 1, 1, 1,0,1,1,1, 0,1,0,0,0, 0,0,1,0,1, 0,0,0,1,1 ], [ 24, 1, 1, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1 ], [ 24, 1, 1, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,1, 0,0,0,1,1 ], [ 26, 0, 2, 0,1 ], [ 39, 0, 2, 1,0, 0,2 ], [ 48, 1, 1, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1 ],# guardian [ 78, 0, 2, 1,0, 0,1 ]],# guardian [], # GL(3,4) [ # GL(3,5) [ 12, 1, 1, 0,1,0,0,0, 0,0,2,0,-2, 0,0,0,2,-2 ], [ 24, 1, 1, 1,0,0,0,0, 0,1,0,0,0, 0,0,2,0,-2, 0,0,0,2,-2 ], [ 24, 1, 1, 1,0,2,2,2, 0,1,0,0,0, 0,0,2,0,-2, 0,0,0,2,-2 ], [ 24, 1, 1, 0,1,0,0,0, 0,0,2,0,-2, 0,0,0,2,-2, 0,0,2,2,2 ], [ 31, 0, 2, 0,4 ], [ 48, 1, 1, 0,1,0,0,0, 0,0,2,0,-2, 0,0,0,2,-2, 0,0,1,1,1 ], [ 48, 1, 1, 1,0,3,3,3, 0,1,0,0,0, 0,0,2,0,-2, 0,0,0,2,-2 ], [ 48, 1, 1, 0,1,0,0,0, 0,0,1,0,-1, 0,0,0,1,-1 ], [ 48, 1, 1, 1,0,2,2,2, 0,1,0,0,0, 0,0,2,0,-2, 0,0,0,2,-2, 0,0,2,2,2 ], [ 62, 0, 2, 0,2 ], [ 93, 0, 2, 1,0, 0,4 ], [ 96, 1, 1, 1,0,2,2,2, 0,1,0,0,0, 0,0,2,0,-2, 0,0,0,2,-2, 0,0,1,1,1 ], [ 96, 1, 1, 0,1,0,0,0, 0,0,1,0,-1, 0,0,0,1,-1, 0,0,2,2,2 ], [ 96, 1, 1, 1,0,2,2,2, 0,1,0,0,0, 0,0,1,0,-1, 0,0,0,1,-1 ], [ 96, 1, 1, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,-1, 0,0,0,1,-1 ], [ 124, 0, 2, 0,1 ], [ 186, 0, 2, 1,0, 0,2 ], [ 192, 1, 1, 1,0,3,3,3, 0,1,0,0,0, 0,0,1,0,-1, 0,0,0,1,-1 ], [ 192, 1, 1, 0,1,0,0,0, 0,0,1,0,-1, 0,0,0,1,-1, 0,0,1,1,1 ], [ 192, 1, 1, 1,0,2,2,2, 0,1,0,0,0, 0,0,1,0,-1, 0,0,0,1,-1, 0,0,2,2,2 ], [ 372, 0, 2, 1,0, 0,1 ],# guardian [ 384, 1, 1, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1 ]]],# guardian [ # GL(4,*) [], # GL(4,1) [ # GL(4,2) [ 5, 0, 5, 0,3 ], [ 10, 0, 5, 2,0, 0,3 ], [ 15, 0, 5, 0,1 ], [ 18, 2, 2, 1,0,0,0,0, 0,0,1,0,0, 0,0,0,0,1 ], [ 20, 0, 5, 1,0, 0,3 ], [ 30, 0, 5, 2,0, 0,1 ], [ 36, 2, 2, 1,0,0,0,0, 0,1,0,1,0, 0,0,1,0,0, 0,0,0,0,1 ], [ 36, 2, 2, 1,1,0,0,0, 0,0,1,0,0, 0,0,0,0,1 ], [ 60, 0, 5, 1,0, 0,1 ],# guardian [ 72, 2, 2, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1 ]],# guardian [ # GL(4,3) [ 5, 0, 5, 0,64 ], [ 10, 0, 5, 0,64, 2,16 ], [ 10, 0, 5, 0,64, 0,40 ], [ 16, 1, 1, 1,2,1,1,1,0,0,0, 1,2,1,0,1,0,1,1 ], [ 16, 1, 1, 1,1,1,0,1,1,1,0, 1,1,1,0,0,1,0,0 ], [ 16, 1, 1, 0,0,0,1,1,0,1,0, 0,0,1,1,0,1,1,0, 0,0,1,1,1,1,0,0 ], [ 16, 2, 2, 1,1,0,1,3 ], [ 16, 2, 2, 1,0,0,1,1, 0,1,7,0,6 ], [ 20, 0, 5, 0,64, 2,16, 2,40 ], [ 20, 0, 5, 2,76, 2,12 ], [ 20, 0, 5, 0,60, 0,64 ], [ 20, 0, 5, 3,44, 3,76 ], [ 32, 1, 1, 1,0,1,1,1,1,0,1, 1,0,1,0,0,0,1,0 ], [ 32, 1, 1, 1,1,1,0,0,1,0,1, 1,1,1,0,1,1,1,1, 1,1,0,0,0,0,1,1 ], [ 32, 1, 1, 1,0,1,1,1,1,0,1, 1,0,1,0,1,0,0,0, 1,0,0,1,1,1,0,1 ], [ 32, 1, 1, 0,0,0,1,1,0,1,0, 0,0,1,0,0,1,0,1, 0,0,1,1,0,1,1,0, 0,0,0,1,0,1,1,0 ], [ 32, 1, 1, 1,0,1,1,1,1,0,1, 1,0,1,0,1,0,0,0, 0,0,1,1,0,1,1,0 ], [ 32, 2, 2, 1,1,3,0,6, 1,0,6,1,7, 1,0,0,1,1 ], [ 32, 2, 2, 1,0,5,0,1, 0,0,5,0,1, 1,1,6,1,2 ], [ 32, 2, 2, 1,0,5,0,1, 1,0,7,0,7, 1,0,0,0,6 ], [ 32, 2, 2, 1,1,5,1,7, 0,0,3,0,1, 1,0,6,0,6 ], [ 32, 2, 2, 1,0,6,0,6, 1,1,7,1,7, 1,1,5,1,5, 1,0,4,0,0 ], [ 32, 2, 2, 1,0,5,0,1, 1,0,7,0,7, 0,0,5,0,1 ], [ 32, 2, 2, 1,1,0,1,3, 1,1,3,1,0 ], [ 40, 0, 5, 0,70, 0,64 ], [ 40, 0, 5, 3,44, 3,52 ], [ 40, 0, 5, 2,66, 2,62 ], [ 40, 0, 5, 2,76, 2,12, 0,60 ], [ 40, 0, 5, 3,39, 3,7 ], [ 48, 2, 3, 1,1,0,1,3,1,0,0,0, 1,1,2,0,3,1,2,0,3 ], [ 48, 2, 3, 1,1,2,1,3,1,2,0,1, 0,0,0,0,3,0,0,1,3, 0,0,0,1,3,0,0,0,1, 0,0,2,0,3,0,1,0,1 ], [ 64, 1, 1, 1,1,1,0,1,1,1,0, 1,1,1,0,0,1,0,0, 1,1,0,1,0,1,0,0, 1,1,0,0,0,0,1,1 ], [ 64, 1, 1, 1,1,1,0,0,1,0,1, 1,1,1,0,1,1,1,1, 1,1,1,0,1,0,0,1, 0,0,0,1,0,1,1,1 ], [ 64, 1, 1, 1,0,1,1,1,1,0,1, 1,0,1,0,0,0,1,0, 1,0,0,1,1,1,0,1 ], [ 64, 1, 1, 1,0,1,0,0,0,1,1, 1,0,1,0,1,1,0,0, 1,0,1,0,1,1,1,1, 1,0,1,0,1,0,0,1, 1,0,0,1,1,0,0,1 ], [ 64, 2, 2, 1,1,0,1,3, 1,1,0,1,1 ], [ 64, 2, 2, 