Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W trans10.grp GAP transitive groups library Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the transitive groups of degree 10 ## They were originally published by Greg Butler and John McKay ## Names and actual generators are by John Conway, John McKay and AH. ## TRANSGRP[10]:= [[(1,2,3,4,5,6,7,8,9,10),"C(10)=5[x]2"], [(1,3,5,7,9)(2,4,6,8,10),(1,4)(2,3)(5,10)(6,9)(7,8),"D(10)=5:2"], [(1,2,3,4,5,6,7,8,9,10),(1,8)(2,7)(3,6)(4,5)(9,10),"D_10(10)=[D(5)]2" ],[(1,3,5,7,9)(2,4,6,8,10),(1,2,9,8)(3,6,7,4)(5,10),"1/2[F(5)]2"], [(1,2,3,4,5,6,7,8,9,10),(1,7,9,3)(2,4,8,6),"F(5)[x]2"], [(2,4,6,8,10),(1,6)(2,7)(3,8)(4,9)(5,10),"[5^2]2"], [(1,3,5,7,9)(2,4,6,8,10),(1,9)(3,4)(5,10)(6,7),"A_5(10)"], [(2,7)(5,10),(1,3,5,7,9)(2,4,6,8,10),"[2^4]5"], [(2,4,6,8,10),(1,9)(2,8)(3,7)(4,6),(1,6)(2,7)(3,8)(4,9)(5,10), "[1/2.D(5)^2]2"],[(2,4,6,8,10),(1,6,9,4)(2,3,8,7)(5,10),"1/2[D(5)^2]2" ], [(1,3,5,7,9)(2,4,6,8,10),(2,4,10)(5,7,9),(1,6)(2,7)(3,8)(4,9)(5,10) ,"A(5)[x]2"], [(1,3,5,7,9)(2,4,6,8,10),(1,4)(2,7)(3,8)(5,10)(6,9), "1/2[S(5)]2=S_5(10a)"], [(1,3,5,7,9)(2,4,6,8,10),(1,2)(3,7)(8,9),"S_5(10d)"], [(5,10),(1,3,5,7,9)(2,4,6,8,10),"[2^5]5"], [(2,7)(5,10),(1,3,5,7,9)(2,4,6,8,10),(1,9)(2,8)(3,7)(4,6),"[2^4]D(5)"], [(2,7)(5,10),(1,3,5,7,9)(2,4,6,8,10),(1,9)(2,8)(3,7)(4,6)(5,10), "1/2[2^5]D(5)"], [(2,4,6,8,10),(1,7,9,3)(2,4,8,6),(1,6)(2,7)(3,8)(4,9)(5,10),"[5^2:4]2"], [(2,4,6,8,10),(1,7,9,3)(2,4,8,6),(1,4,3,2,9,6,7,8)(5,10),"[5^2:4]2_2"], [(2,4,6,8,10),(1,3,9,7)(2,4,8,6),(1,6)(2,7)(3,8)(4,9)(5,10),"[5^2:4_2]2"], [(2,4,6,8,10),(1,3,9,7)(2,4,8,6),(1,6,9,4)(2,3,8,7)(5,10),"[5^2:4_2]2_2"], [(2,4,6,8,10),(2,8)(4,6),(1,6)(2,7)(3,8)(4,9)(5,10),"[D(5)^2]2"], [(1,3,5,7,9)(2,4,6,8,10),(2,10)(5,7),(1,6)(2,7)(3,8)(4,9)(5,10), "S(5)[x]2"],[(5,10),(1,3,5,7,9)(2,4,6,8,10),(1,9)(2,8)(3,7)(4,6), "[2^5]D(5)"],[(2,7)(5,10),(1,3,5,7,9)(2,4,6,8,10),(1,7,9,3)(2,4,8,6), "[2^4]F(5)"], [(2,7)(5,10),(1,3,5,7,9)(2,4,6,8,10),(1,7,9,3)(2,4,8,6)(5,10), "1/2[2^5]F(5)"], [(1,2,10)(3,4,5)(6,7,8),(1,3,2,6)(4,5,8,7),(1,2)(4,7)(5,8)(9,10), "L(10)=PSL(2,9)"], [(2,4,6,8,10),(2,8)(4,6),(1,7,9,3)(2,4,8,6),(1,6)(2,7)(3,8)(4,9)(5,10), "[1/2.F(5)^2]2"],[(2,4,6,8,10),(2,8)(4,6),(1,6,7,2,9,4,3,8)(5,10), "1/2[F(5)^2]2"],[(5,10),(1,3,5,7,9)(2,4,6,8,10),(1,7,9,3)(2,4,8,6), "[2^5]F(5)"], [(1,2,10)