Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W col18.z GAP library of groups Hans Ulrich Besche ## Bettina Eick, Eamonn O'Brien ## SMALL_GROUP_LIB[ 760 ] := [ 53763157193932011, 304437711445097993, 232053513441830655911, 23590532798460, 40788355011749756139, 588955644529181384021927, 1019661811370588807, 1019661811368699239, 774942978661979213735, 1019661811397042759, 774942978662007557255, 774942978662005667687, 588956663785123128320423, 231372214052386661693, 400574633491997, 304437123254685725, 400574631602429, 400574659945949, 40859881788394600167, 70740834275271, 53763002424992199, 70740832385703, 70740860729223, 176360667983235889473959, 305333562944619143, 232053510500784198791, 305333562942729575, 305333562971073095, 30960572958, 30988916478, 17905294380881502, 774976906904747342471, 53668903478590119, 774941637534889651559, 1341657616011335, 526539460679, 93117911349, 401751180564551, 71 ]; PROPERTIES_SMALL_GROUPS[ 760 ] := rec( isNilpotent := [ 4, 29, -31, 39 ], isAbelian := [ 4, 29, 39 ], lgLength := rec( lgLength := [ 3, 4, 5 ], pos := [ [ 35, -39 ], [ 7, -34 ], [ 1, -6 ] ] ), frattFacs := rec( frattFacs := [ 4, 7, 10, 13, 17, 20, 23, 26, 29, 32, 35 ], pos := [ 1, 2, 3, 4, 5, 6, 13, 18, 23, 28, 31 ] ) ); SMALL_GROUP_LIB[ 765 ] := [ 33625073, 4415 ]; PROPERTIES_SMALL_GROUPS[ 765 ] := rec( lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 2 ], [ 1 ] ] ), frattFacs := rec( frattFacs := [ 3 ], pos := [ 1 ] ) ); SMALL_GROUP_LIB[ 770 ] := [ 11874880359, 12110240359, 9142708960359, 16640359, 46400359, 25920395, 35763680359, 15680593, 35651040539, 19820000935, 27538847280359, 359 ]; PROPERTIES_SMALL_GROUPS[ 770 ] := rec( isNilpotent := [ 12 ], isAbelian := [ 12 ], lgLength := rec( lgLength := [ 4 ], pos := [ [ 1, -12 ] ] ), frattFacs := rec( frattFacs := [ ], pos := [ ] ) ); SMALL_GROUP_LIB[ 774 ] := [ 33456058931054423, 43228384077143, 960608299153903, 50626852061015, 856295033444421439, 1599415231, 43225291051319, 43228427640887, 33456058974618167, 56159891255, 65420298551, 1692766111, 50626895624759, 1238056783279, 39185307301958327, 1847 ]; PROPERTIES_SMALL_GROUPS[ 774 ] := rec( isNilpotent := [ 6, 16 ], isAbelian := [ 6, 16 ], lgLength := rec( lgLength := [ 3, 4 ], pos := [ [ 7, 10, -11, 14, -16 ], [ 1, -6, 8, -9, 12, -13 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11, 13 ], pos := [ 1, 2, 3, 4, 5 , 6 ] ) ); SMALL_GROUP_LIB[ 776 ] := [ 2491004297545777247, 33832956681216, 1931025889688558764127, 1933016063491414425695, 3210049096777823, 2491000079945564255, 3210049011843167, 3210049606385759, 43571487648, 44166030240, 26220343021544352, 1499551830721723930509407, 2490223953089396831, 4133939576927, 95 ]; PROPERTIES_SMALL_GROUPS[ 776 ] := rec( isNilpotent := [ 2, 9, -11, 15 ], isAbelian := [ 2, 9, 15 ], lgLength := rec( lgLength := [ 2, 3, 4 ], pos := [ [ 14, -15 ], [ 4, -11, 13 ], [ 1, -3, 12 ] ] ), frattFacs := rec( frattFacs := [ 4, 7, 11, 14, 17 ], pos := [ 1, 2, 3, 8, 11 ] ) ); SMALL_GROUP_LIB[ 780 ] := [ 4995760267056251, 5085010946609903, 3896775728608105199, 6413161321595, 35032520053883, 9560276982003, 27408284438549231, 3192216217201, 27325499648565335, 7457052206896719, 21378462619652213951, 4077114612, [ ( 1, 4, 3)( 6,14, 9,17,12, 7,15,10,18,13, 8,16,11), ( 1, 2, 5)( 6,16,13,10, 7,17,14,11, 8,18,15,12, 9) ], 21286494444161979515, 75457667489002345199, 13006534298979991643017967, 