1,1,7,0,0, 1,0,2,1,5, 1,1,5,1,7 ], [ 64, 2, 2, 1,0,7,0,2, 1,0,1,0,0, 0,1,4,1,3 ], [ 64, 2, 2, 1,0,5,0,1, 1,0,7,0,7, 1,0,0,0,6, 0,0,5,0,1 ], [ 64, 2, 2, 1,1,5,1,7, 1,1,3,1,5, 1,0,5,0,1, 1,1,6,1,0 ], [ 64, 2, 2, 1,1,0,1,3, 1,1,3,1,0, 1,0,5,0,1 ], [ 64, 2, 2, 1,0,5,0,1, 1,0,7,0,7, 0,0,5,0,1, 1,1,6,1,2 ], [ 64, 2, 2, 1,1,3,0,6, 1,0,6,1,7, 1,0,0,1,1, 0,1,7,0,6 ], [ 80, 0, 5, 2,27, 2,75 ], [ 80, 0, 5, 2,66, 2,62, 0,70 ], [ 80, 0, 5, 3,44, 3,52, 3,48 ], [ 80, 0, 5, 0,75, 0,64 ], [ 80, 0, 5, 3,39, 3,35 ], [ 96, 1, 1, 0,0,0,1,1,0,1,0, 0,0,1,0,0,1,0,1, 0,0,1,1,0,1,1,0, 0,0,0,1,0,1,1,0, 0,1,1,0,1,0,0,1 ], [ 96, 2, 3, 1,0,1,0,3,0,2,1,3, 1,0,2,0,1,0,1,0,0, 0,1,2,1,3,1,2,1,1 ], [ 96, 2, 3, 1,1,0,1,0,1,0,1,0, 1,1,0,0,3,1,0,0,1, 1,1,2,0,3,1,2,0,3 ], [ 96, 2, 3, 1,1,1,1,3,1,1,1,0, 1,1,1,0,3,1,1,0,1, 1,1,1,1,2,1,1,1,1, 1,1,1,0,2,1,1,0,0, 0,0,2,1,2,0,1,0,1 ], [ 96, 2, 3, 1,0,1,1,0,0,2,1,2, 1,0,2,0,3,0,1,0,0, 0,1,0,1,0,1,1,1,2 ], [ 96, 0, 6, 0,3,0,0,1,1, 0,3,0,0,0,1, 0,3,0,0,1,2, 0,0,0,2,1,2 ], [ 96, 0, 6, 0,0,0,0,1,1, 0,0,0,0,1,2, 1,3,0,0,0,0, 1,1,0,0,0,0, 0,0,0,2,1,2 ], [ 96, 0, 6, 1,3,1,1,1,2, 1,1,1,1,1,2, 1,3,1,2,0,1 ], [ 96, 0, 6, 0,3,1,1,0,3, 0,3,1,2,1,0, 0,3,1,1,0,2 ], [ 128, 1, 1, 1,1,1,0,1,1,1,0, 1,1,1,0,0,1,0,0, 1,1,0,1,0,1,0,0, 1,1,1,0,0,1,0,1, 1,1,0,0,0,0,1,1 ], [ 128, 2, 2, 1,1,5,1,7, 1,1,3,1,5, 1,0,5,0,1, 1,1,6,1,0, 1,0,0,0,6 ], [ 128, 2, 2, 0,0,5,0,1, 0,0,7,0,1, 1,1,6,0,4 ], [ 128, 2, 2, 1,1,7,0,0, 1,0,2,1,5, 1,1,3,0,6, 1,0,7,1,2 ], [ 128, 2, 2, 1,0,7,0,2, 1,1,0,1,3 ], [ 128, 2, 2, 1,0,7,1,2, 1,1,0,0,3, 1,0,1,1,6, 1,1,5,1,7 ], [ 128, 2, 2, 1,1,6,1,0, 1,1,2,1,0, 1,0,0,0,6, 0,1,1,0,5 ], [ 128, 2, 2, 1,1,0,1,3, 1,1,0,1,1, 1,0,5,0,1 ], [ 128, 2, 2, 1,1,7,0,0, 1,0,2,1,5, 1,1,3,0,6, 1,1,5,1,7 ], [ 128, 2, 2, 1,1,0,1,3, 1,1,0,1,1, 1,1,5,1,7 ], [ 160, 0, 5, 2,66, 2,62, 0,70, 3,50 ], [ 160, 0, 5, 3,39, 3,35, 3,21 ], [ 160, 