Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W grppc.tst GAP tests Alexander Hulpke ## ## #Y Copyright (C) 1997 ## ## To be listed in testinstall.g ## gap> START_TEST("grppc.tst"); gap> h:=Group((1,2,3,4),(1,2));; gap> m:=IsomorphismPcGroup(h);; gap> hh:=Image(m,h);; gap> pcgs:=Pcgs(hh);; gap> ForAll(pcgs,i->PreImagesRepresentative(m,i) in h); true gap> g:=WreathProduct(Group((1,2,3),(1,2)),Group((1,2,3,4,5,6,7)));; gap> i:=IsomorphismPcGroup(g);; gap> g:=Range(i);; gap> u:=Subgroup(g,GeneratorsOfGroup(g){[2..15]});; gap> n:=Subgroup(g,[g.1]);; gap> v:=Normalizer(u,n);; gap> IsSubgroup(u,v); true gap> G:=function() > local g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13,g14,r,f,g,rws,x; > f:=FreeGroup(IsSyllableWordsFamily,14); g:=GeneratorsOfGroup(f); > g1:=g[1]; g2:=g[2]; > g3:=g[3]; g4:=g[4]; g5:=g[5]; g6:=g[6]; g7:=g[7]; g8:=g[8]; g9:=g[9]; > g10:=g[10]; g11:=g[11]; g12:=g[12]; g13:=g[13]; g14:=g[14]; > rws:=SingleCollector(f,[ 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2 ]); > r:=[ [1,g2], ]; for x in r do SetPower(rws,x[1],x[2]);od; > r:=[ [3,1,g3^2*g4], [4,1,g4^2*g5], [5,1,g5^2*g6], [6,1,g3*g6^2], > [7,1,g7*g9], [8,1,g8*g10], [9,1,g9*g11], [10,1,g10*g12], [11,1,g11*g13], > [12,1,g12*g14],[13,1,g7*g13],[14,1,g8*g14], [3,2,g3^2*g5], [4,2,g4^2*g6], > [5,2,g3*g5^2], [6,2,g4*g6^2], [7,2,g7*g11], [8,2,g8*g12], [9,2,g9*g13], > [10,2,g10*g14], [11,2,g7*g11], [12,2,g8*g12],[13,2,g9*g13],[14,2,g10*g14], > [7,3,g7*g8],[8,3,g7],[9,4,g9*g10],[10,4,g9], [11,5,g11*g12], [12,5,g11], > [13,6,g13*g14], [14,6,g13] ]; > for x in r do SetCommutator(rws,x[1],x[2],x[3]);od; > return GroupByRwsNC(rws); end;; G:=G();; gap> gens:=GeneratorsOfGroup(G);; gap> u:=Group( gens[2], gens[3]*gens[5], gens[4]*gens[6], gens[7], gens[8], > gens[9], gens[10], gens[11], gens[12], gens[13], gens[14] );; gap> v:=Group( gens[1], gens[2], gens[3]*gens[5], gens[4]*gens[6], > gens[7]*gens[11],gens[8]*gens[12],gens[9]*gens[13], gens[10]*gens[14]);; gap> Intersection(u,v);; gap> g:=Group((1,15,8,4,14,9)(2,16,7,3,13,10)(5,18,12)(6,17,11), > (1,3)(2,4)(7,9)(8,10)(13,15)(14,16), > (1,3,6)(2,4,5)(7,9,12)(8,10,11)(13,15,18)(14,16,17), > (5,6)(7,8)(9,10)(13,14)(15,16),(1,2)(7,8)(13,14),(1,2)(3,4)(5,6), > (7,8)(9,10)(11,12),(13,14)(15,16)(17,18));; gap> cl:=ConjugacyClasses(Image(IsomorphismPcGroup(g),g));; gap> G := Group( ( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14), (15,16) );; gap> sys := SylowSystem( G );; gap> List( sys, Size ); [ 4, 7 ] gap> List(sys,i->Length(AsList(i))); [ 4, 7 ] gap> G := SmallGroup( 144, 183 );; gap> F := FittingSubgroup( G );; gap> S := SylowSubgroup( F, 2 );; gap> Length(ComplementClassesRepresentatives( G, S )); 1 gap> c:=111738634087016687677581080419779823937672962105281999064930026947977838341505382863502660652163271927890657789545865354105698690880491419382732505129685548945886493976382779091529311779061982182942409366242406420035526825355893426176; 111738634087016687677581080419779823937672962105281999064930026947977838341505\ 382863502660652163271927890657789545865354105698690880491419382732505129685548\ 945886493976382779091529311779061982182942409366242406420035526825355893426176 gap> PcGroupCode (c, 43008); <pc group of size 43008 with 13 generators> gap> G:= > 62914798297585954914426131977340386523695645250865424229791550956377401783;; gap> G:=PcGroupCode(G,24570);; gap> x := G.1*G.3*G.5;;y := x^4;; gap> RepresentativeAction(G,x,y)=fail; false gap> G:=2353881588135032924850825470669869647984062942442421472263823;; gap> G:=PcGroupCode(G,7938);; gap> x:=G.3*G.5^2*G.6^3*G.7^3;; gap> RepresentativeAction(G,x,x^2)<>fail; true gap> RepresentativeAction(G,x,x^2); f1*f2 # that's all, folks gap> STOP_TEST( "grppc.tst", 2970000); ############################################################################# ## #E