13006534299021331038786287, 58856975556333099864815, 16615081291000673260271, 19966974180065471, 6405803606207, 6519939858623, 4995867045593279, 27296776090932347, 7444293646670067, 16675048962611576885999, 16675049003950972654319, 75480032101890052847, 21299007772004504303, 21298924987214520407, 5809027855352141391, 13006538223081324153818303, 13006538190836595454528703, 58874392795105758956735, 16613226062126363593919, 124063192055999, 41384400519623, 96940928145162431, 15912157447743, 96769430749937855, 161258782094327999, 75613924044549882047, 9172943039, 6372185434992, 5043565337175371, 44877349055, 12262441239, 35138534179007, 4108714549, 35032535728583, 9560292656703, 27408284446261439, 191 ]; PROPERTIES_SMALL_GROUPS[ 780 ] := rec( isNilpotent := [ 12, 53 ], isSupersolvable := [ 1, -12, 14, -43, 46, -53 ], isSolvable := [ 1, -12, 14, -53 ], isAbelian := [ 12, 53 ], lgLength := rec( lgLength := [ 4, 5, false ], pos := [ [ 20, -23, 36, -53 ], [ 1, -12, 14, -19, 24, -35 ], [ 13 ] ] ), frattFacs := rec( frattFacs := [ 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 ] , pos := [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ] ) ); SMALL_GROUP_LIB[ 783 ] := [ 247360359821, 315342021, 319644613, 246733391045, 22791 ]; PROPERTIES_SMALL_GROUPS[ 783 ] := rec( isAbelian := [ 1, -2, 5 ], lgLength := rec( lgLength := [ 2, 3, 4 ], pos := [ [ 5 ], [ 2, -4 ], [ 1 ] ] ), frattFacs := rec( frattFacs := [ 4, 8 ], pos := [ 1, 4 ] ) ); SMALL_GROUP_LIB[ 784 ] := [ 73211053665657731224379363, 23635507464037759428, 45000309856271886550715480897507, 93381446002102259313059, 73212183830560924351672739, 57398354408510056975700509091, 57398354408510059372896240035, 93381446002102259266403, 73212183830560924351626083, 93381446002102259173091, 73212183832437928608861923, 73212183830560924351532771, 93382887541371889408163, 436488743190168888169420309859171, 556745845905827663478434714915, 342207174661092408324827850386470883, 436488743190168888169420309905827, 93382887541371889361507, 30339594084220925 , 421024623075416957, 330083573318152865789, 30147818426025366, 23605359645613362582, 18506962308719453173590, 14509458450036019109375382, 11375415424828238949535095318, 73212183830558527157388131, 119108987241500835107, 93382887538974695263523, 93382887538974695170211, 1155337304257757389859, 710135007529225345842946211, 710135006087686076211358115, 556745845902912673469605411235, 119108987241500695139, 119110825939551630371, 38697588648185, 268534846094009 , 165056822041930276217, 210531660333011897, 118087090440366316181, 93241439995650938223587, 30147329202973128, 165177065429383744008, 151924725603247139, 48923108387, 57311205362481685036056951779, 825284650263809148323, 647023165811452206742499, 647023163932050755128739, 507266160522732416686375907, 508078373720600226246471971, 507266161994306151631101347, 398333444996950579565030415779, 507266161994303754435370403, 397696671003534145702462084067, 312293420877609254381171569251299, 397696671003536025103915144163, 825286527268066337507, 825284650263810454691, 647023167690853661108963, 647023165809055012317923, 647023165811452208048867, 150621287104094909, 118086821269532732093, 92580278100455162481341, 92580278100797619014333, 72582938031025650848383229, 150621287104048253, 118086821269532685437, 150621287103768317, 118087089412997738237, 118086821269532405501, 150621287105214653, 129498849597009012596285, 