0, 5, 2,27, 2,75, 0,75 ], [ 160, 0, 8, 0,0,0,0,1,0,1, 0,0,0,1,1,0,0, 0,0,1,0,1,1,1, 0,0,0,0,1,1,0, 0,4,0,0,0,1,0 ], [ 192, 1, 1, 0,0,0,1,0,1,1,1, 0,0,1,1,0,1,1,1, 0,0,1,0,1,1,0,1, 0,1,1,0,1,0,0,1 ], [ 192, 1, 1, 1,0,1,1,1,1,0,1, 1,0,1,0,0,0,1,0, 1,2,1,1,1,0,0,0 ], [ 192, 1, 1, 1,1,1,0,0,1,0,1, 1,1,1,0,1,1,1,1, 1,2,1,1,1,1,1,1 ], [ 192, 2, 3, 1,0,2,1,1,0,1,0,1, 1,0,2,1,1,0,1,0,3, 1,0,1,1,0,0,2,1,2, 0,1,0,1,0,1,1,1,0 ], [ 192, 0, 6, 1,2,1,1,1,2, 1,0,1,1,1,0, 1,2,1,2,0,1, 0,3,1,1,0,3 ], [ 192, 0, 6, 1,3,1,1,1,2, 1,1,1,1,1,2, 1,3,1,2,0,1, 0,3,1,1,0,3 ], [ 192, 0, 6, 1,3,1,1,1,2, 1,1,1,1,1,2, 1,3,1,2,0,1, 1,2,1,1,1,2 ], [ 192, 0, 6, 0,3,0,0,1,1, 0,3,0,0,0,1, 0,3,0,0,1,2, 1,2,0,0,1,1, 0,0,0,2,1,2 ], [ 192, 0, 6, 0,3,1,1,0,3, 0,3,1,2,1,0, 0,3,1,1,0,2, 0,2,1,1,1,2 ], [ 192, 0, 6, 1,3,1,1,1,2, 1,1,1,1,1,2, 1,3,1,2,0,1, 0,2,1,1,1,2 ], [ 256, 2, 2, 1,1,7,0,0, 1,0,2,1,5, 1,1,3,0,6, 1,0,7,1,2, 1,1,5,1,7 ], [ 256, 2, 2, 1,1,5,1,7, 1,1,3,1,5, 1,0,5,0,1, 1,1,6,1,0, 1,0,0,0,6, 0,1,1,0,5 ], [ 256, 2, 2, 1,0,7,0,2, 1,1,0,1,3, 0,1,4,0,7 ], [ 256, 2, 2, 1,1,7,0,0, 1,0,2,1,5, 1,1,3,0,6, 1,0,7,1,2, 0,0,2,0,7 ], [ 256, 2, 2, 1,0,7,0,2, 1,1,0,1,3, 1,1,5,1,7 ], [ 256, 2, 2, 1,0,7,0,2, 1,1,0,1,3, 1,1,7,0,0 ], [ 288, 0, 7, 0,0,0,0,0,0,0,1,3, 0,0,0,1,1,0,0,0,2, 0,0,0,0,0,0,0,0,3, 0,0,0,0,1,0,0,0,2, 0,0,2,1,0,0,1,0,3, 0,0,1,0,1,0,1,0,1 ], [ 320, 0, 5, 1,0, 0,1 ],# guardian [ 320, 0, 8, 2,1,1,0,1,1,1, 2,3,0,1,1,0,1 ], [ 384, 1, 1, 1,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0, 0,0,1,0,0,0,0,0, 0,0,0,1,0,0,0,0, 0,0,0,0,1,0,0,0, 0,0,0,0,0,1,0,0, 0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,1 ],# guardian, not max. [ 384, 2, 3, 1,1,1,1,3,1,1,0,1, 1,1,1,1,1,1,1,0,1, 1,1,1,1,3,1,1,1,1, 1,1,1,1,0,1,1,0,1, 0,0,2,1,2,0,1,0,1 ], [ 384, 2, 3, 1,0,0,1,0,0,0,0,3, 1,0,0,0,3,0,0,1,2, 1,0,0,1,1,0,0,0,0, 1,0,2,1,1,0,1,0,1 ], [ 384, 0, 