Interpolation basis
6�`W� � @ s� d d l m Z m Z m Z m Z m Z m Z m Z m Z m Z d d l
m Z d d l m
Z
d d l m Z m Z m Z d d l j Z d d l j Z d d l m Z Gd d � d � Z Gd d
� d
e � Z d S)� ) �Function�S�symbols�And� Piecewise�lambdify�Matrix�pi�latex)�
parse_expr)�jacobi)�array�float32�linspaceN)�dbgc @ s� e Z d Z d Z d d d � Z d d � Z d d � Z d d
� Z d d � Z d
d � Z d d � Z
d d � Z d d � Z d d d d d � Z
d d � Z d d d � Z d S)�LeastSquaresa�
find aproximation use least squares method
func must be set while initialisation
basis and points added directly or
use pointsSet for point
and createBasisH or createBasisJ for Head or Jacoby basis
see tests for examples
used as
l=LeastSquares(func='cos(x)')
l.points=list of points or
l.points=lg.choosingPoints(x0=0,n=10)
l.createBasisH()
l.leastSquares(weightFunction=1)
l.plot()
zsin(x)c C sd t d � | _ t j d d d d � | _ g | _ g | _ d | _ | | _ d | _ d | _
d S)N�x�x0r �n�
)r r �lg�choosingPoints�points�basis�texBasis�texF�f�fLam�iF)�self�func� r! �J/projects/91f280f0-b3af-42e1-a2e0-ed2660b96906/jupyter/src/leastSquares.py�__init__, s zLeastSquares.__init__c C sZ | j } d | d | } d d g | _ | j d | d d d d � | j d | � d S)N� r �alpha�beta�weightFunction�����)r r �createBasisJ�leastSquares)r r r �Wr! r! r"