(3,4,5)(6,7,8),(1,7,3,4,2,5,6,8),(1,2)(4,7)(5,8)(9,10), "L(10):2=PGL(2,9)"], [(1,2,10)(3,4,5)(6,7,8),(1,3,2,6)(4,5,8,7),(1,2)(4,7)(5,8)(9,10), (1,4,2,8)(3,7,6,5),"M(10)=L(10)'2"], [(1,2,10)(3,4,5)(6,7,8),(1,3,2,6)(4,5,8,7),(1,2)(4,7)(5,8)(9,10), (3,6)(4,7)(5,8),"S_6(10)=L(10):2"], [(2,4,6,8,10),(2,4,8,6),(1,6)(2,7)(3,8)(4,9)(5,10),"[F(5)^2]2"], [(2,7)(5,10),(1,3,5,7,9)(2,4,6,8,10),(2,4,10)(5,7,9),"[2^4]A(5)"], [(1,2,10)(3,4,5)(6,7,8),(1,7,3,4,2,5,6,8),(1,2)(4,7)(5,8)(9,10), (3,6)(4,7)(5,8),"L(10).2^2=P|L(2,9)"], [(5,10),(1,3,5,7,9)(2,4,6,8,10),(2,4,10)(5,7,9),"[2^5]A(5)"], [(2,7)(5,10),(1,3,5,7,9)(2,4,6,8,10),(2,10)(5,7),"[2^4]S(5)"], [(2,7)(5,10),(1,3,5,7,9)(2,4,6,8,10),(2,4)(5,10)(7,9),"1/2[2^5]S(5)"], [(5,10),(1,3,5,7,9)(2,4,6,8,10),(2,10)(5,7),"[2^5]S(5)"], [(2,4,6,8,10),(2,4,10),(1,6)(2,7)(3,8)(4,9)(5,10),"[A(5)^2]2"], [(2,4,6,8,10),(2,10)(5,7),(1,6)(2,7)(3,8)(4,9)(5,10), "[1/2.S(5)^2]2=[A(5):2]2"], [(2,4,6,8,10),(1,6)(2,5,10,7)(3,8)(4,9),"1/2[S(5)^2]2"], [(2,4,6,8,10),(2,10),(1,6)(2,7)(3,8)(4,9)(5,10),"[S(5)^2]2"], [(1,9,10),(2,9,10),(3,9,10),(4,9,10),(5,9,10),(6,9,10),(7,9,10), (8,9,10),"A(10)"], [(1,10),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),"S(10)"]]; TRANSPROPERTIES[10]:= [ [10,0,1,-1, "08s02080080" ,[-3010,5],[-8010],[-11010]], [10,0,1,-1, "08s0208" ,[-1010,4005],[-8010],[-11010]], [20,0,1,-1, "18s02080080" ,[-3010,5],[-10,3020],[-3010,3020]], [20,0,1,-1, "10000408" ,[-1010,-20,-5],[-3020,-10],[-3020,-3010]], [40,0,1,-1, "18000C080080" ,[-20,-5,20],[-10,1040],[1020,1040]], [50,0,1,-1, "080002080080" ,[-1010,25],[-3010,-50],[-1050,-1010]], [60,1,1,1, "10080008" ,[15,30],[30,60],[10,20,2030]], [80,0,1,1, "50s0208" ,[5,1020],[10,3020],[1040,3010]], [100,0,1,-1, "180002080080" ,[-1010,25],[-50,1020],[-1050,-1010]], [100,0,1,-1, "10000608" ,[-1010,25],[-1020,-50],[-1050,-1010],[2252,[-5050]]], [120,0,1,-1, "184000090080" ,[5,1020],[-10,1040],[20,40,60]], [120,0,1,-1, "18400409" ,[-20,-5,20],[-10,1040],[20,40,60],[29,[1005],[1020],[1020]]], [120,1,1,-1, "3008040880" ,[15,30],[-60,30],[-20,-10,30,60]], [160,0,1,-1, "F8s02080080" ,[5,1020],[-10,3020],[-3010,1040]], [160,0,1,1, "50008808" ,[-1020,5],[10,1040],[1020,1040]], [160,0,1,-1, "58010408" ,[-1020,5],[-10,1040],[1020,1040],[29,[10],[1020],[1020]]], [200,0,1,-1, "18000E080080" ,[20,25],[-50,40],[20,