6, 1,0,0,0,0,0, 0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,0,0,0,1 ],# guardian, not max. [ 512, 2, 2, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1 ],# guardian, not maximal [ 576, 0, 7, 0,1,1,0,1,1,1,1,2, 0,1,1,1,0,1,1,0,3, 0,1,2,1,0,1,1,1,0, 0,1,1,0,1,1,2,0,1 ], [ 576, 0, 7, 1,0,0,1,0,0,0,0,3, 1,0,0,0,1,0,0,1,0, 1,0,0,1,1,0,0,0,0, 1,0,2,1,1,0,1,0,1, 0,0,1,0,1,0,1,0,1 ], [ 576, 0, 7, 0,1,1,1,0,0,0,1,3, 0,1,2,0,1,0,0,1,1, 0,1,1,1,0,0,0,0,3, 0,1,1,1,0,0,0,1,0, 0,0,2,1,0,0,1,0,3 ], [ 640, 0, 8, 1,0,0,0,0,0,0, 0,1,0,0,0,0,0, 0,0,1,0,0,0,0, 0,0,0,1,0,0,0, 0,0,0,0,1,0,0, 0,0,0,0,0,1,0, 0,0,0,0,0,0,1 ],# guardian [ 768, 2, 3, 1,1,0,1,0,1,0,1,0, 1,0,0,1,0,0,0,0,3, 1,0,0,1,1,0,0,0,0, 1,1,0,1,1,1,0,0,0, 1,1,2,1,3,1,2,1,0 ], [1152, 2, 3, 1,0,0,1,0,0,0,0,3, 1,0,0,0,3,0,0,1,2, 1,0,0,1,1,0,0,0,0, 1,0,2,1,1,0,1,0,1, 0,0,1,0,1,0,1,0,1 ], [1152, 0, 7, 0,1,1,0,1,1,1,1,2, 0,1,1,1,0,1,1,0,3, 0,1,2,1,0,1,1,1,0, 0,1,1,0,1,1,2,0,1, 0,1,1,1,0,0,0,1,3 ], [1152, 0, 7, 0,1,1,0,1,1,1,1,2, 0,1,1,1,0,1,1,0,3, 0,1,2,1,0,1,1,1,0, 0,1,1,0,1,1,2,0,1, 1,1,0,1,0,1,0,1,0 ], [1152, 0, 7, 0,1,1,0,1,1,1,1,2, 0,1,1,1,0,1,1,0,3, 0,1,2,1,0,1,1,1,0, 0,1,1,0,1,1,2,0,1, 1,0,0,0,0,1,1,1,1 ], [2304, 2, 3, 1,0,0,0,0,1,1,1,1, 1,1,1,0,0,0,0,1,2, 1,1,0,1,3,0,1,0,3 ], [2304, 2, 3, 1,1,0,1,0,1,0,1,0, 1,0,0,1,0,0,0,0,3, 1,0,0,1,1,0,0,0,0, 1,1,0,1,1,1,0,0,0, 1,1,2,1,3,1,2,1,0, 1,0,2,1,1,0,1,0,1 ], [2304, 0, 7, 1,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0, 0,0,0,0,1,0,0,0,0, 0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,1 ],# guardian [4608, 2, 3, 1,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0, 0,0,0,0,1,0,0,0,0, 0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,1 ]]],# guardian [ # GL(5,*) [], # GL(5,1) [ # GL(5,2) [ 31, 0, 2, 0,1 ], [ 155, 0, 2, 1,0, 0,1 ]],# guardian [ # GL(5,3) [ 11, 0, 2, 0,22 ], [ 22, 