101527098084055308672881789, 101527098084055308672928445, 79597244897899362242300231933, 150621287105167997, 118930408145523508643, 93241438111455095147939, 73101288950956897291951523, 73101288950959294487682467, 57311410537552089243756270563, 118930408145523461987, 93241438111455095101283 , 118930408145523368675, 93241439988459352337123, 93241438111455095007971, 118930408145524815011, 710134866081674830503145763, 556745735008033069442544150371, 556745735008033069442544197027, 436488656246297926445282655278051, 118930408145524768355, 38452976560044, 76759187292972, 60217605685309356, 38452977213228, 30108876227667756, 23605359009825845484, 18506601463591645030188, 14509175547455737849353132, 35226562911850146659895851617598435, 57310743853713962933461611683, 44931623181311746938180397116131, 35226392574405685888081258417910051, 27617491778334057736255704906315586979, 21652113554213901265224472644858021188579, 35226392646655224537480621881535203, 57311205362479800844225592291, 44931985004184161983646285071331, 73101027248063366161556195, 57311205362479800844226898659, 73101027248063366161649507, 57311205362479800844226991971, 73101027248063366162955875, 648059150151426828518819, 647023163929653560890787, 508078373718720824792012195, 398333444995477128825829854179, 825284647866614817059, 508078373718720824790519203, 1052658986783037731, 826606058863820822819, 648059150151426831411491, 1052658986782944419, 825284647866616216739, 648059150151426831318179, 825284647866613277411, 1052658986784344099, 825284647866614723747, 647023163929653559257827, 1054344460041289763, 826606058863823622179, 118086820927077457913, 192118139083193, 150620944650267065, 150620944650173753, 268730605338809, 165177103734998859065, 165177103734996059705, 129498849328523038381625, 192118138943225, 192118141882553, 93241438109057900863331, 151696943085885731 , 118930405748330670371, 118930405748330577059, 1473644227223863331, 905784267958919770061987, 905784267958919767262627, 710134866079795429048685987, 151696943085745763, 151696943088685091, 48922408722, 48923855058, 30108827304651666, 38404055736786, 21652260230738689093160918223134485887971, 16975349947929508762736775781750519949619491, 13308648595489280086734238656789952541527081955, 496132450401430247765, 44931869134422011351878498406243, 73100438588918489761253411, 35226676242928570107200982529583843, 120397052593970568, 93240865735445957539427, 1342674436128803, 244635697187, 193487976972323, 35 ]; PROPERTIES_SMALL_GROUPS[ 784 ] := rec( isNilpotent := [ 2, 19, -26, 37, -40, 43, 46, 96, -103, 156, -159, 172 ], isSupersolvable := [ 1, -43, 45, -46, 48, -103, 118, -159, 169, -172 ], isAbelian := [ 2, 19, 22, 37, 43, 46, 96, 99, 156, 172 ], lgLength := rec( lgLength := [ 2, 3, 4, 5, 6 ], pos := [ [ 169, 171, -172 ], [ 45, -46, 59, -63, 87, -90, 95, -98, 105, -106, 110, 113, -114, 117, -135, 146, -159, 165, -168, 170 ], [ 10, -13, 18, -21, 27, -40, 44, 48, -58, 71, -74, 79, -86, 91, -94, 99, -103, 107, -109, 111, -112, 115, -116, 136, -145, 161, -164 ], [ 3, -9, 14, -17, 22, -26, 42, -43, 47, 64, -70, 75, -78, 104, 160 ], [ 1, -2, 41 ] ] ), frattFacs := rec( frattFacs := [ 9, 17, 26, 34, 99, 107, 28, 36, 44, 333, 341 , 349, 70, 78, 86, 94, 102, 295, 303, 311, 327, 335, 343, 351, 359 ], pos := [ 1, 2, 18, 26, 36, 40, 41, 42, 43, 44, 45, 46, 47, 63, 79, 95, 103, 104, 109, 110, 117, 135, 145, 155, 159 ] ) );