100],[2252,[-1050,1100]],[4,[-1050,-10,100]]], [200,0,1,1, "10000A0802" ,[-25,-20],[-50,-40],[-100,-20],[2252,[-2100]],[2202,[-1020,-100,-40,10]]], [200,0,1,-1, "18000A080080" ,[20,25],[-50,40],[20,100],[2252,[-3050,100]],[4,[-1050,-10,100]]], [200,0,1,-1, "10000E08" ,[20,25],[-50,40],[20,100],[2252,[2100]],[20259,[[4008],[-2,5008]]],[4,[-1050,-10,100]]], [200,0,1,-1, "580006880080" ,[-1010,25],[-1020,-50],[-1050,-1010],[2252,[-3050,100]]], [240,0,1,-1, "58500C090080" ,[-20,-5,20],[-10,1040],[20,40,60],[29,[-1005],[-1020],[-1020]]], [320,0,1,-1, "F8018C080080" ,[-1020,5],[-10,1040],[1020,1040],[29,[10],[40],[40]]], [320,0,1,1, "5000880802" ,[-40,-5],[10,80],[40,80],[4,[-40,-10,1080]]], [320,0,1,-1, "50008C0804" ,[-40,-5],[-10,80],[40,80],[29,[10],[1040]],[4,[-40,-10,1080]]], [360,1,2,1, "10080808" ,[45],[90],[1060]], [400,0,1,-1, "58000E880080" ,[20,25],[-50,40],[20,100],[2252,[2100]],[20259,[[4008],[-2,1008,1016]]],[4,[-1050,-10,100]]], [400,0,1,1, "50000A8802" ,[-25,-20],[-50,-40],[-100,-20],[2252,[-100,200]],[2202,[-1020,-100,-40,10]]], [640,0,1,-1, "F8018C080680" ,[-40,-5],[-10,80],[40,80],[29,[10],[80]],[4,[-40,-10,1080]]], [720,1,3,-1, "180808080480" ,[45],[-90],[120],[23,[1060]],[4,[-180,-30]]], [720,1,3,1, "1008080802" ,[45],[90],[120],[4,[-180,-30]]], [720,1,2,-1, "30080C0880" ,[45],[-90],[1060]], [800,0,1,-1, "58050E980280" ,[-25,-20],[-50,-40],[-100,-20],[2202,[-1020,-100,-40,-10]]], [960,0,1,1, "5050880A" ,[5,40],[10,80],[40,80]], [1440,1,3,-1, "38080C088680" ,[45],[-90],[120],[23,[120]],[4,[-180,-30]]], [1920,0,1,-1, "F8718C0F0080" ,[5,40],[-10,80],[40,80]], [1920,0,1,1, "5052880A42" ,[-40,-5],[10,80],[40,80],[4,[-120,-10,80]]], [1920,0,1,-1, "78559C0B04" ,[-40,-5],[-10,80],[40,80],[4,[-120,-10,80]],[22,[5],[40]]], [3840,0,1,-1, "F8779C0F4680" ,[-40,-5],[-10,80],[40,80],[4,[-120,-10,80]],[22,[-5],[-40]]], [7200,0,1,-1, "5D4006C90080" ,[20,25],[-50,40],[20,100],[29,[1020],[1025]]], [14400,0,1,-1, "5D522EC90080" ,[20,25],[-50,40],[20,100],[4,[-100,-10,100]],[29,[-1020],[1025]]], [14400,0,1,1, "5552AAC842" ,[-25,-20],[-50,-40],[-100,-20],[2202,[-100,-30,60]]], [28800,0,1,-1, "FFF7EFF94280" ,[-25,-20],[-50,-40],[-100,-20],[2202,[-100,-30,60]]], [1814400,1,8,1, "555AAACA6B" ,[45],[90],[120],[4,[210]]], [3628800,1,10,-1, "FFFFFFFFFF80" ,[45],[-90],[120],[4,[210]]]];