0, 2, 0,11 ], [ 55, 0, 2, 1,0, 0,22 ], [ 80, 1, 1, 0,1,0,0,0,0,0, 0,0,1,1,0,0,0, 0,0,0,1,1,0,0, 0,0,0,0,1,1,0, 0,0,0,0,0,1,1 ], [ 110, 0, 2, 1,0, 0,11 ], [ 121, 0, 2, 0,2 ], [ 160, 1, 1, 0,1,0,0,0,0,0, 0,0,1,1,0,0,0, 0,0,0,1,1,0,0, 0,0,0,0,1,1,0, 0,0,0,0,0,1,1, 0,0,1,1,1,1,1 ], [ 160, 1, 1, 2,0,0,0,0,0,0, 0,1,0,0,0,0,0, 0,0,1,1,0,0,0, 0,0,0,1,1,0,0, 0,0,0,0,1,1,0, 0,0,0,0,0,1,1 ], [ 160, 1, 1, 2,0,1,1,1,1,1, 0,1,0,0,0,0,0, 0,0,1,1,0,0,0, 0,0,0,1,1,0,0, 0,0,0,0,1,1,0, 0,0,0,0,0,1,1 ], [ 242, 0, 2, 0,1 ], [ 320, 1, 1, 1,0,0,0,0,0,0, 0,1,0,0,0,0,0, 0,0,1,1,0,0,0, 0,0,0,1,1,0,0, 0,0,0,0,1,1,0, 0,0,0,0,0,1,1 ], [ 320, 1, 1, 2,0,0,0,0,0,0, 0,1,0,0,0,0,0, 0,0,1,1,0,0,0, 0,0,0,1,1,0,0, 0,0,0,0,1,1,0, 0,0,0,0,0,1,1, 0,0,1,1,1,1,1 ], [ 320, 1, 1, 1,0,1,1,1,1,1, 0,1,0,0,0,0,0, 0,0,1,1,0,0,0, 0,0,0,1,1,0,0, 0,0,0,0,1,1,0, 0,0,0,0,0,1,1 ], [ 605, 0, 2, 1,0, 0,2 ], [ 640, 1, 1, 1,0,0,0,0,0,0, 0,1,0,0,0,0,0, 0,0,1,0,0,0,0, 0,0,0,1,0,0,0, 0,0,0,0,1,0,0, 0,0,0,0,0,1,0, 0,0,0,0,0,0,1 ],# guardian [1210, 0, 2, 1,0, 0,1 ]]],# guardian [ # GL(6,*) [], # GL(6,1) [ # GL(6,2) [ 9, 2, 3, 0,1,1,1,0,0,1,0 ], [ 14, 3, 6, 0,0,6,0,2, 1,2,5,1,4 ], [ 18, 2, 3, 0,1,1,1,0,0,1,0, 1,1,0,1,1,1,0,2 ], [ 21, 0, 8, 0,54, 0,42 ], [ 27, 2, 3, 0,2,0,0,0,0,0,1, 0,2,0,0,0,1,0,0 ], [ 27, 2, 3, 0,2,0,2,1,2,1,1, 0,2,0,1,1,1,1,2, 0,2,0,2,1,0,1,2 ], [ 42, 3, 6, 0,0,6,0,2, 0,1,1,1,1, 1,2,5,1,4 ], [ 42, 0, 8, 0,54, 0,42, 3,14 ], [ 54, 2, 3, 0,2,0,2,1,2,1,1, 0,2,0,1,1,1,1,2, 0,2,0,2,1,0,1,2, 1,2,0,0,1,2,1,2 ], [ 54, 2, 3, 0,2,0,2,1,2,1,1, 0,2,0,1,1,1,1,2, 0,2,0,2,1,0,1,2, 1,1,0,2,1,1,0,1 ], [ 54, 2, 3, 0,1,1,1,0,0,1,0, 0,1,1,0,0,0,1,2, 1,1,0,1,1,1,0,2 ], [ 63, 0, 8, 0,56, 0,54 ], [ 63, 0, 8, 0,54, 4,30, 4,27 ], [ 63, 0, 8, 4,38, 4,11 ], [ 81, 2, 3, 0,1,1,1,0,0,1,0, 0,1,1,0,0,0,1,2, 0,2,0,1,1,1,1,1 ], [ 98, 3, 6, 0,0,6,0,2, 0,0,5,0,1, 1,2,5,1,4 ], [ 108, 2, 3, 0,2,0,2,1,2,1,1, 0,2,0,1,1,1,1,2, 0,2,0,2,1,0,1,2, 1,1,0,1,1,1,0,2, 0,0,1,1,1,1,1,2 ], [ 108, 0,11, 0,0,1,3,1,0,2, 0,0,1,3,2,1,0 ], [ 126, 0, 8, 0,54, 4,30, 4,27, 3,14 ], [ 126, 0, 8, 0,56, 0,54, 3,14 ], [ 162, 2, 3, 0,1,1,1,0,0,1,0, 0,1,1,0,0,0,1,2, 0,2,0,1,1,1,1,1, 1,2,0,0,1,2,1,2 ], [ 162, 2, 3, 0,1,1,1,0,0,1,0, 0,1,1,0,0,0,1,2, 0,2,0,1,1,1,1,1, 0,0,1,1,1,1,1,1 ], [ 162, 2, 3, 0,2,0,0,0,0,0,1, 0,1,0,1,0,0,0,0, 1,1,1,2,1,1,1,2 ], [ 189, 0, 8, 4,38, 4,11, 4,19 ], [ 216, 0,11, 0,0,1,3,1,0,2, 0,0,1,3,2,1,0, 0,0,1,2,0,2,1 ], [ 216, 0,11, 1,0,0,3,1,2,2, 1,0,1,0,1,0,0 ], [ 216, 0,11, 0,0,1,2,0,2,1, 0,0,1,0,1,1,2, 1,2,0,2,1,2,0 ], [ 294, 3, 6, 0,0,6,0,2, 0,0,5,0,1, 0,1,1,1,1, 1,2,5,1,4 ], [ 294, 3, 6, 0,0,6,0,2, 0,0,5,0,1, 0,2,3,1,1, 1,2,5,1,4 ], [ 324, 2, 3, 0,1,1,1,0,0,1,0, 0,1,1,0,0,0,1,2, 0,2,0,1,1,1,1,1, 1,1,0,2,1,1,0,1, 0,0,1,1,1,1,1,1 ], [ 324, 2, 3, 0,1,1,1,0,0,1,0, 0,1,0,1,1,0,1,0 ], [ 378, 0, 8, 1,0, 0,1 ],# guardian [ 432, 0,11, 1,2,0,1,1,0,0, 1,2,0,1,1,2,0, 0,0,1,3,1,0,2 ], [ 648, 2, 3, 0,1,1,1,0,0,1,0, 0,1,0,1,1,0,1,0, 0,0,1,1,1,1,1,1 ], [ 648, 2, 3, 0,1,1,1,0,0,1,0, 0,1,0,1,1,0,1,0, 1,1,1,1,0,0,0,0 ], [ 648, 2, 3, 0,1,1,1,0,0,1,0, 0,1,0,1,1,0,1,0, 1,0,0,0,1,1,1,1 ], [ 648, 0,11, 0,2,1,2,1,1,0, 0,1,1,1,2,0,1 ], [ 882, 3, 6, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1 ],# guardian [1296, 2, 3, 1,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0, 0,0,1,0,0,0,0,0, 0,0,0,1,0,0,0,0, 0,0,0,0,1,0,0,0, 0,0,0,0,0,1,0,0, 0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,1 ],# guardian [1296, 0,11, 1,0,0,0,0,0,0, 0,1,0,0,0,0,0, 0,0,1,0,0,0,0, 0,0,0,1,0,0,0, 0,0,0,0,1,0,0, 0,0,0,0,0,1,0, 0,0,0,0,0,0,1 ]]],# guardian [ # GL(7,*) [], # GL(7,1) [ # GL(7,2) [ 127, 0, 2, 0,1 ], [ 889, 0, 2, 1,0, 0,1 ]]]]);# guardian ############################################################################# ## #E ##